Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب A Textbook of Fluid Mechanics and Hydraulic Machines السبت 29 أكتوبر 2022, 2:40 am | |
|
أخواني في الله أحضرت لكم كتاب A Textbook of Fluid Mechanics and Hydraulic Machines in SI UNITS Er. R.K. RAJPUT M.E. (Hons.), Gold Medallist; Grad. (Mech.Engg. & Elect. Engg.); M.I.E. (India); M.S.E.S.I.; M.I.S.T.E.; C.E. (India) Recipient of: ‘‘Best Teacher (Academic) Award’’ ‘‘Distinguished Author Award’’ “Jawahar Lal Nehru Memorial Gold Medal’’ for an outstanding research paper (Institution of Engineers–India)
و المحتوى كما يلي :
Principal (Formerly): Thapar Polytechnic College; Punjab College of Information Technology NOMENCLATURE a Acceleration A Area A s Area of suction pipe, surge tank A d Area of delivery pipe B Width of wheel (turbine) b Width, bed width of rectangular or trapezoidal channel c p Specific heat at constant pressure CP Centipoise C v Specific heat at constant volume C Chezy’s discharge coefficient C Celerity of a pressure wave C c Coefficient of contraction C d Discharge coefficient of weirs, orifice plates C D Drag coefficient C D Local drag coefficient C v Coefficient of velocity d Diameter of orifice plate, pipe, particle D Diameter of pipe, wheel d d Diameter of delivery pipe d s Diameter of suction pipe e Linear strain E Young’s modulus of elasticity of material f Darcy Weisbach friction coefficient, frequency F Force F B Force exerted by boundary on the fluid F D Drag force on the body F L Lift force F r Froude number g Gravitational acceleration h Piezometric head, specific enthalpy h d Delivery head h f Frictional loss of head h s Suction head H g Gross head H Total energy head, net head h ad Acceleration head for delivery pipe h as Acceleration head for suction pipe I Moment of inertia (of area), moment of inertia (of mass) l d Length of delivery pipe l s Length of suction pipe l d´ Length of delivery pipe between cylinder to air vessel l s ´ Length of suction pipe between cylinder and air vessel k Roughness height K Conveyance K Head loss coefficient, bulk modulus of elasticity, blade friction coefficient Kt Vane thickness factor Ku Speed ratio K f Flow ratio m Mass M Momentum, Mach number n ratio B/D N Manning’s roughness coefficient, revolutions per minute N s Specific speed p, ps Pressure, stagnation pressure P Power, shaft power (turbine), Poise, force q Discharge per unit width, discharge per jet Q Discharge, heat r Distance from the centre R Radius of pipe, hydraulic radius, radius of pipe bend R o Universal gas constant Re Reynolds number S Specific gravity, bed slope of channel t Thickness, time T Absolute temperature in Kelvins T Torque, water surface width u Instantaneous velocity at a point in X-direction u f Shear friction velocity U Free stream velocity V d Velocity of flow in delivery pipe V Velocity of flow in the cylinder V s Velocity of flow in suction pipe v Instantaneous velocity at a point in Y-direction v Specific volume v c Critical velocity Va Velocity of approach v Time averaged velocity at a point in Y-direction Vr Relative velocity V f Velocity of flow (in turbines and pumps) V w Velocity of swirl (in turbines and pumps) V Volume w Weight density, Instantaneous velocity at a point in Z-direction W Weight of fluid, workdone x Distance in X-direction y Distance in Y-direction, depth of flow yc Critical depth x– Depth of centroid of area below water surface Z Number of buckets/vanes z elevation Greek Notations α Energy correction factor, Mach angle, angle β Momentum correction factor, angle γ Ratio of specific heats δ Boundary layer thickness δ´ Laminar sub-layer thickness δ Displacement thickness of boundary layer *∆s Change in entropy η Efficiency, dimensionless distance (y/δ) θ Angle, momentum thickness of boundary layer µ Coefficient of dynamic viscosity ν Kinematic viscosity ρ Mass density of fluid σ Coefficient of surface tension, cavitation number (Thoma number) τ Shear stress τ 0 Bottom shear stress φ Angle, velocity potential ψ Stream function ω Angular velocity Γ Circulation Ω Vorticity Subscript 0 refer to any quantity at reference section Subscripts 1, 2 refer to any quantity at section 1 or 2 Subscripts x, y, z refer to any quantity in x, y, z direction Subscripts m, p refer to any quantity in model and prototype Subscript r refer to the ratio of any quantity in model to that in prototype CONTENTS PART – I FLUID MECHANICS 1. PROPERTIES OF FLUIDS 1–42 1.1. Introduction 1 1.2. Fluid 2 1.3. Liquids and their Properties 3 1.4. Density 3 1.4.1. Mass density 3 1.4.2. Weight density 3 1.4.3. Specific volume 3 1.5. Specific Gravity 3 