كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18717
التقييم : 34685
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide  Empty
مُساهمةموضوع: كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide    كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide  Emptyالخميس 01 ديسمبر 2022, 5:00 pm

أخواني في الله
أحضرت لكم كتاب
MATLAB Statistics and Machine Learning Toolbox - User's Guide 2022
Getting Started

كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide  M_s_a_19
و المحتوى كما يلي :

1
Statistics and Machine Learning Toolbox Product Description . 1-2
Supported Data Types 1-3
Organizing Data
2
Other MATLAB Functions Supporting Nominal and Ordinal Arrays . 2-2
Create Nominal and Ordinal Arrays . 2-3
Create Nominal Arrays . 2-3
Create Ordinal Arrays 2-4
Change Category Labels 2-7
Change Category Labels 2-7
Reorder Category Levels 2-9
Reorder Category Levels in Ordinal Arrays 2-9
Reorder Category Levels in Nominal Arrays 2-10
Categorize Numeric Data 2-13
Categorize Numeric Data 2-13
Merge Category Levels 2-16
Merge Category Levels 2-16
Add and Drop Category Levels 2-18
Plot Data Grouped by Category . 2-21
Plot Data Grouped by Category 2-21
Test Differences Between Category Means 2-25
Summary Statistics Grouped by Category . 2-33
Summary Statistics Grouped by Category 2-33
Sort Ordinal Arrays . 2-35
Sort Ordinal Arrays 2-35
v
ContentsNominal and Ordinal Arrays 2-37
What Are Nominal and Ordinal Arrays? . 2-37
Nominal and Ordinal Array Conversion 2-37
Advantages of Using Nominal and Ordinal Arrays 2-39
Manipulate Category Levels 2-39
Analysis Using Nominal and Ordinal Arrays 2-39
Reduce Memory Requirements 2-40
Index and Search Using Nominal and Ordinal Arrays . 2-42
Index By Category . 2-42
Common Indexing and Searching Methods . 2-42
Grouping Variables . 2-46
What Are Grouping Variables? 2-46
Group Definition . 2-46
Analysis Using Grouping Variables . 2-47
Missing Group Values . 2-47
Dummy Variables . 2-49
What Are Dummy Variables? 2-49
Creating Dummy Variables . 2-50
Linear Regression with Categorical Covariates 2-53
Create a Dataset Array from Workspace Variables 2-58
Create a Dataset Array from a Numeric Array . 2-58
Create Dataset Array from Heterogeneous Workspace Variables . 2-60
Create a Dataset Array from a File . 2-63
Create a Dataset Array from a Tab-Delimited Text File 2-63
Create a Dataset Array from a Comma-Separated Text File . 2-65
Create a Dataset Array from an Excel File . 2-67
Add and Delete Observations . 2-69
Add and Delete Variables 2-72
Access Data in Dataset Array Variables . 2-75
Select Subsets of Observations . 2-80
Sort Observations in Dataset Arrays . 2-83
Merge Dataset Arrays . 2-86
Stack or Unstack Dataset Arrays 2-89
Calculations on Dataset Arrays . 2-93
Export Dataset Arrays . 2-96
Clean Messy and Missing Data 2-98
vi ContentsDataset Arrays in the Variables Editor 2-102
Open Dataset Arrays in the Variables Editor . 2-102
Modify Variable and Observation Names 2-103
Reorder or Delete Variables . 2-104
Add New Data . 2-106
Sort Observations . 2-107
Select a Subset of Data . 2-108
Create Plots . 2-110
Dataset Arrays 2-113
What Are Dataset Arrays? . 2-113
Dataset Array Conversion . 2-113
Dataset Array Properties . 2-114
Index and Search Dataset Arrays . 2-115
Ways To Index and Search 2-115
Examples . 2-115
Descriptive Statistics
3
Measures of Central Tendency . 3-2
Measures of Central Tendency . 3-2
Measures of Dispersion . 3-4
Compare Measures of Dispersion . 3-4
Exploratory Analysis of Data . 3-6
Resampling Statistics . 3-10
Bootstrap Resampling . 3-10
Jackknife Resampling . 3-12
Parallel Computing Support for Resampling Methods . 3-13
Statistical Visualization
4
Create Scatter Plots Using Grouped Data 4-2
Compare Grouped Data Using Box Plots . 4-4
Distribution Plots . 4-7
Normal Probability Plots 4-7
Probability Plots 4-9
Quantile-Quantile Plots 4-11
Cumulative Distribution Plots . 4-13
Visualizing Multivariate Data . 4-17
viiProbability Distributions
5
Working with Probability Distributions 5-3
Probability Distribution Objects 5-3
Apps and Interactive User Interfaces 5-6
Distribution-Specific Functions and Generic Distribution Functions 5-10
Supported Distributions . 5-16
Continuous Distributions (Data) . 5-16
Continuous Distributions (Statistics) 5-19
Discrete Distributions . 5-20
Multivariate Distributions 5-21
Nonparametric Distributions . 5-22
Flexible Distribution Families . 5-22
Maximum Likelihood Estimation 5-23
Negative Loglikelihood Functions . 5-25
Find MLEs Using Negative Loglikelihood Function . 5-25
Random Number Generation . 5-28
Nonparametric and Empirical Probability Distributions . 5-31
Overview 5-31
Kernel Distribution . 5-31
Empirical Cumulative Distribution Function 5-32
Piecewise Linear Distribution . 5-33
Pareto Tails 5-34
Triangular Distribution 5-35
Fit Kernel Distribution Object to Data . 5-37
Fit Kernel Distribution Using ksdensity 5-40
Fit Distributions to Grouped Data Using ksdensity . 5-42
Fit a Nonparametric Distribution with Pareto Tails . 5-44
Generate Random Numbers Using the Triangular Distribution . 5-48
Model Data Using the Distribution Fitter App . 5-52
Explore Probability Distributions Interactively 5-52
Create and Manage Data Sets . 5-53
Create a New Fit 5-56
Display Results 5-60
Manage Fits 5-61
Evaluate Fits . 5-63
Exclude Data . 5-65
Save and Load Sessions . 5-69
Generate a File to Fit and Plot Distributions 5-69
Fit a Distribution Using the Distribution Fitter App 5-72
Step 1: Load Sample Data 5-72
viii ContentsStep 2: Import Data 5-72
Step 3: Create a New Fit 5-74
Step 4: Create and Manage Additional Fits . 5-77
Define Custom Distributions Using the Distribution Fitter App . 5-82
Open the Distribution Fitter App . 5-82
Define Custom Distribution . 5-83
Import Custom Distribution 5-84
Explore the Random Number Generation UI 5-86
Compare Multiple Distribution Fits 5-88
Fit Probability Distribution Objects to Grouped Data . 5-93
Three-Parameter Weibull Distribution . 5-96
Multinomial Probability Distribution Objects . 5-103
Multinomial Probability Distribution Functions . 5-106
Generate Random Numbers Using Uniform Distribution Inversion . 5-109
Represent Cauchy Distribution Using t Location-Scale . 5-112
Generate Cauchy Random Numbers Using Student's t . 5-115
