كتاب Mechanical Design of Process Systems - Volume l
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Mechanical Design of Process Systems - Volume l

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 17575
التقييم : 31545
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Mechanical Design of Process Systems - Volume l Empty
مُساهمةموضوع: كتاب Mechanical Design of Process Systems - Volume l   كتاب Mechanical Design of Process Systems - Volume l Emptyالجمعة 25 فبراير 2022, 12:50 am

أخواني في الله
أحضرت لكم كتاب
Mechanical Design of Process Systems - Volume l
Piping and Pressure Vessels
A. Keith Escoe
Foreword ., vii
by John J. McKetta

كتاب Mechanical Design of Process Systems - Volume l P_a_p_11
و المحتوى كما يلي :


Preface , . ix
Chapter 1
Piping Fluid Mechanics . 1
Basic Equations, I
Non-Newtonian Fluids, 5
Velocity Heads, 8
Pipe Flow Geometries, 22
Comoressible Flow. 25
Piping Fluid Mechanics Problem Formulation, 25
Example 1-1: Friction Pressure Drop for a
Hydrocarbon Gas-Steam Mixture in a Pipe, 27
Example 1-2: Frictional Ptessure Drop for a Hot
Oil System of a Process Thnk, 33
Example 1-3: Friction Pressure Drop for a Waste
Heat Recovery System, 42
Example 1-4: Pressure Drop in Relief Valve
Piping System, 43
Notation, 45
References, 45
Chapter 2
The Engineering Mechanics of Piping ., .47
Piping Criteria, 47
Primary and Secondary Stresses, 49
Allowable stress Range for Secondary Stresses.
Flexibility and Stiffness of Piping Systems, 52
Stiffness Method Advantages. Flexibility
Method Advantages.
Stiffness Method and Large Piping, 58
Flexibility Method of Piping Mechanics. Pipe
Loops.
PiDe Restraints and Anchors. 68
-
Pipe Lug Supports. Spfing Supports. Expansion
Joints. Pre-stressed Piping.
Contents
Fluid Forces Exerted on Piping Systems, 81
Extraneous Piping Loads, 83
Example 2-l: Applying the Stiffness Method to a
Modular Skid-Mounted Gas Liquefaction
Facility,88
Example 2-2: Applying the Flexibility Method to
a Steam Turbine Exhaust Line, 95
Example 2-3: Flexibility Analysis for Hot Oil
Piping,96
Example 2-42 Lug Design, 98
Example 2-5: Relief Valve Piping System, 99
Example 2-61 Wind-Induced Vibrations of
Piping, 100
Notation, 101
References, 101
Chapter 3
Heat Transfer in Piping and Equipment . 103
Jacketed Pipe versus Traced Pipe, 103
Tracing Piping Systems, 106
Traced Piping without Heat Tmnsfer Cement.
Traced Piping with Heat Transfer Cement.
Condensate Return. Jacketed Pipe. Vessel and
Equipment Traced Systems.
Heat Transfer in Residual Systems, 132
Heat Transfer through Cylindrical Shells.
Residual Heat Transfer through Pipe Shoes.
Example 3-1: Steam Tracing Design, 136
Example 3-2: Hot Oil Tracing Design, 137
Example 3-3: Jacketed Pipe Design, 139
Example 3-4: Thermal Evaluation of a Process
Thnk, 140
Example 3-5: Thermal Design of a Process
Tank, 142
Internal Baffle Plates Film Coefficient. Film
Coefficient External to Baffles-Forced
Convection. Heat Duty of Internal Vessel
Plates. Outside Heat Transfer Jacket Plates.
Heat Duty of Jacket Plates Clamped to Bottom
Vessel Head. Total Heat Duty of Tank.Example 3-6: Transient and Static Heat Transfer
Design, 148
Static Heat Transfer Analysis. Total Heat
Removal. Water Required for Cooling.
Transient Hear Transfer Analysis.
Example 3-7: Heat Transfer through Vessel
Skirts, 152
Example 3-E: Residual Heat Transfer, 154
Example 3-9: Heat Transfer through Pipe Shoe,
156
Notation, 156
References, 157
Chapter 4
The Engineering Mechanics of Pressure
Vessels
. . . 159
Designing for Internal Pressure, 159
Designing for External Pressure, 160
Design of Horizontal Pressure Vessels, 166
Longitudinal Bending Stresses. Location of
Saddle Supports. Wear Plate Design. Zick
Stiffening Rings.