1.6. Viscosity 4 1.6.1. Newton’s law of viscosity 5 1.6.2. Types of fluids 5 1.6.3. Effect of temperature on viscosity 8 1.6.4. Effect of pressure on viscosity 8 1.7. Thermodynamic Properties 23 1.8. Surface Tension and Capillarity 25 1.8.1. Surface tension 25 1.8.1.1. Pressure inside a water droplet, soap bubble and a liquid jet 26 1.8.2. Capillarity 28 1.9. Compressibility and Bulk Modulus 34 1.10. Vapour Pressure 37 Highlights 39 Objective Type Questions 40 Theoretical Questions 41 Unsolved Examples 41 2. PRESSURE MEASUREMENT 43—96 2.1. Pressure of a Liquid 43 2.2. Pressure Head of a Liquid 43 2.3. Pascal’s Law 45 2.4. Absolute and Gauge Pressures 48 2.5. Measurement of Pressure 53 2.5.1. Manometers 54 2.5.1.1. Simple manometers 54 2.5.1.2. Differential manometers 63 2.5.1.3. Advantages and limitations of manometers 81 2.5.2. Mechanical gauges 812.6. Pressure at a Point in Compressible Fluid 83 Highlights 91 Objective Type Questions 92 Theoretical Questions 93 Unsolved Examples 93 3. HYDROSTATIC FORCES ON SURFACES 97—159 3.1. Introduction 97 3.2. Total Pressure and Centre of Pressure 97 3.3. Horizontally Immersed Surface 97 3.4. Vertically Immersed Surface 98 3.5. Inclined Immersed Surface 116 3.6. Curved Immersed Surface 129 3.7. Dams 140 3.8. Possibilities of Dam Failure 142 3.9. Lock Gates 151 Highlights 155 Objective Type Questions 156 Theoretical Questions 157 Unsolved Examples 157 4. BUOYANCY AND FLOATATION 160—191 4.1. Buoyancy 160 4.2. Centre of Buoyancy 160 4.2. Types of Equilibrium of Floating Bodies 165 4.3.1. Stable equilibrium 165 4.3.2. Unstable equilibrium 165 4.3.3. Neutral equilibrium 165 4.4. Metacentre and Metacentric Height 165 4.5. Determination of Metacentric Height 166 4.5.1. Analytical method 166 4.5.2. Experimental method 167 4.6. Oscillation (Rolling of a Floating Body) 187 Highlights 189 Objective Type Questions 189 Theoretical Questions 190 Unsolved Examples 190 5. FLUID KINEMATICS 192—258 5.1. Introduction 192 5.2. Description of Fluid Motion 192 5.2.1. Langrangian method 192 5.2.2. Eulerian method 193 5.3. Types of Fluid Flow 195 5.3.1. Steady and unsteady flows 195 5.3.2. Uniform and non-uniform flows 196 5.3.3. One, two and three dimensional flows 196 5.3.4. Rotational and irrotational flows 197 5.3.5. Laminar and turbulent flows 197 5.3.6. Compressible and incompressible flows 197 5.4. Types of Flow Lines 198 5.4.1. Path line 198 5.4.2. Stream line 198 5.4.3. Stream tube 198 5.4.4. Streak line 199 5.5. Rate of Flow or Discharge 207 5.6. Continuity Equation 207 5.7. Continuity Equation in Cartesian Co-ordinates 209 5.8. Equation of Continuity in Polar Coordinates 211 5.9. Circulation and Vorticity 218 5.10. Velocity Potential and Stream Function 227 5.10.1. Velocity potential 227 5.10.2. Stream function 228 5.10.3. Relation between stream function and velocity potential 231 5.11. Flow Nets 231 5.11.1. Methods of drawing flow nets 231 5.11.2. Uses and limitations of flow nets 232 Highlights 253 Objective Type Questions 255 Theoretical Questions 257 Unsolved Examples 257 6. FLUID DYNAMICS 259—385 6.1. Introduction 259 6.2. Different Types of Heads (or Energies) of a Liquid in Motion 259 6.3. Bernoulli’s Equation 260 6.4. Euler’s Equation for Motion 262 6.5. Bernoulli’s Equation for Real Fluid 276 6.6. Practical Applications of Bernoulli’s Equation 291 6.6.1. Venturimeter 291 6.6.1.1. Horizontal venturimeters 292 6.6.1.2. Vertical and inclined venturimeters 298 6.6.2. Orificemeter 303 6.6.3. Rotameter and elbow meter 308 6.6.3.1. Rotameter 308 6.6.3.2. Elbow meter 309 6.6.4. Pitot Tube 3106.7. Free Liquid Jet 313 6.8. Impulse-Momentum Equation 320 6.9. Kinetic Energy and Momentum Correction Factors (Coriolis Co-efficients) 336 6.10. Moment of Momentum Equation 343 6.11. Vortex Motion 345 6.11.1. Forced vortex flow 345 6.11.2. Free vortex flow 346 6.11.3. Equation of motion for vortex flow 346 6.11.4. Equation of forced vortex flow 347 6.11.5. Rotation of liquid in a closed cylindrical vessel 354 6.11.6. Equation of free vortex flow 361 6.12. Liquids in Relative Equilibrium 364 6.12.1. Liquid in a container subjected to uniform acceleration in the horizontal direction 364 6.12.2. Liquid in a container subjected to uniform acceleration in the vertical direction 373 6.12.3. Liquid in container subjected to uniform acceleation along inclined plane 375 Highlights 376 Objective Type Questions 379 Theoretical Questions 381 Unsolved Examples 382 7. DIMENSIONAL AND MODEL ANALYSIS 386—456 DIMENSIONAL ANALYSIS 7.1. Dimensional Analysis—Introduction 386 7.2. Dimensions 387 7.3. Dimensional Homogeneity 389 7.4. Methods of