Generate Correlated Data Using Rank Correlation 5-116
Create Gaussian Mixture Model 5-120
Fit Gaussian Mixture Model to Data 5-123
Simulate Data from Gaussian Mixture Model . 5-127
Copulas: Generate Correlated Samples 5-129
Determining Dependence Between Simulation Inputs 5-129
Constructing Dependent Bivariate Distributions 5-132
Using Rank Correlation Coefficients . 5-136
Using Bivariate Copulas 5-138
Higher Dimension Copulas 5-145
Archimedean Copulas 5-146
Simulating Dependent Multivariate Data Using Copulas 5-147
Fitting Copulas to Data . 5-151
Simulating Dependent Random Variables Using Copulas . 5-155
Fit Custom Distributions . 5-173
Avoid Numerical Issues When Fitting Custom Distributions 5-186
Nonparametric Estimates of Cumulative Distribution Functions and Their
Inverses . 5-192
ixModelling Tail Data with the Generalized Pareto Distribution . 5-207
Modelling Data with the Generalized Extreme Value Distribution 5-215
Curve Fitting and Distribution Fitting . 5-226
Fitting a Univariate Distribution Using Cumulative Probabilities 5-234
Gaussian Processes
6
Gaussian Process Regression Models . 6-2
Compare Prediction Intervals of GPR Models 6-3
Kernel (Covariance) Function Options 6-6
Exact GPR Method 6-10
Parameter Estimation . 6-10
Prediction 6-11
Computational Complexity of Exact Parameter Estimation and Prediction
. 6-13
Subset of Data Approximation for GPR Models 6-14
Subset of Regressors Approximation for GPR Models . 6-15
Approximating the Kernel Function 6-15
Parameter Estimation . 6-16
Prediction 6-16
Predictive Variance Problem 6-17
Fully Independent Conditional Approximation for GPR Models . 6-19
Approximating the Kernel Function 6-19
Parameter Estimation . 6-19
Prediction 6-20
Block Coordinate Descent Approximation for GPR Models . 6-22
Fit GPR Models Using BCD Approximation . 6-22
Predict Battery State of Charge Using Machine Learning 6-27
Random Number Generation
7
Generating Pseudorandom Numbers 7-2
Common Pseudorandom Number Generation Methods . 7-2
Representing Sampling Distributions Using Markov Chain Samplers . 7-9
Using the Metropolis-Hastings Algorithm . 7-9
Using Slice Sampling 7-9
x ContentsUsing Hamiltonian Monte Carlo . 7-10
Generating Quasi-Random Numbers . 7-12
Quasi-Random Sequences 7-12
Quasi-Random Point Sets 7-13
Quasi-Random Streams . 7-18
Generating Data Using Flexible Families of Distributions 7-20
Bayesian Linear Regression Using Hamiltonian Monte Carlo . 7-26
Bayesian Analysis for a Logistic Regression Model . 7-35
Hypothesis Tests
8
Hypothesis Test Terminology 8-2
Hypothesis Test Assumptions 8-4
Hypothesis Testing 8-5
Available Hypothesis Tests . 8-10
Selecting a Sample Size . 8-12
Analysis of Variance
9
One-Way ANOVA . 9-2
Introduction to One-Way ANOVA 9-2
Prepare Data for One-Way ANOVA 9-3
Perform One-Way ANOVA . 9-4
Mathematical Details 9-8
Two-Way ANOVA 9-11
Introduction to Two-Way ANOVA . 9-11
Prepare Data for Balanced Two-Way ANOVA 9-12
Perform Two-Way ANOVA 9-13
Mathematical Details . 9-15
Multiple Comparisons . 9-18
Multiple Comparisons Using One-Way ANOVA 9-18
Multiple Comparisons for Three-Way ANOVA . 9-20
Multiple Comparison Procedures 9-22
N-Way ANOVA 9-26
Introduction to N-Way ANOVA 9-26
Prepare Data for N-Way ANOVA . 9-28
xiPerform N-Way ANOVA 9-28
ANOVA with Random Effects . 9-33
Other ANOVA Models . 9-38
Analysis of Covariance 9-39
Introduction to Analysis of Covariance 9-39
Analysis of Covariance Tool 9-39
Confidence Bounds . 9-43
Multiple Comparisons . 9-45
Nonparametric Methods . 9-47
Introduction to Nonparametric Methods . 9-47
Kruskal-Wallis Test . 9-47
Friedman's Test . 9-47
MANOVA 9-49
Introduction to MANOVA 9-49
ANOVA with Multiple Responses . 9-49
Model Specification for Repeated Measures Models 9-54
Wilkinson Notation . 9-54
Compound Symmetry Assumption and Epsilon Corrections 9-55
Mauchly’s Test of Sphericity 9-57
Multivariate Analysis of Variance for Repeated Measures 9-59
Bayesian Optimization
10
Bayesian Optimization Algorithm . 10-2
Algorithm Outline 10-2
Gaussian Process Regression for Fitting the Model . 10-3
Acquisition Function Types . 10-3
Acquisition Function Maximization . 10-5
Parallel Bayesian Optimization . 10-7
Optimize in Parallel 10-7
Parallel Bayesian Algorithm 10-7
Settings for Best Parallel Performance 10-8
Differences in Parallel Bayesian Optimization Output . 10-9
Bayesian Optimization Plot Functions . 10-11
Built-In Plot Functions . 10-11
Custom Plot Function Syntax 10-12
Create a Custom Plot Function . 10-12
Bayesian Optimization Output Functions 10-19
What Is a Bayesian Optimization Output Function? 10-19
xii ContentsBuilt-In Output Functions . 10-19
Custom Output Functions . 10-19
Bayesian Optimization Output Function 10-20
Bayesian Optimization Workflow . 10-25
What Is Bayesian Optimization? 10-25
Ways to Perform Bayesian Optimization 10-25
Bayesian Optimization Using a Fit Function . 10-26
Bayesian Optimization Using bayesopt . 10-26
Bayesian Optimization Characteristics . 10-27
Parameters Available for Fit Functions . 10-28
Hyperparameter Optimization Options for Fit Functions 10-30
Variables for a Bayesian Optimization . 10-34
Syntax for Creating Optimization Variables 10-34
Variables for Optimization Examples . 10-35
Bayesian Optimization Objective Functions 10-37
Objective Function Syntax 10-37
Objective Function Example . 10-37
Objective Function Errors . 10-37
Constraints in Bayesian Optimization . 10-39
Bounds . 10-39
Deterministic Constraints — XConstraintFcn 10-39
Conditional Constraints — ConditionalVariableFcn 10-40
Coupled Constraints . 10-41
Bayesian Optimization with Coupled Constraints . 10-42
Optimize Cross-Validated Classifier Using bayesopt 10-46
Optimize Classifier Fit Using Bayesian Optimization . 10-56
Optimize a Boosted Regression Ensemble . 10-67
Parametric Regression Analysis
11
Choose a Regression Function 11-2
Update Legacy Code with New Fitting Methods . 11-2
What Is a Linear Regression Model? . 11-6
Linear Regression 11-9
Prepare Data . 11-9
Choose a Fitting Method . 11-10
Choose a Model or Range of Models . 11-11
Fit Model to Data . 11-13
Examine Quality and Adjust Fitted Model . 11-14
Predict or Simulate Responses to New Data . 11-31
Share Fitted Models . 11-33
xiiiLinear Regression Workflow . 11-35
Regression Using Dataset Arrays . 11-40
Linear Regression Using Tables 11-43