Steel Saddle Plate Design, 174
Saddle Bearing Plate Thickness, 180
Design of Self-Supported Vertical Vessels, 180
Minimum Shell Thickness Reouired for
Combined Loads, 181
Support Skirt Design, 183
Anchor Bolts, 184
Base Plate Thickness Design, 186
Compression Ring and Gusset Plate Design, 189
Anchor Bolt Torque, 189
Whd Aralysis of Towers, 190
r'\'ind Design Speeds. Wind-Induced Moments.
$ ind-Induced Deflections of Towers.
l ind-Induced Vibrations on Tall Towers.
O\aling. Criteda for Vibration Analysis.
Seismic Design of Tall Towers, 209
\anical Distribution of Shear Forces.
Tower Shell Discontinuities and Conical Sections,
1t i
Exanple {-l: Wear Plate Requirement Analysis,
215
Example 12: Mechanical Design of Process
Column. 215
Sectron lt{omenls of Inertial lbwer Section
Stress Calcularions. Skirt and Base Plate
Design- Section Centroids. Vortex-Induced
vibrarion. Equivalent Diameter Approach
versus -{\S[ A58.1- 1982.
Example 4-3: Seismic Analysis of a Vertical
Tower, 237
Example 44: Vibration Analysis for Tower with
Large Vortex-Induced Displacements, 241
Moments of Inertia. Wind Deflections.
Example 4-5: Saddle Plate Analysis of a
Horizontal Vessel, 249
Saddle Plate Buckling Analysis. Horizontal
Reaction Force on Saddle.
Notation,252
References,254
Appendix A
Partial Volumes and Pressure Vessel
Cafcufations .25s
Partial Volumes of Spherically Dished Heads,
256
Partial Volumes of Elliptical Heads, 257
Partial Volumes of Torispherical Heads, 259
Internal Pressure ASME Formulations with
Outside Dimensions, 261
Internal Pressure ASME Formulations with Inside
Dimensions,262
Appendix B
National Wind Design Standards . 265
Criteria for Determining Wind Speed, 265
Wind Speed Relationships, 266
ANSI A58.1-1982 Wind Cateeories. 267
Appendix C
Properties of Pipe. , .271
Insulation Weight Factors, 278
Weights of Piping Materials, 279
Appendix D
Conversion Factors . . 303
Alphabetical Conversion Factors, 304
Synchronous Speeds, 31 1
Temperature Conversion. 3l 2
Altitude and Atmospheric Pressures, 313
Pressure Conversion Chart, 314
Index . . . 315
I L
ACI bearing strengths, 180
American Institute of Steel Construction. See AISC.
Anchor bolts
analysis, preloaded bolt, 184, 186
bolt area, required, 184
bolt loads, allowable, 187
bolt load, minimum required, 184
bolt spacing, 186
common types of, 190
large bolts, undesirability of, 184
loading force, distribution of, 186
loadings induced on, 184
lubricant, 190
philosophy, design, 184
size and number, 228
stress in, 184, 186
tension on gross area, 187
torque, anchor bolt, 189-190, 229
ASME Piping Codes
ASME 831.1, 48
ASME 831.3, 48
ASME B3I.4, 48
ASME B3I.5, 48
.ASME 831.8,48
ASME Section IlI, 48. Also see Pressure vessels.
for piping, 48
for pressure vessels, 48
ASME Section VIII, Division II
for piping, 48
Aspect ratio, 85
Baseplate design, 186-189
anchor bolt size range, 186
bearing pressure on, 189
concrete foundation for, 186
concrete mixes, 186, 187
Index
concrete modulus of elasticity of, 186
concrete and steel, relative strength of, 186
gusset plates, 188* 189
k-factor, offset, 188
steel, modulus of elasticity, 187
steel-concrete moduli ratio, 186
tension on gross area, 187
torque, anchor bolt, 189-190, 229
Bernoulli equation, 2
Bingham, 6-7
Boundary conditions for saddle plate design, 178
Buckling coefficients for saddle plate design, 175-178
Centroid, section,212
Circumferential stress, moment, 170
Codes, vessel
differences in, 159
foreign, 159
Cold-spring,49
Colebrook equation, 4. Also see Friction factors.