Dimensional Analysis 390 7.4.1. Rayleigh’s method 390 7.4.2. Buckingham’s π-method/theorem 394 7.4.3. Limitations of dimensional analysis 415 MODEL ANALYSIS 7.5. Model Analysis—Introduction 415 7.6. Similitude 416 7.7. Forces Influencing Hydraulic Phenomena 417 7.8. Dimensionless Numbers and their Significance 418 7.8.1. Reynolds number (Re) 418 7.8.2. Froude’s number (Fr ) 419 7.8.3. Euler’s number (Eu) 419 7.8.4. Weber number (We) 419 7.8.5. Mach number (M ) 420 7.9. Model (or Similarity) Laws 420 7.10. Reynolds Model Law 4207.11. Froude Model Law 434 7.12. Euler Model Law 445 7.13. Weber Model Law 446 7.14. Mach Model Law 447 7.15. Types of Models 449 7.15.1. Undistorted models 449 7.15.2. Distorted models 449 7.16. Scale Effect in Models 450 7.17. Limitations of Hydraulic Similitude 451 Highlights 451 Objective Type Questions 453 Theoretical Questions 454 Unsolved Examples 454 8. FLOW THROUGH ORIFICES AND MOUTHPIECES 457—507 8.1. Introduction 457 8.2. Classification of Orifices 457 8.3. Flow Through an Orifice 458 8.4. Hydraulic Co-efficients 458 8.4.1. Co-efficient of contraction (Cc) 458 8.4.2. Co-efficient of velocity (Cv) 459 8.4.3. Co-efficient of discharge 459 8.4.4. Co-efficient of resistance (Cr) 459 8.4. Experimental Determination of Hydraulic Co-efficients 460 8.5.1. Determination of co-efficient of velocity (Cv). 460 8.5.2. Determination of co-efficient of discharge (Cd) 461 8.5.3. Determination of co-efficient of contraction (Cc) 462 8.5.4. Loss of head in orifice flow 462 8.6. Discharge Through a Large Rectangular Orifice 470 8.7. Discharge Through Fully Submerged Orifice 472 8.8. Discharge Through Partially Submerged Orifice 473 8.9. Time Required for Emptying a Tank Through an Orifice at its Bottom 474 8.10. Time Required for Emptying a Hemispherical Tank 483 8.11. Time Required for Emptying a Circular Horizontal Tank 487 8.12. Classification of Mouthpieces 490 8.13. Discharge Through an External Mouthpiece 490 8.14. Discharge Through a Convergent-divergent Mouthpiece 493 8.15. Discharge Through an Internal Mouthpiece (or Re-entrant or Borda’s Mouthpiece) 496 8.15.1. Mouthpiece running free 496 8.15.2. Mouthpiece running full 497 Highlights 503 Objective Type Questions 505Theoretical Questions 506 Unsolved Examples 506 9. FLOW OVER NOTCHES AND WEIRS 508—533 9.1. Definitions 508 9.2. Types/Classification of Notches and Weirs 508 9·2·1. Types of notches 508 9·2·2. Types of weirs 509 9.3. Discharge Over a Rectangular Notch or Weir 509 9.4. Discharge Over a Triangular Notch or Weir 511 9.5. Discharge Over a Trapezoidal Notch or Weir 513 9.6. Discharge Over a Stepped Notch 514 9.7. Effect on Discharge Over a Notch or Weir due to Error in the Measurement of Head 516 9.8. Velocity of Approach 518 9.9. Empirical Formulae for Discharge Over Rectangular Weir 518 9.10. Cippoletti Weir or Notch 521 9.11. Discharge Over a Broad Crested Weir 522 9.12. Discharge Over a Narrow-crested Weir 523 9.13. Discharge Over an Ogee Weir 523 9.14. Discharge Over Submerged or Drowned Weir 523 9.15. Time Required to empty a Reservoir or a Tank with Rectangular and Triangular Weirs or Notches 526 Highlights 528 Objective Type Questions 530 Theoretical Questions 532 Unsolved Examples 533 10. LAMINAR FLOW 534—604 10.1. Introduction 534 10.2. Reynolds Experiment 535 10.3. Navier-Stokes Equations of Motion 537 10.4. Relationship between Shear Stress and Pressure Gradient 540 10.5. Flow of Viscous Fluid in Circular Pipes—Hagen Poiseuille Law 541 10.6. Flow of Viscous Fluid through an Annulus 567 10.7. Flow of Viscous Fluid Between Two Parallel Plates 570 10.7.1. One plate moving and other at rest—couette flow 570 10.7.2. Both plates at rest 572 10.7.3. Both plates moving in opposite directions 572 10.8. Laminar Flow through Porous Media 582 10.9. Power Absorbed in Bearings 583 10.9.1. Journal bearing 58310.9.2. Foot-step bearing 585 10.9.3. Collar bearing 586 10.10. Loss of Head due to Friction in Viscous flow 587 10.11. Movement of Piston in Dashpot 589 10.12. Measurement of Viscosity 591 10.12.1. Rotating cylinder method 591 10.12.2. Falling sphere method 594 10.12.3. Capillary tube method 595 10.12.4. Efflux Viscometers 597 Highlights 597 Objective Type Questions 601 Theoretical Questions 602 Unsolved Examples 602 11. TURBULENT FLOW IN PIPES 605—637 11.1. Introduction 605 11.2. Loss of Head due to Friction in Pipe Flow–Darcy Equation 606 11.3. Characteristics of Turbulent Flow 608 11.4. Shear Stresses in Turbulent Flow 609 11·4·1. Boussinesq’s theory 609 11·4·2. Reynolds theory 610 11·4·3. Prandtl’s mixing length theory 610 11.5. Universal Velocity