Linear Regression with Interaction Effects . 11-46
Interpret Linear Regression Results 11-52
Cook’s Distance . 11-57
Purpose 11-57
Definition . 11-57
How To . 11-57
Determine Outliers Using Cook's Distance 11-57
Coefficient Standard Errors and Confidence Intervals 11-60
Coefficient Covariance and Standard Errors . 11-60
Coefficient Confidence Intervals 11-61
Coefficient of Determination (R-Squared) . 11-63
Purpose 11-63
Definition . 11-63
How To . 11-63
Display Coefficient of Determination . 11-63
Delete-1 Statistics . 11-65
Delete-1 Change in Covariance (CovRatio) 11-65
Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas) 11-67
Delete-1 Scaled Change in Fitted Values (Dffits) 11-68
Delete-1 Variance (S2_i) 11-70
Durbin-Watson Test 11-72
Purpose 11-72
Definition . 11-72
How To . 11-72
Test for Autocorrelation Among Residuals . 11-72
F-statistic and t-statistic 11-74
F-statistic . 11-74
Assess Fit of Model Using F-statistic . 11-74
t-statistic . 11-76
Assess Significance of Regression Coefficients Using t-statistic . 11-77
Hat Matrix and Leverage . 11-79
Hat Matrix 11-79
Leverage . 11-80
Determine High Leverage Observations 11-80
Residuals 11-82
Purpose 11-82
Definition . 11-82
How To . 11-83
Assess Model Assumptions Using Residuals . 11-83
xiv ContentsSummary of Output and Diagnostic Statistics 11-91
Wilkinson Notation 11-93
Overview . 11-93
Formula Specification 11-93
Linear Model Examples 11-96
Linear Mixed-Effects Model Examples . 11-97
Generalized Linear Model Examples . 11-98
Generalized Linear Mixed-Effects Model Examples 11-99
Repeated Measures Model Examples . 11-100
Stepwise Regression 11-101
Stepwise Regression to Select Appropriate Models . 11-101
Compare large and small stepwise models . 11-101
Reduce Outlier Effects Using Robust Regression . 11-106
Why Use Robust Regression? . 11-106
Iteratively Reweighted Least Squares . 11-106
Compare Results of Standard and Robust Least-Squares Fit 11-107
Steps for Iteratively Reweighted Least Squares . 11-109
Ridge Regression . 11-111
Introduction to Ridge Regression 11-111
Ridge Regression 11-111
Lasso and Elastic Net . 11-114
What Are Lasso and Elastic Net? 11-114
Lasso and Elastic Net Details . 11-114
References . 11-115
Wide Data via Lasso and Parallel Computing 11-117
Lasso Regularization 11-122
Lasso and Elastic Net with Cross Validation . 11-125
Partial Least Squares . 11-128
Introduction to Partial Least Squares . 11-128
Perform Partial Least-Squares Regression . 11-128
Linear Mixed-Effects Models . 11-133
Prepare Data for Linear Mixed-Effects Models . 11-136
Tables and Dataset Arrays . 11-136
Design Matrices . 11-137
Relation of Matrix Form to Tables and Dataset Arrays . 11-139
Relationship Between Formula and Design Matrices 11-140
Formula . 11-140
Design Matrices for Fixed and Random Effects 11-141
Grouping Variables . 11-143
Estimating Parameters in Linear Mixed-Effects Models . 11-145
Maximum Likelihood (ML) . 11-145
Restricted Maximum Likelihood (REML) . 11-146
xvLinear Mixed-Effects Model Workflow 11-148
Fit Mixed-Effects Spline Regression . 11-160
Train Linear Regression Model . 11-163
Analyze Time Series Data 11-181
Partial Least Squares Regression and Principal Components Regression
. 11-190
Generalized Linear Models
12
Multinomial Models for Nominal Responses 12-2
Multinomial Models for Ordinal Responses . 12-4
Hierarchical Multinomial Models . 12-7
Generalized Linear Models . 12-9
What Are Generalized Linear Models? 12-9
Prepare Data . 12-9
Choose Generalized Linear Model and Link Function 12-11
Choose Fitting Method and Model 12-13
Fit Model to Data . 12-15
Examine Quality and Adjust the Fitted Model 12-16
Predict or Simulate Responses to New Data . 12-23
Share Fitted Models . 12-26
Generalized Linear Model Workflow 12-28
Lasso Regularization of Generalized Linear Models . 12-32
What is Generalized Linear Model Lasso Regularization? . 12-32
Generalized Linear Model Lasso and Elastic Net 12-32
References 12-33
Regularize Poisson Regression 12-34
Regularize Logistic Regression 12-36
Regularize Wide Data in Parallel . 12-43
Generalized Linear Mixed-Effects Models 12-48
What Are Generalized Linear Mixed-Effects Models? 12-48
GLME Model Equations 12-48
Prepare Data for Model Fitting . 12-49
Choose a Distribution Type for the Model . 12-50
Choose a Link Function for the Model 12-50
Specify the Model Formula 12-51
Display the Model . 12-53
Work with the Model 12-55
xvi ContentsFit a Generalized Linear Mixed-Effects Model 12-57
Fitting Data with Generalized Linear Models . 12-65
Train Generalized Additive Model for Binary Classification . 12-77
Train Generalized Additive Model for Regression . 12-86
Nonlinear Regression
13
Nonlinear Regression . 13-2
What Are Parametric Nonlinear Regression Models? 13-2
Prepare Data . 13-2
Represent the Nonlinear Model . 13-3
Choose Initial Vector beta0 . 13-5
Fit Nonlinear Model to Data 13-6
Examine Quality and Adjust the Fitted Nonlinear Model . 13-6
Predict or Simulate Responses Using a Nonlinear Model 13-9
Nonlinear Regression Workflow 13-13
Mixed-Effects Models 13-18
Introduction to Mixed-Effects Models 13-18
Mixed-Effects Model Hierarchy 13-18
Specifying Mixed-Effects Models . 13-19
Specifying Covariate Models 13-21
Choosing nlmefit or nlmefitsa 13-22
Using Output Functions with Mixed-Effects Models . 13-24
Examining Residuals for Model Verification 13-28
Mixed-Effects Models Using nlmefit and nlmefitsa 13-33
Weighted Nonlinear Regression 13-45
Pitfalls in Fitting Nonlinear Models by Transforming to Linearity 13-53
Nonlinear Logistic Regression . 13-59
Time Series Forecasting
14
Time Series Forecasting Using Ensemble of Boosted Regression Trees
. 14-2
xviiSurvival Analysis
15
What Is Survival Analysis? . 15-2
Introduction 15-2
Censoring 15-2
Data 15-2
Survivor Function 15-4
Hazard Function . 15-6
Kaplan-Meier Method 15-10
Hazard and Survivor Functions for Different Groups . 15-16
Survivor Functions for Two Groups . 15-22
Cox Proportional Hazards Model . 15-26
Introduction . 15-26
Hazard Ratio 15-26
Extension of Cox Proportional Hazards Model . 15-27
Partial Likelihood Function 15-27
Partial Likelihood Function for Tied Events 15-28
Frequency or Weights of Observations . 15-29
Cox Proportional Hazards Model for Censored Data . 15-31