Compressible flow
adiabatic flow, 2
compressibility effects, 24
introduction to, l-2, 24
isothermal flow 1
modulus, bulk compressibility, 24
non-steady flow, 24
sound, velocity of, 24
steady flow, 24
Concrete mixes for baseplate design, 186-187
Concrete modulus of elasticity, 186
Conical sections, 199, 224
Cost-plus contractor, 183
Creep,49
Critical damping factor, 202, 2O4
Critical pressure, 83
315316 Mechanical Design of Process Systems
Critical temperature, 83
Critical wind velocity, 236
Damping coefficient, 2OZ 2M
Deflections, windt 199-2Ol
,
242
Degree of freedom, 201
Discontinuity, 236
Drag, 195,203
Ductile materials, 50, 52
Dynamic magnification factor, 201-204
Dynamic response, 200
EJMA. Sze Expansion joints, bellows.
Electrical tracing, 103
Equivalent length, 2
Expansion joints
bellows, corrugated, 77
gimbal joint, 79
hinged joint, 78-79
inJine pressure balanced, 79
multi-ply, 80
pipe span, allowable, 78
pressure thrust, 78-79
single ply, 80
standards of the Expansion Joint Manufacturers
Association (EJMA), 80
stiffness, rotational, 78
stiffness, translational, 78
tie rods, 78-79
reasons for, 78
universal joint, pressure-balanced, 78
Fanning equation, 3
Fluid Mechanics, piping. See Hydraulics.
Fourier number, l5l
Friction factors, 4
Colebrook equation, 4
laminar flow, 4
Moody friction factors, 4
Prandtl solution, 5
turbulent flow, 4
von Karman solution, 5
Gimbal joint, 79
Grashof number, 132, 134, 153
Gusset plates, 188-189
Gust (wind) effects, 194-196, 236-237
Guy wires, 249
Head -*T co'\J 'rv 5oo r{ 'll"i, '
foot of, 2
pressure, I
static, I
velocity. See Velocity head.
Heads
manufacture of, 160
thickness of, 160
Heat transfer
control mass, 115, 131
control volume, 115, 13l
electrical tracing, 103
Fourier number, 151
Grashof number, 132, 134, 153
in jacketed pipe, I 12- I l5
LMTD (log mean)
chart for, 114
definition of, I 14
Nusselt number, 132, 134, 153
in pipe shoes, 135- 136
application of, 156
heat balance for, 136
temperature distribution in, 136
in pipe supports, 133
in piping
temperature distribution in, 134
typical applications of, 133- 134
Prandtl number, 112, 139-140
in process systems, 103
in residual systems
applications of, 132
deflections, thermal, 134-135
overall heat transfer coefficient, 134
tubular tracers. See Tracing.
in vessel skirts
application of, 152- 154
coefficients of, 132
convection, significance of, 133
free convection, 133
rate of, 133
temperature, distribution oI, 132- 133
Heat transfer design example, 148-150
static analysis, i48- 150
transient analysis, 150- 152
Heisler's chart, l5l
Hesse formula, 82
Horizontal pressure vessels
saddle bearing plate design, 180
ACI bearing strengths, 180
bearing plate thickness, 180
factor of safety for, 180
saddle plate buckling analysis, 251 252
saddle plates
application of , 249 -252
boundary conditions for, 178
buckling coefficients for, 175- 178
design of, 174- 179
effective area, 174, 178effective width, 113, 178, l'79
horizontal reaction, 119, 252
stiffener plates, I74, 179
STTESS
criterion for residual, 178
elastic buckling, 179
inelastic buckling, 179
U.S. Steel design method, 174-179
web plates, 174
wear plate requirements, 215
Zick analysis, 166, 215
bending moment diagram, 167
constant, circumferential bending moment,
introduction to, 166
saddle supports, location, criteria for, 172
shear stress, 171
shell
stiffened by head, 171
unstiffened, saddles away from head, 17l
stiffening rings, 172, 174
STTESS
allowable compressive, 166
circumferential compressive, l7 I
circumferential at horn of saddle, 17l
head used as a stiffener, 171
"Hot-spring," 49
Hydraulic radius,
definition of, 2i
tabulated values, 24
Hydraulics
basic equations, I
Bernoulli equation, 2
modified form of, 3
compressible flow
adiabatic flow, 2
compressibility effects, 24
introduction to, l-2, 24
isothermal flow, I
modulus, bulk compressibility, 24
non-steady flow, 24
sound, velocity of, 24
steady flow, 24
incompressible flow, 1
non-Newtonian fluids
Bingham,6-7
introduction to, 5-7
Metzer and Reed, 7
pseudoplastic, 6-7
rheological constants, 8
rheopectic,6-7
thixotropic, 6 7
time-dependent, 6-7
time-independent, 6-7
viscoelastic, 6-7
l:;:
yield-pseudoplastic, 6 7
piping, reasonable velocities in, 25
problem formulation, 24
two-K method, 8,21
viscosity,24-26
Incompressible flow. See Hydraulics.