Distribution Equation 610 11.6. Hydrodynamically Smooth and Rough Boundaries 612 11·6·1. Velocity distribution for turbulent flow in smooth pipes 613 11·6·2. Velocity distribution for turbulent flow in rough pipes 615 11.7. Common Equation for Velocity Distribution for both Smooth and Rough Pipes 618 11.8. Velocity Distribution for Turbulent Flow in Smooth Pipes by Power Law 620 11.9. Resistance to Flow of Fluid in Smooth and Rough Pipes 621 Highlights 633 Objective Type Questions 635 Theoretical Questions 636 Unsolved Examples 637 12. FLOW THROUGH PIPES 638—724 12.1. Introduction 638 12.2. Loss of Energy (or Head) in Pipes 638 12.3. Major Energy Losses 638 12·3·1. Darcy-weisbach formula 639 12·3·2. Chezy’s formula for loss of head due to friction 639 12.4. Minor Energy Losses 64512·4·1. Loss of head due to sudden enlargement 645 12·4·2. Loss of head due to sudden contraction 652 12·4·3. Loss of head due to obstruction in pipe 656 12·4·4. Loss of head at the entrance to pipe 657 12·4·5. Loss of head at the exit of a pipe 657 12·4·6. Loss of head due to bend in the pipe 657 12·4·7. Loss of head in various Pipe Fittings 657 12.5. Hydraulic Gradient and Total Energy Lines 657 12.6. Pipes in Series or Compound Pipes 668 12.7. Equivalent Pipe 671 12.8. Pipes in Parallel 674 12.9. Syphon 699 12.10. Power Transmission through Pipes 703 12.11. Flow through Nozzle at the End of a Pipe 706 12·11·1. Power transmitted through the nozzle 707 12·11·2. Condition for transmission of maximum power through nozzle 707 12·11·3. Diameter of the nozzle for transmitting maximum power 708 12.12. Water Hammer in Pipes 711 12·12·1. Gradual closure of valve 711 12·12·2. Instantaneous closure of valve in rigid pipes 712 12·12·3. Instantaneous closure of valve in elastic pipes 713 12·12·4. Time required by pressure wave to travel from the valve to the tank and from tank to valve 714 Highlights 716 Objective Type Questions 719 Theoretical Questions 721 Unsolved Examples 721 13. BOUNDARY LAYER THEORY 725—784 13.1. Introduction 725 13.2. Boundary Layer Definitions and Characteristics 726 13.2.1. Boundary layer thickness (δ) 727 13.2.2. Displacement thickness (δ*) 727 13.2.3. Momentum thickness (θ) 728 13.2.4. Energy thickness (δe) 729 13.3. Momentum Equation for Boundary Layer by Von Karman 739 13.4. Laminar Boundary Layer 742 13.5. Turbulent Boundary Layer 766 13.6. Total Drag due to Laminar and Turbulent Layers 769 13.7. Boundary Layer Separation and its Control 774 Highlights 778 Objective Type Questions 780 Theoretical Questions 782 Unsolved Examples 78214. FLOW AROUND SUBMERGED BODIES—DRAG AND LIFT 785—824 14.1. Introduction 785 14.2. Force Exerted by a Flowing Fluid on a Body 785 14.3. Expressions for Drag and Lift 786 14.4. Dimensional Analysis of Drag and Lift 788 14.5. Streamlined and Bluff Bodies 798 14.6. Drag on a Sphere 798 14.6.1. Terminal velocity of a body 799 14.6.2. Applications of stokes’ law 800 14.7. Drag on a Cylinder 804 14.8. Circulation and Lift on a Circular Cylinder 804 14.8.1. Flow patterns and development of lift 804 14.8.2. Position of stagnation points 806 14.8.3. Pressure at any point on the cylinder surface 807 14.8.4. Expression for lift on cylinder (kutta- joukowski theorem) 807 14.8.5. Expression for lift coefficient for rotating cylinder 809 14.8.6. Magnus effect 810 14.9. Lift on an Airfoil 815 Highlights 818 Objective Type Questions 820 Theoretical Questions 822 Unsolved Examples 823 15. COMPRESSIBLE FLOW 825—879 15.1. Introduction 825 15.2. Basic Thermodynamic Relations 825 15.2.1. The characteristics equation of state 825 15.2.2. Specific heats 826 15.2.3. Internal energy 826 15.2.4. Enthalpy 827 15.2.5. Energy, work and heat 827 15.3. Basic Thermodynamic Processes 827 15.4. Basic Equations of Compressible Fluid Flow 829 15.4.1. Continuity equation 829 15.4.2. Momentum equation 829 15.4.3. Bernoulli’s or energy equation 829 15.5. Propagation of Disturbances in Fluid and Velocity of Sound 837 15.5.1. Derivation of sonic velocity (velocity of sound) 837 15.5.2. Sonic velocity in terms of bulk modulus 838 15.5.3. Sonic velocity for isothermal process 839 15.5.4 Sonic velocity for adiabatic process 839 15.6. Mach Number 84015.7. Propagation of Disturbance in Compressible Fluid 841 15.8. Stagnation Properties 844 15.8.1. Expression for stagnation pressure (ps) in compressible flow 844 15.8.2. Expression for stagnation density (ρs) 846 15.8.3. Expression for stagnation temperature (Ts) 847 15.9. Area-velocity Relationship and Effect of Variation of Area for Subsonic, Sonic and Supersonic Flows 850 15.10. Flow of Compressible Fluid