Cox Proportional Hazards Model with Time-Dependent Covariates . 15-35
Cox Proportional Hazards Model Object . 15-39
Analyzing Survival or Reliability Data . 15-47
Multivariate Methods
16
Multivariate Linear Regression . 16-2
Introduction to Multivariate Methods . 16-2
Multivariate Linear Regression Model 16-2
Solving Multivariate Regression Problems . 16-3
Estimation of Multivariate Regression Models . 16-5
Least Squares Estimation 16-5
Maximum Likelihood Estimation . 16-7
Missing Response Data 16-9
Set Up Multivariate Regression Problems . 16-11
Response Matrix 16-11
Design Matrices 16-14
Common Multivariate Regression Problems . 16-14
Multivariate General Linear Model . 16-20
xviii ContentsFixed Effects Panel Model with Concurrent Correlation 16-24
Longitudinal Analysis 16-30
Multidimensional Scaling . 16-35
Nonclassical and Nonmetric Multidimensional Scaling 16-36
Nonclassical Multidimensional Scaling . 16-36
Nonmetric Multidimensional Scaling 16-37
Classical Multidimensional Scaling . 16-40
Compare Handwritten Shapes Using Procrustes Analysis . 16-42
Introduction to Feature Selection 16-47
Feature Selection Algorithms 16-47
Feature Selection Functions . 16-48
Sequential Feature Selection 16-59
Introduction to Sequential Feature Selection 16-59
Select Subset of Features with Comparative Predictive Power . 16-59
Nonnegative Matrix Factorization 16-63
Perform Nonnegative Matrix Factorization . 16-64
Principal Component Analysis (PCA) 16-66
Analyze Quality of Life in U.S. Cities Using PCA . 16-67
Factor Analysis 16-76
Analyze Stock Prices Using Factor Analysis 16-77
Robust Feature Selection Using NCA for Regression . 16-83
Neighborhood Component Analysis (NCA) Feature Selection 16-97
NCA Feature Selection for Classification 16-97
NCA Feature Selection for Regression . 16-99
Impact of Standardization . 16-100
Choosing the Regularization Parameter Value . 16-100
t-SNE 16-102
What Is t-SNE? 16-102
t-SNE Algorithm . 16-102
Barnes-Hut Variation of t-SNE 16-105
Characteristics of t-SNE . 16-105
t-SNE Output Function 16-108
t-SNE Output Function Description 16-108
tsne optimValues Structure . 16-108
t-SNE Custom Output Function . 16-109
Visualize High-Dimensional Data Using t-SNE . 16-111
xixtsne Settings 16-115
Feature Extraction 16-127
What Is Feature Extraction? 16-127
Sparse Filtering Algorithm . 16-127
Reconstruction ICA Algorithm 16-129
Feature Extraction Workflow . 16-132
Extract Mixed Signals . 16-161
Select Features for Classifying High-Dimensional Data . 16-168
Perform Factor Analysis on Exam Grades . 16-177
Classical Multidimensional Scaling Applied to Nonspatial Distances 16-186
Nonclassical Multidimensional Scaling 16-194
Fitting an Orthogonal Regression Using Principal Components Analysis
. 16-202
Tune Regularization Parameter to Detect Features Using NCA for
Classification 16-207
Cluster Analysis
17
Choose Cluster Analysis Method 17-2
Clustering Methods 17-2
Comparison of Clustering Methods . 17-4
Hierarchical Clustering . 17-6
Introduction to Hierarchical Clustering . 17-6
Algorithm Description 17-6
Similarity Measures 17-7
Linkages . 17-8
Dendrograms . 17-9
Verify the Cluster Tree . 17-10
Create Clusters 17-15
DBSCAN . 17-19
Introduction to DBSCAN 17-19
Algorithm Description . 17-19
Determine Values for DBSCAN Parameters 17-20
Partition Data Using Spectral Clustering 17-26
Introduction to Spectral Clustering 17-26
Algorithm Description . 17-26
Estimate Number of Clusters and Perform Spectral Clustering . 17-27
xx Contentsk-Means Clustering 17-33
Introduction to k-Means Clustering . 17-33
Compare k-Means Clustering Solutions 17-33
Cluster Using Gaussian Mixture Model 17-39
How Gaussian Mixture Models Cluster Data . 17-39
Fit GMM with Different Covariance Options and Initial Conditions 17-39
When to Regularize . 17-44
Model Fit Statistics . 17-45
Cluster Gaussian Mixture Data Using Hard Clustering . 17-46
Cluster Gaussian Mixture Data Using Soft Clustering 17-52
Tune Gaussian Mixture Models 17-57
Cluster Evaluation . 17-63
Cluster Analysis . 17-66
Anomaly Detection with Isolation Forest 17-81
Introduction to Isolation Forest 17-81
Parameters for Isolation Forests 17-81
Anomaly Scores 17-81
Anomaly Indicators 17-82
Detect Outliers and Plot Contours of Anomaly Scores 17-82
Examine NumObservationsPerLearner for Small Data . 17-85
Unsupervised Anomaly Detection 17-91
Outlier Detection . 17-91
Novelty Detection . 17-99
Model-Specific Anomaly Detection 17-107
Detect Outliers After Training Random Forest 17-107
Detect Outliers After Training Discriminant Analysis Classifier 17-110
Parametric Classification
18
Parametric Classification 18-2
ROC Curve and Performance Metrics 18-3
Introduction to ROC Curve . 18-3
Performance Curve with MATLAB 18-4
ROC Curve for Multiclass Classification . 18-9
Performance Metrics 18-11
Classification Scores and Thresholds 18-13
Pointwise Confidence Intervals . 18-17
Performance Curves by perfcurve 18-19
Input Scores and Labels for perfcurve . 18-19
Computation of Performance Metrics 18-20
xxiMulticlass Classification Problems 18-22
Confidence Intervals . 18-22
Observation Weights . 18-22
Classification . 18-24
Nonparametric Supervised Learning
19
Supervised Learning Workflow and Algorithms 19-2
What Is Supervised Learning? 19-2
Steps in Supervised Learning . 19-3
Characteristics of Classification Algorithms 19-6
Misclassification Cost Matrix, Prior Probabilities, and Observation Weights
. 19-8
Visualize Decision Surfaces of Different Classifiers 19-11
Classification Using Nearest Neighbors . 19-14
Pairwise Distance Metrics 19-14
k-Nearest Neighbor Search and Radius Search . 19-16
Classify Query Data . 19-20
Find Nearest Neighbors Using a Custom Distance Metric . 19-26
K-Nearest Neighbor Classification for Supervised Learning . 19-29
Construct KNN Classifier . 19-30
Examine Quality of KNN Classifier 19-30
Predict Classification Using KNN Classifier . 19-31
Modify KNN Classifier . 19-31
Framework for Ensemble Learning . 19-33
Prepare the Predictor Data 19-34
Prepare the Response Data 19-34
Choose an Applicable Ensemble Aggregation Method 19-34
Set the Number of Ensemble Members . 19-37
Prepare the Weak Learners . 19-37
Call fitcensemble or fitrensemble . 19-39
Ensemble Algorithms 19-41
Bootstrap Aggregation (Bagging) and Random Forest 19-44
Random Subspace 19-47