Internal pressure, 159- 160
Jacketed pipe
annulus, hydraulic radius for, 112
applications of, l12-115, 139 140
details of, 104-106, I 12-l l3
expansion joints for, 105- 106
heat transfer, I 12- I l5
coefficient, film, I l2
coefficient, overall, 112
rates of, I 12- 115
pressure drop in, I l5- I 17
rules of thumb for, 103
versus traced pipe, 103- 106
Joints. expansion. See Expansion joints.
Laminar flow, 4. Also see Friction factors.
Lumped-mass approach, 204-205
Lump-sum contractor, 183
Maximum allowable working pressure, 160
Mitchell equation , 210, 212
Moments
equations for, 198
of inertia, for tube bundle, 222-223
wind-induced, 198
Moody friction factors. See Friction factors.
Myklestad method, 200-201
Non-Newtonian fluids. See Hydraulics.
Nusselt number, 132, 134,153
Ovaling, 205, 208
Pipe loops, 59-68
Pipe lug supports , 70-12, 98-99
Pipe materials
ductile materials, 50, 52
non-ductile materials, 50
plastic deformation, 50 52
stress-strain curves, 50-51
Pipe shoes, heat transfer in, 135-136
Pipe supports, heat transfer in, 133
Piping codes. See ASME.
Piping expansion joints. See Expansion joints.
Piping mechanics
anchor, pipe, definition, 58
API,47
170318 Mechanical Design of Process Systems
equipment nozzle loads, 94
extraneous piping loads
"cold spring" for, 80
vibration
applications for, 100- 101
natural frequency of beam elements, 86
vortex shedding, 83,87
resonance,83
Reynolds number, 195, 200, 2Ol, 236
Strouhal number, 84-85
vortex force, 83
vortex streets, 83
flexibility (compliance) matrix, 53
flexibility method, 59-68, 8l
advantages of, 53, 68
application of, 95-98
"hot-spring," 49
nozzle flexibility factors,
angle of twist, 70
circumferential, 70
longitudinal, T0
Oak Ridge Phase 3 Report, 70
rotation deformation of, 70
rotational spring rate, 70
pipe loops, 59-68
pipe lug supports , 70-72, 98-99
pipe restraints
moment restraints (MRS), 5'7 -59, 77 , 88-94
rotational 58, 68
translational,58,68
pipe roughness, 5
prpe stress
circumferential bending/membrane, 7l
"cold-spring," 49
creep,49
"hot-spring," 49
internal pressure, circumferential stress, 49
longitudinal stress, 49
pipe weight, bending stress, 49
pressure, 72
prestressed piping, 80
primary stress, 49-50, 72
range, allowable, 42
residual stress, 5l
secondary stress, 49-52, 72
self-spring,49
"shakedown," 52
thermal expansion, 49
torsional or shear stress, 49
self-spring,49
shear flow, 58-59
spring supports, 72, 75, 76
guided load column, 72
jamming of, 77
stiffness
beam element, 54
concrete,69
matrix,53-54
method,8l
advantages,53,68
applications of, 88-94
piping elements, 55-56, 69
translational, 54
Pipe Stress. See Piping mechanrcs.