Through a Convergent Nozzle 852 15.11. Variables of Flow in terms of Mach Number 857 15.12. Flow Through Laval Nozzle (Convergent-Divergent Nozzle) 860 15.13. Shock Waves 865 15.13.1. Normal shock wave 866 15.13.2. Oblique shock wave 868 15.13.3. Shock strength 868 15.14. Measurement of Compressible Flow 870 15.15. Flow of Compressible Fluid Through Venturimeter 870 Highlights 873 Objective Type Questions 876 Theoretical Questions 878 Unsolved Examples 878 16. FLOW IN OPEN CHANNELS 880—958 A. UNIFORM FLOW 16.1. Introduction 880 16.1.1. Definition of an open channel 880 16.1.2. Comparison between open channel and pipe flow 880 16.1.3. Types of channels 881 16.2. Types of Flow in Channels 881 16.2.1. Steady flow and unsteady flow 882 16.2.2. Uniform and non-uniform (or varied) flow 882 16.2.3. Laminar flow and turbulent flow 882 16.2.4. Subcritical flow, critical flow and supercritical flow 882 16.3. Definitions 883 16.4. Open Channel Formulae for Uniform Flow 884 16.4.1. Chezy’s formula 884 16.5. Most Economical Section of a Channel 889 16.5.1. Most economical rectangular channel section 890 16.5.2. Most economical trapezoidal channel section 892 16.5.3. Most economical triangular channel section 908 16.5.4. Most economical circular channel section 910 16.6. Open Channel Section for Constant Velocity at all Depths of Flow 914B. NON-UNIFORM FLOW 16.7. Non-uniform Flow Through Open Channels 917 16.8. Specific Energy and Specific Energy Curve 917 16.9. Hydraulic Jump or Standing Wave 923 16.10. Gradually Varied Flow 938 16.10.1. Equation of gradually varied flow 938 16.10.2. Back water curve and afflux 940 16.11. Measurement of Flow of Irregular Channels 948 16.11.1. Area of flow 948 16.11.2. Mean velocity of flow 948 Highlights 951 Objective Type Questions 954 Theoretical Questions 956 Unsolved Examples 957 17. UNIVERSITIES’ QUESTIONS (LATEST) WITH “SOLUTIONS” 959—994 OBJECTIVE TYPE TEST QUESTIONS 995—1046PART – II HYDRAULIC MACHINES 1. IMPACT OF FREE JETS 1—51 1.1. Introduction 1 1.2. Force Exerted on a Stationary Flat Plate Held Normal to the Jet 1 1.3. Force Exerted on a Stationary Flat Plate Held Inclined to the Jet 2 1.4. Force Exerted on a Stationary Curved Plate 3 1.5. Force Exerted on a Moving Flat Plate Held Normal to Jet 11 1.6. Force Exerted on a Moving Plate Inclined to the Direction of Jet 12 1.7. Force Exerted on a Curved Vane when the Plate Vane is Moving in the Direction of Jet 15 1.8. Jet Striking a Moving Curved Vane Tangentially at One Tip and Leaving at the Other 22 1.9. Jet Propulsion of Ships 40 Highlights 48 Objective Type Questions 49 Theoretical Questions 50 Unsolved Examples 50 2. HYDRAULIC TURBINES 52—176 2.1. Introduction 52 2.2. Classification of Hydraulic Turbines 53 2.3. Impulse Turbines - Pelton Wheel 55 2.3.1. Construction and working of Pelton wheel/ turbine 55 2.3.2. Work done and efficiency of a Pelton wheel 57 2.3.3. Definitions of heads and efficiencies 59 2.3.4. Design aspects of Pelton wheel 61 2.4. Reaction Turbines 81 2.4.1. Francis turbine 81 2.4.1.1. Work done and efficiencies of a Francis turbine 84 2.4.1.2. Working proportions of a Francis turbine 85 2.4.1.3. Design of a Francis turbine runner 86 2.4.1.4. Advantages and disadvantages of Francis turbine over a Pelton wheel 87 2.4.2. Propeller and Kaplan turbines—Axial flow reaction turbines 121 2.4.2.1. Propeller turbine 122 2.4.2.2. Kaplan turbine 122 2.4.2.3. Kaplan turbine versus Francis turbine 124 2.5. Deriaz Turbine 1292.6. Tubular or Bulb Turbines 130 2.7. Runaway Speed 131 2.8. Draft Tube 131 2.8.1. Draft tube theory 132 2.8.2. Types of draft tubes 133 2.9. Specific Speed 138 2.10. Unit Quantities 143 2.11. Model Relationship 145 2.12. Scale Effect 153 2.13. Performance Characteristics of Hydraulic Turbines 154 2.13.1. Main or constant head characteristic curves 154 2.13.2. Operating or constant speed characteristic curves 156 2.13.3. Constant efficiency or iso-efficiency or Muschel curves 157 2.14. Governing of Hydraulic Turbines 157 2.14.1. Governing of impulse turbines 157 2.14.2. Governing of reaction turbines 158 2.15. Cavitation 159 2.16. Selection of Hydraulic Turbines 162 2.17. Surge Tanks 164 Highlights 166 Objective Type Questions 169 Theoretical Questions 171 Unsolved Examples 172 3. CENTRIFUGAL PUMPS 177—247 3.1. Introduction 177 3.2. Classification of Pumps 177 3.3. Advantages of Centrifugal Pump over Displacement (Reciprocating) Pump 178 3.4. Component Parts of a Centrifugal Pump 179 3.5. Working of a Centrifugal Pump 181 3.6. Work done by the Impeller (or Centrifugal Pump) on Liquid 182 3.7. Heads of a Pump 184 3.8. Losses and