Boosting Algorithms . 19-48
Train Classification Ensemble . 19-56
Train Regression Ensemble . 19-59
Select Predictors for Random Forests . 19-62
Test Ensemble Quality 19-68
Ensemble Regularization . 19-72
Regularize a Regression Ensemble 19-72
xxii ContentsClassification with Imbalanced Data 19-81
Handle Imbalanced Data or Unequal Misclassification Costs in
Classification Ensembles . 19-86
Train Ensemble With Unequal Classification Costs 19-87
Surrogate Splits . 19-92
LPBoost and TotalBoost for Small Ensembles 19-97
Tune RobustBoost 19-102
Random Subspace Classification 19-105
Train Classification Ensemble in Parallel . 19-110
Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger
. 19-114
Bootstrap Aggregation (Bagging) of Classification Trees Using
TreeBagger 19-125
Detect Outliers Using Quantile Regression . 19-138
Conditional Quantile Estimation Using Kernel Smoothing . 19-143
Tune Random Forest Using Quantile Error and Bayesian Optimization
. 19-146
Support Vector Machines for Binary Classification . 19-151
Understanding Support Vector Machines 19-151
Using Support Vector Machines . 19-155
Train SVM Classifiers Using a Gaussian Kernel 19-157
Train SVM Classifier Using Custom Kernel . 19-160
Optimize Classifier Fit Using Bayesian Optimization 19-164
Plot Posterior Probability Regions for SVM Classification Models 19-174
Analyze Images Using Linear Support Vector Machines . 19-176
Assess Neural Network Classifier Performance 19-181
Assess Regression Neural Network Performance . 19-188
Automated Feature Engineering for Classification . 19-194
Interpret Linear Model with Generated Features 19-194
Generate New Features to Improve Bagged Ensemble Accuracy . 19-197
Automated Feature Engineering for Regression . 19-201
Interpret Linear Model with Generated Features 19-201
Generate New Features to Improve Bagged Ensemble Performance 19-204
Moving Towards Automating Model Selection Using Bayesian
Optimization 19-208
xxiiiAutomated Classifier Selection with Bayesian and ASHA Optimization
. 19-216
Automated Regression Model Selection with Bayesian and ASHA
Optimization 19-235
Credit Rating by Bagging Decision Trees . 19-256
Combine Heterogeneous Models into Stacked Ensemble 19-272
Label Data Using Semi-Supervised Learning Techniques 19-279
Bibliography 19-285
Decision Trees
20
Decision Trees . 20-2
Train Classification Tree . 20-2
Train Regression Tree 20-2
View Decision Tree . 20-4
Growing Decision Trees . 20-7
Prediction Using Classification and Regression Trees . 20-9
Predict Out-of-Sample Responses of Subtrees 20-10
Improving Classification Trees and Regression Trees 20-13
Examining Resubstitution Error 20-13
Cross Validation 20-13
Choose Split Predictor Selection Technique . 20-14
Control Depth or “Leafiness” 20-15
Pruning 20-19
Splitting Categorical Predictors in Classification Trees 20-25
Challenges in Splitting Multilevel Predictors 20-25
Algorithms for Categorical Predictor Split 20-25
Inspect Data with Multilevel Categorical Predictors . 20-26
Discriminant Analysis
21
Discriminant Analysis Classification . 21-2
Create Discriminant Analysis Classifiers . 21-2
xxiv ContentsCreating Discriminant Analysis Model . 21-4
Weighted Observations 21-4
Prediction Using Discriminant Analysis Models 21-6
Posterior Probability 21-6
Prior Probability . 21-6
Cost 21-7
Create and Visualize Discriminant Analysis Classifier . 21-9
Improving Discriminant Analysis Models 21-15
Deal with Singular Data 21-15
Choose a Discriminant Type . 21-15
Examine the Resubstitution Error and Confusion Matrix 21-16
Cross Validation 21-17
Change Costs and Priors . 21-18
Regularize Discriminant Analysis Classifier 21-21
Examine the Gaussian Mixture Assumption 21-27
Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis
21-27
Q-Q Plot 21-29
Mardia Kurtosis Test of Multivariate Normality . 21-31
Naive Bayes
22
Naive Bayes Classification . 22-2
Supported Distributions . 22-2
Plot Posterior Classification Probabilities . 22-5
Classification Learner
23
Machine Learning in MATLAB 23-2
What Is Machine Learning? 23-2
Selecting the Right Algorithm . 23-3
Train Classification Models in Classification Learner App 23-6
Train Regression Models in Regression Learner App . 23-7
Train Neural Networks for Deep Learning . 23-8
Train Classification Models in Classification Learner App . 23-10
Automated Classifier Training . 23-10
Manual Classifier Training 23-13
Parallel Classifier Training 23-14
Compare and Improve Classification Models . 23-14
xxvSelect Data for Classification or Open Saved App Session . 23-18
Select Data from Workspace . 23-18
Import Data from File 23-19
Example Data for Classification 23-19
Choose Validation Scheme 23-20
(optional) Reserve Data for Testing 23-22
Save and Open App Session . 23-22
Choose Classifier Options . 23-23
Choose Classifier Type . 23-23
Decision Trees . 23-27
Discriminant Analysis 23-29
Logistic Regression . 23-30
Naive Bayes Classifiers . 23-30
Support Vector Machines . 23-31
Nearest Neighbor Classifiers 23-34
Kernel Approximation Classifiers . 23-36
Ensemble Classifiers 23-37
Neural Network Classifiers 23-40
Feature Selection and Feature Transformation Using Classification
Learner App 23-42
Investigate Features in the Scatter Plot 23-42
Select Features to Include 23-44
Transform Features with PCA in Classification Learner . 23-46
Investigate Features in the Parallel Coordinates Plot 23-46
Misclassification Costs in Classification Learner App 23-49
Specify Misclassification Costs . 23-49
Assess Model Performance 23-52
Misclassification Costs in Exported Model and Generated Code 23-53
Hyperparameter Optimization in Classification Learner App 23-54
Select Hyperparameters to Optimize 23-54
Optimization Options 23-59
Minimum Classification Error Plot 23-61
Optimization Results 23-63
Visualize and Assess Classifier Performance in Classification Learner
23-66
Check Performance in the Models Pane 23-66
View Model Metrics in Summary Tab and Models Pane . 23-67
Compare Model Information and Results in Table View . 23-68
Plot Classifier Results 23-69
Check Performance Per Class in the Confusion Matrix . 23-70
Check ROC Curve . 23-72
Interpret Model Using Partial Dependence Plots 23-74
Compare Model Plots by Changing Layout 23-76
Evaluate Test Set Model Performance 23-76
Export Plots in Classification Learner App . 23-78