Piping systems
adiabatic process, 83
API 520 Pafi 2, 82
ASME 31.I, 82
critical pressure, 83
critical pressure ratio, 83
critical temperature, 83
Hesse formula, 82
impulse-momentum principle, as applied to a pipe
elbow, 8l
nozzle correction factor, 82
nozzle discharge coefficient, 82
nozzles,83
Prandtl number, ll2, 139-140
Pressure vessels
ASME Section VIII Division I, 160
components, 159- 160
design, philosophy of, 159
external pressure, 160
heads, 160
horizontal
saddle bearing plate design, 180
saddle plate buckling analysis, 251-252
saddle plate design, 174- 179
application of , 249-252
boundary conditions for, 178
buckling coefficients for, 175- 178
effective area, 174, 178
effective width, 173, 178, 179
horizontal rcaction, 179, 252
stiffener plates, 174, 179
stress, criterion for residual, 178
stress, elastic buckling, 179
stress, inelastic buckling, 179
U.S. Steel design method, 174-179
wear plate requirements, 215
web plates, 174
Zick analysis, 166, Zl5
bending moment diagram, 167
compressive B-factor, 174
constant, circumferential bending moment, 170
head used as stiffener, 171
saddle support location, 172shear stress in head/shell, 171
shell
stiffened by head, l7l
unstiffened, saddles away from head, 171
stiffening rings, 172, 174
stress, allowable compressive, 166
stress, circumferential con.rpressive, 171
stress, location of, 168- 169
tangential shear, 167- 171
wear plates, 171- 172
internal pressure
component thickness, 159
maximum allowable working pressure, 160
quality of welds, 159
upset conditions, 160
vertical
anchor bolts
analysis, preloaded bolt, 184, 186
bolt area, required, 184
bolt loads, allowable, 187
bolt load, minimum required, 184
bolt spacing, 186
common types of, 190
large bolts, undesirability of, 184
loading force, distribution of, 186
loadings induced on, 184
lubricant, 190
philosophy, design, 184
size and number, 228
stress in, 184, 186
tension on gross area, 187
torque, anchor bolt, 189-190, 229
ANSr-1982,215
baseplate design, 186- 189
anchor bolt size range. 186
bearing pressure on, 189
concrete foundation for, 186
concrete mixes, 186, 187
concrete modulus of elasticity of, 186
concrete and steel, relative strength of, 186
. gusset plates, 188- 189
k-factor, offset, 188
steel, modulus of elasticity, 187
steel-concrete moduli ratio, 186
stress, compressive, on concrete, 188
thickness, baseplate, 188
centroid, section,212
combined loads on, 181
compression plate, 189
cone, truncated, equivalent radius for, 214
conical head, equivalent radius for,214
conical sections, equivalent radii for,224
earthquake, See Seismic design.
loads, wind and seismic, 190-191
b"l- !
moments
equations for, 198
of inertia, for tube bundle, 222-t3
pressure sections, centroids of, 198
vectors, section force, 198
wind-induced, 198
wind pressure, distribution of, 198
section properties of, 181
seismic analysis of, loads, combined, 190-l9l
seismic design
baseplate design, 238
coefficients, Mitchell, 210, 213
coefficients, structure type, 210
criteria, quasi-static, 210
criteria,238
Mitchell equation, 2lO, 2lZ
compared to Rayleigh equation, 237 -238
occupancy importance factor, 210
period
characteristic site, 238
numeric integration of vibration, 238-239
of tower, 210, 2lZ
Rayleigh equation, 212
compared to Mitchell equation, 237 238
seismic zone factor/map, 210-211
site structure interaction factor, 210, 212
equation for, 212
shear forces
earthquake force, total, 212
lateral force, equation for, 212
vertical distribution of, 212
seismic moments, equation for, 212
skirt design, 238
structural period response factor, 210
Uniform Building Code, 209 210
self-supporting, 180
skirts
controlling criteria for, 184
design of, 183, 185
cost-plus contractor, 183
Iump-sum contractor, 183
stress equation, 183
supports, 183, 185
thichess, 183- 184
stress, bending, 181
combined loading, 181
compressive B factor, l9l
compressive, leeward side, 181
discontinuity, 236
elements in, 182
tensile, windward side, l8l
vacuum, 183
towers
centroids, section, 230-231
31932O Mechanical Design of Process Systems
definition of, 181
equivalent circle method, 214
section moment of inertia, 241-243
skirt and baseplate destgn, 228-229
anchor bolts, 228
anchor bolt torque, 229
compression ring thickness, 229
skirt thickness, 229
weld size, minimum for skirt-to-base plate,
229
skirt detail, 230
stress, discontinuity
criteria foq 2 14
for conical sections, 214
stresses, wind section, 226-228
transition piece, 241, 243-244
vibration ensemble, 216
of lumped masses, 232, 246
wind deflections
modes of, 199
schematic diagram of, 201
superposition, method of, 199
wind ensemble, 242
vibration, wind-induced
angular natural undamped frequency, 205
applications of, 232-236, 241-249
area-moment method, 205-207
conjugate beam. See Area moment.