Efficiencies of a Centrifugal Pump 186 3.8.1. Losses in centrifugal pump 186 3.8.2. Efficiencies of a centrifugal pump 186 3.8.3. Effect of outlet vane angle on manometric efficiency 187 3.9. Minimum Speed for Starting a Centrifugal Pump 217 3.10. Effect of Variation of Discharge on the Efficiency 220 3.11. Effect of Number of Vanes of Impeller on Head and efficiency 2223.12. Working Proportions of Centrifugal Pumps 222 3.13. Multi-stage Centrifugal Pumps 224 3.13.1. Pumps in series 224 3.13.2. Pumps in parallel 224 3.14. Specific Speed 227 3.15. Model Testing and Geometrically Similar Pumps 229 3.16. Characteristics of Centrifugal Pumps 233 3.17. Net Positive Suction Head (NPSH) 235 3.18. Cavitation in Centrifugal Pumps 236 3.19. Priming of a Centrifugal Pump 239 3.20. Selection of Pumps 239 3.21. Operational Difficulties in Centrifugal Pumps 240 Highlights 241 Objective Type Questions 243 Theoretical Questions 245 Unsolved Examples 246 4. RECIPROCATING PUMPS 248—287 4.1. Introduction 248 4.2. Classification of Reciprocating Pumps 248 4.3. Main Components and Working of a Reciprocating Pump 249 4.4. Discharge, Work Done and Power Required to Drive Reciprocating Pump 251 4.4.1. Single-acting reciprocating pump 251 4.4.2. Double-acting reciprocating pump 251 4.5. Co-efficient of Discharge and Slip of Reciprocating Pump 252 4.5.1. Co-efficient of discharge 252 4.5.2. Slip 252 4.6. Effect of Acceleration of Piston on Velocity and Pressure in the Suction and Delivery Pipes 256 4.7. Indicator Diagrams 258 4.7.1. Ideal indicator diagram 258 4.7.2. Effect of acceleration in suction and delivery pipes on indicator diagram 259 4.7.3. Effect of friction in suction and delivery pipes on indicator diagram 266 4.7.4. Effect of acceleration and friction in suction and delivery pipes on indicator diagram 267 4.8. Air Vessels 275 Highlights 284 Objective Type Questions 285Theoretical Questions 286 Unsolved Examples 286 5. MISCELLANEOUS HYDRAULIC MACHINES 288—324 5.1. Introduction 288 5.2. Hydraulic Accumulator 288 5.2.1. Simple hydraulic accumulator 288 5.2.2. Differential hydraulic accumulator 289 5.3. Hydraulic Intensifier 296 5.4. Hydraulic Press 299 5.5. Hydraulic Crane 303 5.6. Hydraulic Lift 307 5.7. Hydraulic Ram 310 5.8. Hydraulic Coupling 317 5.9. Hydraulic Torque Converter 318 5.10. Air Lift Pump 320 5.11. Jet Pump 320 Highlights 321 Objective Type Questions 322 Theoretical Questions 323 Unsolved Examples 324 6. WATER POWER DEVELOPMENT 325—358 6.1. Hydrology 325 6.1.1. Definition 325 6.1.2. Hydrologic cycle 325 6.1.3. Measurement of run-off 326 6.1.4. Hydrograph 328 6.1.5. Flow duration curve 329 6.1.6. Mass curve 331 6.2. Hydro-power Plant 335 6.2.1. Introduction 335 6.2.2. Application of hydro-electric power plants 335 6.2.3. Advantages and disadvantages of hydro-electric power plants 336 6.2.4. Average life of hydro-plant components 336 6.2.5. Hydro-plant controls 337 6.2.6. Safety measures in hydro-electric power plants 337 6.2.7. Preventive maintenance to hydro-plant 338 6.2.8. Calculation of available hydro-power 338 6.2.9. Cost of hydro-power plant 3396.2.10. Hydro-power development in India 339 6.2.11. Combined hydro and steam power plants 340 6.2.12. Comparison of hydro-power station with thermal power station 341 Highlights 356 Theoretical Questions 357 Unsolved Examples 358 7. FLUIDICS 359—370 7.1. Introduction 359 7.2. Advantages, Disadvantages and Applications of Fluidic Devices/Fluidics 360 7.3. Fluidic (or Fluid Logic) Elements 361 7.3.1. General aspects 361 7.3.2. Coanda effect 361 7.3.3. Classification of fluidic devices 362 7.3.4. Fluid logic devices 363 7.3.4.1. Bi-stable flip-flop 363 7.3.4.2. AND gate 364 7.3.4.3. OR-NOR gate 364 7.3.5. Fluidic sensors 365 7.3.5.1. Interruptible jet sensor 365 7.3.5.2. Reflex sensor 366 7.3.5.3. Back pressure sensor 366 7.3.6. Fluidic amplifiers 366 7.3.6.1. Turbulence amplifier 367 7.3.6.2. Vortex amplifier 367 7.4. Comparison Among Different Switching Elements 368 Highlights 369 Objective Type Questions 369 Theoretical Questions 370 8. UNIVERSITIES’ QUESTIONS (LATEST) WITH “SOLUTIONS” 371—401 OBJECTIVE TYPE TEST QUESTIONS 403—416 LABORATORY PRACTICALS (Experiments: 1–26) 1—64 Index i—viiiINDEX A Afflux, 940 B Back water curve, 940 length of, 940 Bernoulli's equation, 260 for real fluid, 276 practical applications of, 291 – orificemeter, 303 – pitot tube, 310 – venturimeter, 291 Bluff body, 798 Boundary layer definitions, 726 – boundary layer thickness, 727 – displacement thickness, 727 – energy thickness, 729 – momentum thickness, 728 Boundary layer separation, 774 Buckingham's π-method, 394 Buoyancy, 160 centre of, 160 C Capillarity, 28 Centre of pressure, 97 Chezy's formula, 639, 884 Circulation and vorticity, 218 Circulation, 804 Compressibility and bulk modulus, 34 Compound pipes, 608 Compressible fluid flow, 825 basic equations of, 829 – continuity equation, 829 – energy equation, 829 – momentum equation, 829 propagation of disturbances in, 837 through a convergent nozzle, 852 through a convergent-divergent nozzle, 860 measurement of, 870 through a venturimeter, 870 Continuity equation, 207 in cartesian co-ordinates, 209 in polar co-ordinates, 211 Coriolis co-efficients, 336 Couette flow, 570 Critical depth, 906 Curved immersed surface, 129 D Dams, 140 possibility of dam failure, 142 Darcy equation, 606, 639 Density, 3 – mass density, 3 – weight density, 3 Dimensional analysis, 386 introduction to, 386 methods of, 390 Dimensions, 387 Dimensional homogeneity, 389 Dimensionless numbers, 418 Discharge, 207 Displacement thickness, 727 Drag and lift, 785 Drag on a sphere, 798 Drag of a cylinder, 804 E Efflux viscometers, 594 Elbow meter, 309 Energy thickness, 729 Equivalent pipe, 671 Eulerian method, 193 Euler's equation, 262 Euler’s number, 419 FLUID MECHANICSii Index F Falling sphere method, 594 Fluid, 2 Floating bodies, 165 oscillation (rolling) of, 187 types of equilibrium of, 165 – neutral equilibrium, 165 – stable equilibrium, 165 – unstable equilibrium, 165 Flownets, 231 methods of drawing, 231 uses and limitations of, 232 Flow through nozzle, 706 power transmitted, 707 condition for maximum power transmission, 707 Fluid flow, 195 compressible and incompressible, 197 laminar and turbulent, 197 one, two and three-dimensional, 196 rotational and irrotational, 197 steady and unsteady, 195 uniform and non-uniform, 196 Forced vortex flow, 345 Free liquid jet, 313 Free vortex flow, 346 Froude number, 412 G Gradually varied flow, 938 equation of, 938 H Hazen Poiseuille law, 541 Hydraulic co-efficients, 458 co-efficient of contraction, 458 co-efficient of velocity, 459 co-efficient of discharge, 459 co-efficient of resistance, 459 experimental determination of, 460 Hydraulic gradient and total energy lines, 657 Hydraulic jump, 923 I Impulse momentum equation, 320 Inclined immersed surface, 116 K Kinetic energy correction factor, 336 Kutta-Joukowski theorem, 807 L Laminar flow, 534 between parallel plates, 570 through an annulus, 567 through porous media, 582 Laminar boundary layer, 742 Langrangian method, 192 Liquids (properties of), 3 Liquids in relative equilibriumn, 364 Lock gates, 151 M Mach number, 420 Major energy losses, 638 Magnus effect, 810 Manning's formula, 873 Manometers, 54 simple manometers, 54 differential manometers, 63 advantages and limitations of, 81 Mechanical gauges, 81 Metacentre, 165 Metacentric height, 165 determination of, 166 – analytical method, 166 – experimental method, 167 Minor energy losses, 638 at the entrance to pipe, 657 at the exit of a pipe, 657 due to sudden enlargement, 645 due to sudden contraction, 652 due to obstruction in pipe, 656 due to bend in the pipe, 657 in various pipe fittings, 657 Model analysis, 415 Model laws, 420 Euler model law, 445Index iii Froude model law, 434 Mach Model law, 447 Reynolds model law, 420 Weber model law, 446 Models, 449 distorted, 449 scale effect in, 450 undistorted, 449 Momentum correction factor, 336 Moment of momentum equation, 343 Momentum thickness, 728 Momentum equation for boundary layer, 739 Most economical section, 889 – circular channel, 910 – rectangular channel, 890 – trapezoidal channel, 892 – triangular channel, 908 Mouthpieces, 490 N Navier-Stokes equations, 537 Newton's law of viscosity, 5 Notches, 508 rectangular, 509 stepped, 514 triangular, 511 trapezoidal, 513 O Open channels, 880 formulae for uniform flow in, 884 – Chezy's formula, 884 non-uniform flow through, 917 types of, 881 types of flow in, 881 – laminar and turbulent flows, 882 – steady flow and unsteady flow, 882 – subcritical, critical and supercritical flows, 882 Orifice, 457 Classification of, 457 Orificemeter, 303 P Pascal's law, 45 Path line, 198 Pipes in series, 668 Pipes in parallel, 674 Pitot tube, 310 Potential head or energy, 259 Power absorbed in bearings, 583 collar bearing, 586 foot-step bearing, 585 journal bearing, 583 Pressure, 43 measurement of, 53 Pressure head (of a liquid), 43 R Rayleigh's method, 390 Reynolds number, 418 Reynolds experiment, 535 Rotating cylinder method, 591 Rotameter, 308 S Shock waves, 865 Similitude, 416 Specific volume, 3 Specific gravity, 3 Specific energy and specific energy curve, 917 Steamline, 198 Steam tube, 198 Streak line, 199 Stream function, 228 Streamlined body, 798 Stagnation properties, 844 Surface tension, 25 Syphon, 699 T Terminal velocity of a body, 799 Thermodynamic properties, 23 Turbulent flow, 605 characteristics of, 608 shear stresses in, 609 – Boussinesq's theory, 609 – Prandtl's mixing length theory, 610iv Index – Reynolds theory, 610 Turbulent boundary layer, 766 V Vapour pressure, 37 Velocity potential, 227 Velocity head or kinetic energy, 259 Venturimeter, 291 – horizontal, 292 – vertical and inclined, 298 Viscosity, 4 effect of temperature on, 8 effect of pressure on, 8 measurement of, 591 – capillary tube method, 595 – falling sphere method, 594 – rotating cylinder method, 591 Vorticity, 218 Vortex motion, 345 W Water hammer in pipes, 711 Weber number, 419 Weirs, 508 broad-crested, 522 cipolletti, 521 ogee, 523 norrow-crested, 523 rectangular, 518 submerged or drowned, 523Index v HYDRAULIC MACHINES A Air lift pump, 320 Air vessels, 275 B Bulb turbines, 130 C Cavitation, 159 Cavitation factor, 160 Centrifugal pump, 177 advantages, 178 classification of, 177 component parts of a, 179 characteristics of, 233 – constant efficiency curves, 234 – constant head and constant discharge curves, 234 – main characteristic curves, 233 – operating characteristic curves, 234 cavitation in, 236 effect of variation of discharge on the efficiency, 220 efficiencies of a, 186 – manometric, 186 – mechanical, 187 – overall, 187 – volumetric, 187 head of a, 184 – gross or effective head, 186 – manometric head, 185 – static head, 185 losses of a, 186 – hydraulic losses, 186 – leakage loss, 186 – mechanical losses, 186 minimum speed for starting a, 217 model testing, 229 multistage, 224 – pumps in series, 224 – pumps in parallel, 224 net positive suction head (NPSH), 235 operational difficulties in, 240 priming of a, 239 selection of, 239 work done by the impeller, 182 working of a, 182 working proportions of, 222 D Deriaz turbine, 129 Draft tube, 131 theory of, 132 types of, 133 F Flow duration curve, 329 Fluidics, 359 fluidic elements, 361 Force exterted by jet on a series of radial curved vanes, 24 moving curved plate, 15 moving flat plate, 11 – held normal to the jet, 11 – inclined to the jet, 12 stationary curved plate, 3 stationary flat plate, 1 – held inclined to the jet, 2 – held normal to the jet, 1 Francis turbine, 81 advantages and disadvantages of, 87 design of runner of, 86 work done and efficiency of, 84 working proportions of, 85vi Index specific speed, 138 I Impact of free jet, 1 Impulse turbines, 55 Indicator diagrams, 258 J Jet pump, 320 Jet propulsion of ships, 40 K Kaplan turbine, 122 versus Francis turbine, 124 M Mass curve, 331 Multistage centrifugal pumps, 224 pumps in parallel, 224 pumps in series, 224 Muschel curves, 157 N Negative slip, 252 P Pelton wheel, 55 construction and working of, 55 design aspects of, 61 work done and efficiency of a, 57 Performance characteristics of turbines, 154 constant efficiency, 157 main or constant head, 154 operating or constant speed, 156 Pitting, 160 Precipitation, 326 Propeller turbine, 122 R Reaction turbines, 81 Reciprocating pumps, 248 H Hydrograph, 328 Hydrology, 325 Hydraulic accumulator, 288 differential, 289 simple, 288 Hydraulic coupling, 317 Hydrologic cycle, 325 Hydraulic crane, 303 Hydraulic intensifier, 296 Hydraulic lift, 307 direct acting, 307 suspended, 307 Hydraulic press, 299 Hydro-power plant, 335 advantages and disadvantages of, 336 application of, 325 average life of plant components, 336 controls, 337 cost of, 339 preventive maintenance, 338 safety measures in, 337 Hydraulic turbines, 52 cavitation, 159 cavitation factor, 160 classification of, 53 definitions, 59 – efficiencies, 60 – gross head, 59 – net or effective head, 59 governing of, 157 – impulse turbine, 157 – reaction turbine, 158 model relationship, 145 performance characteristics of, 154 run away speed, 131 scale effect, 153 selection of, 162Index vii air vessels, 275 classification of, 248 co-efficient of discharge, 252 discharge, work done and power required to drive, 251 indicator diagrams, 258 main components and woking, 249 negative slip, 252 Runaway speed, 131 Run off, 326 measurement of, 326 – discharge observation method, 327 – empirical formulae, 326 – from rainfall records, 326 – run off curves and tables, 327 S Scale effect, 153 slip, 252 Specific speed, 138 Surge tanks, 164 T Tanspiration, 326 Tubular turbines, 130
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب A Textbook of Fluid Mechanics and Hydraulic Machines رابط مباشر لتنزيل كتاب A Textbook of Fluid Mechanics and Hydraulic Machines
|
|