Export Classification Model to Predict New Data 23-83
Export the Model to the Workspace to Make Predictions for New Data
23-83
xxvi ContentsMake Predictions for New Data 23-83
Generate MATLAB Code to Train the Model with New Data . 23-84
Generate C Code for Prediction 23-85
Deploy Predictions Using MATLAB Compiler 23-87
Export Model for Deployment to MATLAB Production Server 23-88
Train Decision Trees Using Classification Learner App . 23-89
Train Discriminant Analysis Classifiers Using Classification Learner App
23-99
Train Logistic Regression Classifiers Using Classification Learner App
. 23-103
Train Support Vector Machines Using Classification Learner App . 23-107
Train Nearest Neighbor Classifiers Using Classification Learner App 23-111
Train Kernel Approximation Classifiers Using Classification Learner App
. 23-115
Train Ensemble Classifiers Using Classification Learner App . 23-120
Train Naive Bayes Classifiers Using Classification Learner App . 23-124
Train Neural Network Classifiers Using Classification Learner App 23-133
Train and Compare Classifiers Using Misclassification Costs in
Classification Learner App . 23-137
Train Classifier Using Hyperparameter Optimization in Classification
Learner App . 23-145
Check Classifier Performance Using Test Set in Classification Learner App
. 23-152
Interpret Classifiers Trained in Classification Learner App . 23-157
Deploy Model Trained in Classification Learner to MATLAB Production
Server 23-167
Choose Trained Model to Deploy 23-167
Export Model for Deployment . 23-168
(Optional) Simulate Model Deployment 23-169
Package Code . 23-170
Build Condition Model for Industrial Machinery and Manufacturing
Processes . 23-171
Load Data . 23-171
Import Data into App and Partition Data . 23-172
Train Models Using All Features . 23-173
Assess Model Performance . 23-174
Export Model to the Workspace and Save App Session 23-177
Check Model Size 23-178
Resume App Session . 23-178
Select Features Using Feature Ranking . 23-178
xxviiInvestigate Important Features in Scatter Plot 23-180
Further Experimentation 23-181
Assess Model Accuracy on Test Set . 23-184
Export Final Model . 23-186
Regression Learner
24
Train Regression Models in Regression Learner App 24-2
Automated Regression Model Training 24-2
Manual Regression Model Training . 24-4
Parallel Regression Model Training 24-5
Compare and Improve Regression Models . 24-6
Select Data for Regression or Open Saved App Session 24-9
Select Data from Workspace 24-9
Import Data from File 24-10
Example Data for Regression 24-10
Choose Validation Scheme 24-11
(optional) Reserve Data for Testing 24-12
Save and Open App Session . 24-12
Choose Regression Model Options 24-14
Choose Regression Model Type 24-14
Linear Regression Models 24-16
Regression Trees . 24-18
Support Vector Machines . 24-20
Gaussian Process Regression Models 24-22
Kernel Approximation Models 24-24
Ensembles of Trees . 24-26
Neural Networks . 24-27
Feature Selection and Feature Transformation Using Regression Learner
App . 24-30
Investigate Features in the Response Plot . 24-30
Select Features to Include 24-31
Transform Features with PCA in Regression Learner 24-33
Hyperparameter Optimization in Regression Learner App 24-35
Select Hyperparameters to Optimize 24-35
Optimization Options 24-41
Minimum MSE Plot . 24-43
Optimization Results 24-45
Visualize and Assess Model Performance in Regression Learner . 24-48
Check Performance in Models Pane . 24-48
View Model Statistics in Summary Tab and Models Pane . 24-49
Compare Model Information and Results in Table View . 24-50
Explore Data and Results in Response Plot 24-52
Plot Predicted vs. Actual Response 24-54
Evaluate Model Using Residuals Plot 24-55
Interpret Model Using Partial Dependence Plots 24-56
xxviii ContentsCompare Model Plots by Changing Layout 24-58
Evaluate Test Set Model Performance 24-59
Export Plots in Regression Learner App . 24-61
Export Regression Model to Predict New Data 24-65
Export Model to Workspace . 24-65
Make Predictions for New Data 24-65
Generate MATLAB Code to Train Model with New Data 24-66
Generate C Code for Prediction 24-67
Deploy Predictions Using MATLAB Compiler 24-69
Export Model for Deployment to MATLAB Production Server 24-69
Train Regression Trees Using Regression Learner App . 24-71
Train Regression Neural Networks Using Regression Learner App . 24-82
Train Kernel Approximation Model Using Regression Learner App . 24-89
Train Regression Model Using Hyperparameter Optimization in
Regression Learner App 24-97
Check Model Performance Using Test Set in Regression Learner App
. 24-103
Interpret Regression Models Trained in Regression Learner App . 24-108
Deploy Model Trained in Regression Learner to MATLAB Production
Server 24-119
Choose Trained Model to Deploy 24-119
Export Model for Deployment . 24-120
(Optional) Simulate Model Deployment 24-120
Package Code . 24-121
Support Vector Machines
25
Understanding Support Vector Machine Regression 25-2
Mathematical Formulation of SVM Regression 25-2
Solving the SVM Regression Optimization Problem . 25-5
Fairness
26
Introduction to Fairness in Binary Classification . 26-2
Reduce Statistical Parity Difference Using Fairness Weights 26-2
Reduce Disparate Impact of Predictions . 26-5
xxixInterpretability
27
Interpret Machine Learning Models . 27-2
Features for Model Interpretation 27-2
Interpret Classification Model . 27-3
Interpret Regression Model . 27-10
Shapley Values for Machine Learning Model . 27-18
What Is a Shapley Value? . 27-18
Shapley Value with MATLAB . 27-18
Algorithms 27-18
Specify Computation Algorithm 27-20
Computational Cost . 27-23
Reduce Computational Cost . 27-23
Incremental Learning
28
Incremental Learning Overview . 28-2
What Is Incremental Learning? 28-2
Incremental Learning with MATLAB 28-3
Configure Incremental Learning Model 28-9
Call Object Directly . 28-11
Convert Traditionally Trained Model 28-15
Implement Incremental Learning for Regression Using Succinct Workflow
28-19
Implement Incremental Learning for Classification Using Succinct
Workflow . 28-22
Implement Incremental Learning for Regression Using Flexible Workflow
28-25
Implement Incremental Learning for Classification Using Flexible
Workflow . 28-29
Initialize Incremental Learning Model from SVM Regression Model
Trained in Regression Learner . 28-33
Initialize Incremental Learning Model from Logistic Regression Model
Trained in Classification Learner . 28-40
Perform Conditional Training During Incremental Learning 28-45
Perform Text Classification Incrementally . 28-49
Incremental Learning with Naive Bayes and Heterogeneous Data 28-52
xxx ContentsMarkov Models
29
Markov Chains . 29-2
Hidden Markov Models (HMM) . 29-4
Introduction to Hidden Markov Models (HMM) 29-4
Analyzing Hidden Markov Models 29-5
Design of Experiments
30
Design of Experiments 30-2
Full Factorial Designs . 30-3
Multilevel Designs . 30-3
Two-Level Designs . 30-3
Fractional Factorial Designs 30-5
Introduction to Fractional Factorial Designs 30-5
Plackett-Burman Designs 30-5
General Fractional Designs . 30-5
Response Surface Designs . 30-8
Introduction to Response Surface Designs . 30-8
Central Composite Designs . 30-8
Box-Behnken Designs 30-10
D-Optimal Designs 30-12
Introduction to D-Optimal Designs 30-12
Generate D-Optimal Designs . 30-13
Augment D-Optimal Designs . 30-14
Specify Fixed Covariate Factors 30-15
Specify Categorical Factors . 30-16
Specify Candidate Sets . 30-16
Improve an Engine Cooling Fan Using Design for Six Sigma Techniques
30-19
Statistical Process Control
31
Control Charts . 31-2
Capability Studies 31-4
xxxiTall Arrays
32
Logistic Regression with Tall Arrays . 32-2
Bayesian Optimization with Tall Arrays . 32-9
Statistics and Machine Learning with Big Data Using Tall Arrays 32-24
Parallel Statistics
33
Quick Start Parallel Computing for Statistics and Machine Learning
Toolbox . 33-2
Parallel Statistics and Machine Learning Toolbox Functionality 33-2
How to Compute in Parallel 33-2
Use Parallel Processing for Regression TreeBagger Workflow 33-4
Concepts of Parallel Computing in Statistics and Machine Learning
Toolbox . 33-6
Subtleties in Parallel Computing . 33-6
Vocabulary for Parallel Computation 33-6
When to Run Statistical Functions in Parallel . 33-7
Why Run in Parallel? 33-7
Factors Affecting Speed . 33-7
Factors Affecting Results 33-7
Analyze and Model Data on GPU 33-9
Working with parfor . 33-14
How Statistical Functions Use parfor 33-14
Characteristics of parfor 33-14
Reproducibility in Parallel Statistical Computations . 33-16
Issues and Considerations in Reproducing Parallel Computations . 33-16
Running Reproducible Parallel Computations 33-16
Parallel Statistical Computation Using Random Numbers . 33-17
Implement Jackknife Using Parallel Computing 33-20
Implement Cross-Validation Using Parallel Computing . 33-21
Simple Parallel Cross Validation 33-21
Reproducible Parallel Cross Validation . 33-21
Implement Bootstrap Using Parallel Computing 33-23
Bootstrap in Serial and Parallel 33-23
Reproducible Parallel Bootstrap 33-24
xxxii ContentsCode Generation
34
Introduction to Code Generation 34-2
Code Generation Workflows 34-2
Code Generation Applications . 34-4
General Code Generation Workflow 34-5
Define Entry-Point Function 34-5
Generate Code 34-5
Verify Generated Code 34-7
Code Generation for Prediction of Machine Learning Model at Command
Line 34-9
Code Generation for Incremental Learning 34-13
Code Generation for Nearest Neighbor Searcher 34-20
Code Generation for Prediction of Machine Learning Model Using
MATLAB Coder App 34-23
Code Generation and Classification Learner App 34-32
Load Sample Data 34-32
Enable PCA . 34-33
Train Models 34-34
Export Model to Workspace . 34-36
Generate C Code for Prediction 34-37
Deploy Neural Network Regression Model to FPGA/ASIC Platform . 34-40
Predict Class Labels Using MATLAB Function Block . 34-51
Specify Variable-Size Arguments for Code Generation . 34-56
Create Dummy Variables for Categorical Predictors and Generate C/C++
Code 34-61
System Objects for Classification and Code Generation 34-65
Predict Class Labels Using Stateflow 34-73
Human Activity Recognition Simulink Model for Smartphone Deployment
34-77
Human Activity Recognition Simulink Model for Fixed-Point Deployment
34-86
Code Generation for Prediction and Update Using Coder Configurer . 34-92
Code Generation for Probability Distribution Objects 34-94
Fixed-Point Code Generation for Prediction of SVM . 34-99
xxxiiiGenerate Code to Classify Data in Table 34-112
Code Generation for Image Classification . 34-115
Predict Class Labels Using ClassificationSVM Predict Block . 34-123
Predict Responses Using RegressionSVM Predict Block . 34-127
Predict Class Labels Using ClassificationTree Predict Block . 34-133
Predict Responses Using RegressionTree Predict Block . 34-139
Predict Class Labels Using ClassificationEnsemble Predict Block . 34-142
Predict Responses Using RegressionEnsemble Predict Block 34-149
Predict Class Labels Using ClassificationNeuralNetwork Predict Block
. 34-156
Predict Responses Using RegressionNeuralNetwork Predict Block 34-160
Predict Responses Using RegressionGP Predict Block 34-164
Predict Class Labels Using ClassificationKNN Predict Block . 34-170
Code Generation for Logistic Regression Model Trained in Classification
Learner . 34-176
Code Generation for Anomaly Detection 34-179
Compress Machine Learning Model for Memory-Limited Hardware . 34-185
Functions
35
Sample Data Sets
A
Sample Data Sets A-2
Probability Distributions
B
Bernoulli Distribution . B-2
Overview . B-2
xxxiv ContentsParameters . B-2
Probability Density Function B-2
Cumulative Distribution Function . B-2
Descriptive Statistics B-2
Examples . B-3
Related Distributions B-4
Beta Distribution B-6
Overview . B-6
Parameters . B-6
Probability Density Function B-6
Cumulative Distribution Function . B-7
Examples . B-7
Related Distributions B-9
Binomial Distribution . B-10
Overview B-10
Parameters B-10
Probability Density Function . B-10
Cumulative Distribution Function B-11
Descriptive Statistics . B-11
Example . B-11
Related Distributions . B-16
Birnbaum-Saunders Distribution . B-18
Definition B-18
Background B-18
Parameters B-18
Burr Type XII Distribution . B-19
Definition B-19
Background B-19
Parameters B-20
Fit a Burr Distribution and Draw the cdf B-21
Compare Lognormal and Burr Distribution pdfs . B-23
Burr pdf for Various Parameters . B-24
Survival and Hazard Functions of Burr Distribution B-26
Divergence of Parameter Estimates B-27
Chi-Square Distribution . B-29
Overview B-29
Parameters B-29