controlling length, 203
critical damping factor, 202, ZO4
critical wind velocity, 208-209 , 236, 248,249
total wind force, 209
Zorilla criteria, 209
damping coefficient, 203
damping ratio, 202-203
degree of freedom, single, 201
differential equations for, 201-2OZ
dynamic magnification factor, 201-202, 2O3,
2M
dynamic response, 200
example of, 232-236
first period of, 204
force amplitude, 235
force amplitude, dynamic, 200
forced vibration theory, 200
frequency
natural,248
ratio,202
vortex shedding, 208, 248
guy wires, disadvantages of, 249
Holzer procedure, 200
lock-in effect, 200
logarithmic decrement, ZO3-204
lumped mass approach, 204-205
mode shapes, 200
Myklestad method, 200, 201
ovaling,205
natural frequency of, 205
vibration due to, 208
wind velocity, resonance, 208
period of vibration, 234-235, 248
phase angle, 202
Rayleigh equation, ZOO, 201, 204, 205
resonance,236
Reynolds number, 195, 20O,201,236
soil types, 204
stresses, dynamic, 236
tower
fluid forces on, 203
model for, 201-202
moment disrribution in, 205
stiffness, 205
vibration ensemble, 209
of lumped masses, 232
vibration, first peak amplitude, 200
vortex shedding, 199
vortex strakes, 249
wind tunnel tests, 236
wind analysis of, loads, combined, 190-191
wind design speed
ASA 58.1-1955, 194
ANSI-A58.1-1972, 192
basic wind pressure, 192
effective velocity pressure, 192
gust response factor, dynamic, 192
ANSI A58. 1- 1982, 196, 236-237
effective velocity pressure, 192
gust response factor, 192
importance coefficient, 192
velocity pressure coefficient, 192
wind speed, variation of, 192
wind tunnel tests, 192
centroid of spandrel segment, for wind section,
218
coefficient, drag, 195
structural damping, 217
conical sections, 199
constant exposure category, 195
cross-sectional area, effective, 217
cylinder, pressure fields around, 196
equivalent diameter method, 236-237
vs. ANSI-A58. 1- 1982, 236-237
exposure lactor. 196
fatigue failure, 198
flexible structures, defined, 197
gust duration, 196
vs. gust diameter, 197
gust frontal area, 196ii
gust response, dynamic, 194
gust response factor, 195, 196,217,236-231
gust size, 196
isopleths, 192- 193
Kutta-Joukowski theorem, 195
loading analysis, quasi-static, 196
logarithmic law, 192
parabolic area, centroid of, 219
parabolic function, 194
peak values, types of, 196
power law, 192
probability of exceeding. 196
response spectra, 198
return period, 192
similarity parameters, 195
structure size factor, 196, 197
surface roughness, 195
tower
cross-sectional area of, 198
fluid force exerted on, 194-195
gust velocity vs. structural response, 197
natural frequency of, 197
wind area section properties, 219
wind force distribution, 218
wind distribution
parabolic, 194, 218-219
triangular, 194
wind load
applications of, 215-231, 241-245
equivalent static, 195
mean, 195
weld size, skirt-to-base plate, 189
welding, joint efficiencies for, 161-165,172
Zick analysis, 166, 215
bending moment diagram, 167
compressive B-factor, 174
constant, circumferential bending moment, 170
head used as stiffener, l7l
saddle support location, 172
shear stress in head/shell, 171
. shell
stiffened by head, 171
unstiffened, saddles away from head, 171
stiffening rings, 172, 174
stress, allowable compressive, 166
stress, circumferential compressive, 171
stress, location of, 168- 169
tangential shear, 167- 171
wear plates, 171- 172
Residual systems, heat transfer in, 132-135
in piping, 154- 155
Reynolds number, 195, 2OO, 2Ol, 236
drag coefficient vs., 203
l:r.= r
Newtonian fluids, 21, 30,32 41. 1,19-l{l"t. l-!:.
145,147
non-Newtonian fluids. See Hydraulics.
Non-Newtonian fluids.
Strouhal coefficient vs., 85
vortex shedding, for, 83-85
Saddle plate design, 174- 179
application of , 249 -252
boundary conditions for, 178
buckling coefficients for, 175- 178
effective area, 174, 178
effective width, 173, 178, 179
horizontal react\on, 179, 252
stiffener plates, 174, 119
stress, criterion for residual, 178
stress, (in-) elastic buckling, 179
U.S. Steel design method, 174-179
wear plate requirements, 215
web plates, 174
Seismic design
baseplate design, 238
coefficients, Mitchell, 210, 213
coefficients, structure tYPe, 210
criteria, quasi-static, 210
compared to wind, 238
Mitchell equation , 210, 212
compared to Rayleigh equation, 231-238
moments, equation for, 212
occupancy importance factor, 210
period, characteristic site, 238
period, vibration
numeric integration of, 238 239
tower,210,212
Rayleigh equation, 212
compared to Mitchell equation, 231-238
seismic zone factor/map, 210, 2ll
shear forces
earthquake force, total, 212
lateral force, equation for, 212
vertical distribution of, 212
site structure interaction factor, 210, 212
equation for, 212
skirt design, 238
structural period response factor, 210
Uniform Building Code, 209-210
Skirts, 185
controlling criteria for, 184
cost-plus contractor, 183
design of, 183
lump-sum contractor, 183
stress equation, 183
supports, 185
thickness, 183- 184322 Mechanical Design of process Systems
Strouhal number, 84
Reynolds number vs., 85
vibration, vortex shedding, 84-85, 200, 20g
Supports, 72,75,76. Also see p\ping mechanics.
Thermal design. See Heat transfer tie rods, 78-79
Towers
centroids, section, 230-231
definition of, l8l
equivalent circle method, 214
section moment of inertia, 241-243
skirt and baseplate design, 228-229
anchor bolts, 228
anchor bolt torqte, 229
compression ring thickness, 229
skirt thickness, 229
weld size, minimum for skirt{o-base plate, 229
skirt detail, 230
stress, discontinuity
criteria for, 214
for conical sections, 214
stresses, wind section, 226-228
transition piece, 241, 243t244
vibration ensemble, 216
of lumped masses, 232, 246
wind deflections of
modes of, 199
schematic diagram of, 201
superposition, method of, 199
wind ensemble, 242
Tracing
of pipes
applications of, 136- 139
condensate return for, I l0
condensate load, determining, 1l I
guidelines for, 110-l ll
spargers, 1l I
separation keys, I l1
typical layout, 111
water hammer, 11 I
hot oil, application of, 137-139
steam, application of, 136-137
versus jacketed pipe, 103- 106
with heat transfer cement, 106, 109- I 10
advantages, 106
procedure for, 109
film coefficient, natural convection, 108 109
heat balance for, I l0
heat transfer rates of, I l0
without heat transfer cement, 106-109
advantages of, 106
disadvantages of, 106
equivalent insulation thickness, 107
heat balance fog 107
heat transfer, rules of, 107
modes of heat transfer, 107
outside film coefficient, 107
overall heat transfer coefficient, 107
procedure for design, 107
of vessels and equipment
agrtators
film coefficients for, 143
use of, 115
applications of, 130, 140- 148
film coefficient, vessel-side, 147
heat duty of, jacketed heads, 146
heat transfer coefficients, reasonable values of,
130
transient, I l5
criteria for, 115
importance of, 130
internal baffle plates, heat duty of, 144
jacketed walls, heat transfer film coefficient, 145
jackets, types of, 115, l28,13l
non-Newtonians, use of, 146
plate channels, equivalent velocity of, 147
reasons for, 115
Turbulent f|ow, 4 - Also see Friction factors.
Velocity head
introduction,3,8
method,3
two-K method, 8, 21
values of, 9-20, 21, 22-23, 30-32
Vessels. See Pressure vessels.
Vibration, wind-induced
angular natural umdamped frequency, 205
applications of
,
232-236, 241 -249
area-moment method, 205-207
conjugate beam. See Area moment.
controlling length, 203
critical damping factor, 202, 204
critical wind velocity, 208-209
,
236, Z4g-249
total wind force, 209
Zorilla criteria, 209
damping coefficient, 203
damping ratio, ZO2-203
degree of freedom. single. 201
differential equations for, 201,202
dynamic magnification factor, 201 -202, 203, ZO4
dynamic response, 200
example of, 232-236
first period of, 204
force amplitude, 235
force amplitude, dynamic, 200
forced vibration theory, 200
frequency
natural,248,!i
lri:r
ftIio, 202
vortex shedding, 2O8' 248
suy wires, disadvantages of' 249
-
i{olzer procedure, 200
lock-in effect, 200
losarithmic decrement, 203 -204
lumfed mass aPProach, 204-205
mode shapes, 200
Myklestad method, 200, 201
ovaling,205
natuial frequencY of. 205
vibration due to, 208
wind velocitY, resonance, 208
period of vibration, 234-235, 248
ohase angle, 202
ilayleigh-equarion. 200. 201. 204 ' 205
resonance,236
Reynolds number, 195, 200, 2O1' 236
soil types, 204
stresses, dYnamic, 236
tower
fluid forces on, 203
model for, 201-202
moment distribution in, 205
equations for, 205
stiffness,205
vibration ensemble, 209
of lumped masses, 232
vibration, first peak amplitude' 200
vortex shedding, 83-87' 199
vortex strakes, 249
wind tunnel tests, 236
Viscosity, 24-25
von Karman solution, 5
Vortex shedding,83-87
aspect ratio, 85
cylinders,83
damping vs. amPlitude, 87
guidelines for, 85
mode shaPes, 85
reduced damPing, 85
Weld sizes
recommended values, for Plates, 71
skirt to baseplate, 189
Welding, joint efficiencies for, 161-165,
Wind design sPeed
ASA 58.1-1955, 194
ANSI A58.1-1972
basic wind Pressure, 192
effective velocitY Pressure, 192
qust response iactor. dynamic. 192
ANsl A58. l-1982, t96, 236-231
effective velocitY Pressure, 192
sust response factor. 192
irpottun." coefficient. 192
velocitv pressure coefficient, 192
wind speid, variation of' 192
wind tunnel tests, 192
centroid of spandrel segment, for wind section' : i -r
coefficient, drag, 195
structural damPing, 217
conical sections, 199
constant exposure category, 195
cross-sectional area, effective, 217
cvlinder, pressure fields around, 196
equivaleni diameter method, 236-237
vs. ANSI-A58.1- 1982, 236-231
exposure factor, 196
fatigue failure, 198
fle;ble structures, defined, 197
gust duration, 196
vs. gust diameter, 197
gust frontal area, 196
iurt t.rpon , dYnamic. 194
iurt ,.tpont" factor. 195. 1c0.217.236-237
gust size, 196
isopleths, 192- 193
Kuna-Joukowski Theorem. 195
loading analysis, quasi-static, 196
losarithmic law, 192
paiabolic area, centroid of, 219
parabolic function, 194
peak values, tYPes of, 196
power law, 192
probability of exceeding, 196
iesponse sPectra, 198
return period, 192
similarity parameters, 195
structure size factor, 196' 197
surface roughness, 195
tower
cross-sectional area of, 198
fluid force exerted on, 194-195
gust velocity vs. structural response' 197
iatural frequencY of, 197
wind area section Properties, 219
wind force distribution, 218
wind distribution
parabolic, 194, 2t8-219
triangular, 194
wind load
applications of, 215-231, 241-245
equivalent static, 195
mean, 195
Yield, 159
octahedral shear stress theory, 236
172324 Mechanical Design of Process Systems
Zick analysis, 166, 215
bending moment diagram, 167
compressive B-factot 174
constant, circumferential bending moment, 170
head used as stiffener, l7l
saddle support location, 172
shear stress in head/shell, 171
shell
stiffened bv head. l7l
unstiffened, saddles away from head, 171
stiffening ings, 172, 174
stress, allowable compressive, 166
stress, circumferential compressive, 171
stress, location of, 168- 169
tangential shear, 167- 171
wear plates, l7l-172


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Design of Process Systems - Volume l
رابط مباشر لتنزيل كتاب Mechanical Design of Process Systems - Volume l

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Mechanical Design of Process Systems - Volume l
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Mechanical Design of Process Systems - Volume 2
» كتاب The Mechanical Design Process
» كتاب The Mechanical Design Process - Fourth Edition
» كتاب Reliability Design of Mechanical Systems
» كتاب The Mechanical Systems Design Handbook

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: