كتاب Fundamentals of Machine Design - Volume II
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Fundamentals of Machine Design - Volume II

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 17648
التقييم : 31760
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Machine Design - Volume II   Empty
مُساهمةموضوع: كتاب Fundamentals of Machine Design - Volume II    كتاب Fundamentals of Machine Design - Volume II   Emptyالإثنين 07 فبراير 2022, 1:02 am

أخواني في الله
أحضرت لكم كتاب
Fundamentals of Machine Design - Volume II
Ajeet Singh

كتاب Fundamentals of Machine Design - Volume II   S_a_f_12
و المحتوى كما يلي :


Contents
Preface xxiii
Acknowledgments xxv
Unit 1 - Drives
1. Belts and Pulleys
1.1 Introduction 1
1.1.1 Advantages 2
1.1.2 Disadvantages 2
1.2 Types of Belts 2
1.2.1 Flat belts 3
1.2.2 V belts 3
1.2.3 Construction of V belts 4
1.3 Types of Flat Belt Drive 5
1.3.1 Open belts 5
1.3.2 Crossed belts 6
1.3.3 Quarter twist belts 6
1.3.4 Compound belts 6
1.3.5 Serpentine belts 7
1.4 Belt Materials and Construction 7
1.5 Properties of Belt Materials 9
1.6 Flat Belt Specifications 9
1.7 Flat Belt Joints 10viii Contents
1.8 Angle of