Probability Density Function . B-29
Cumulative Distribution Function B-30
Inverse Cumulative Distribution Function . B-30
Descriptive Statistics . B-30
Examples B-30
Related Distributions . B-32
Exponential Distribution B-34
Overview B-34
Parameters B-34
Probability Density Function . B-35
Cumulative Distribution Function B-35
Inverse Cumulative Distribution Function . B-35
xxxvHazard Function B-35
Examples B-36
Related Distributions . B-39
Extreme Value Distribution B-41
Definition B-41
Background B-41
Parameters B-43
Examples B-44
F Distribution . B-46
Definition B-46
Background B-46
Examples B-46
Gamma Distribution B-48
Overview B-48
Parameters B-48
Probability Density Function . B-49
Cumulative Distribution Function B-49
Inverse Cumulative Distribution Function . B-50
Descriptive Statistics . B-50
Examples B-50
Related Distributions . B-54
Generalized Extreme Value Distribution B-56
Definition B-56
Background B-56
Parameters B-57
Examples B-58
Generalized Pareto Distribution B-60
Definition B-60
Background B-60
Parameters B-61
Examples B-62
Geometric Distribution B-64
Overview B-64
Parameters B-64
Probability Density Function . B-64
Cumulative Distribution Function B-65
Descriptive Statistics . B-65
Hazard Function B-65
Examples B-65
Related Distributions . B-67
Half-Normal Distribution B-69
Overview B-69
Parameters B-69
Probability Density Function . B-69
Cumulative Distribution Function B-71
Descriptive Statistics . B-73
Relationship to Other Distributions B-73
xxxvi ContentsHypergeometric Distribution . B-74
Definition B-74
Background B-74
Examples B-74
Inverse Gaussian Distribution B-76
Definition B-76
Background B-76
Parameters B-76
Inverse Wishart Distribution . B-77
Definition B-77
Background B-77
Example . B-77
Kernel Distribution . B-79
Overview B-79
Kernel Density Estimator B-79
Kernel Smoothing Function B-79
Bandwidth . B-83
Logistic Distribution B-86
Overview B-86
Parameters B-86
Probability Density Function . B-86
Relationship to Other Distributions B-86
Loglogistic Distribution . B-87
Overview B-87
Parameters B-87
Probability Density Function . B-87
Relationship to Other Distributions B-87
Lognormal Distribution . B-89
Overview B-89
Parameters B-89
Probability Density Function . B-90
Cumulative Distribution Function B-90
Examples B-90
Related Distributions . B-95
Loguniform Distribution B-97
Overview B-97
Parameters B-97
Probability Density Function . B-97
Cumulative Distribution Function B-97
Descriptive Statistics . B-98
Examples B-98
Related Distributions B-101
Multinomial Distribution . B-102
Overview . B-102
Parameter B-102
Probability Density Function B-102
Descriptive Statistics B-102
xxxviiRelationship to Other Distributions . B-103
Multivariate Normal Distribution B-104
Overview . B-104
Parameters . B-104
Probability Density Function B-104
Cumulative Distribution Function . B-105
Examples . B-105
Multivariate t Distribution B-110
Definition . B-110
Background . B-110
Example . B-110
Nakagami Distribution . B-114
Definition . B-114
Background . B-114
Parameters . B-114
Negative Binomial Distribution B-115
Definition . B-115
Background . B-115
Parameters . B-115
Example . B-117
Noncentral Chi-Square Distribution B-119
Definition . B-119
Background . B-119
Examples . B-119
Noncentral F Distribution B-121
Definition . B-121
Background . B-121
Examples . B-121
Noncentral t Distribution . B-123
Definition . B-123
Background . B-123
Examples . B-123
Normal Distribution . B-125
Overview . B-125
Parameters . B-125
Probability Density Function B-126
Cumulative Distribution Function . B-126
Examples . B-127
Related Distributions B-133
Piecewise Linear Distribution . B-136
Overview . B-136
Parameters . B-136
Cumulative Distribution Function . B-136
Relationship to Other Distributions . B-136
xxxviii ContentsPoisson Distribution . B-137
Overview . B-137
Parameters . B-137
Probability Density Function B-137
Cumulative Distribution Function . B-138
Examples . B-138
Related Distributions B-141
Rayleigh Distribution B-143
Definition . B-143
Background . B-143
Parameters . B-143
Examples . B-143
Rician Distribution B-145
Definition . B-145
Background . B-145
Parameters . B-145
Stable Distribution B-147
Overview . B-147
Parameters . B-147
Probability Density Function B-148
Cumulative Distribution Function . B-150
Descriptive Statistics B-152
Relationship to Other Distributions . B-153
Student's t Distribution B-156
Overview . B-156
Parameters . B-156
Probability Density Function B-156
Cumulative Distribution Function . B-157
Inverse Cumulative Distribution Function B-157
Descriptive Statistics B-157
Examples . B-157
Related Distributions B-161
t Location-Scale Distribution B-163
Overview . B-163
Parameters . B-163
Probability Density Function B-163
Cumulative Distribution Function . B-164
Descriptive Statistics B-164
Relationship to Other Distributions . B-164
Triangular Distribution B-165
Overview . B-165
Parameters . B-165
Probability Density Function B-165
Cumulative Distribution Function . B-166
Examples . B-166
Uniform Distribution (Continuous) . B-170
Overview . B-170
Parameters . B-170
xxxixProbability Density Function B-171
Cumulative Distribution Function . B-171
Descriptive Statistics B-171
Random Number Generation B-171
Examples . B-171
Related Distributions B-174
Uniform Distribution (Discrete) . B-175
Definition . B-175
Background . B-175
Examples . B-175
Weibull Distribution . B-177
Overview . B-177
Parameters . B-177
Probability Density Function B-178
Cumulative Distribution Function . B-178
Inverse Cumulative Distribution Function B-178
Hazard Function . B-179
Examples . B-179
Related Distributions B-182
Wishart Distribution . B-184
Overview . B-184
Parameters . B-184
Probability Density Function B-184
Example . B-184
Bibliography
C
Bibliography . C-2
xl Contents

#ماتلاب,#متلاب,#Matlab,

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide
رابط مباشر لتنزيل كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Matlab - Deep Learning Toolbox - Getting Started Guide
» كتاب MATLAB - Deep Learning Toolbox Reference
» كتاب MATLAB - Deep Learning Toolbox - Reference
» كتاب Deep Learning Toolbox - User's Guide
» كتاب MATLAB Bioinformatics Toolbox User's Guide

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى شروحات البرامج الهندسية-
انتقل الى: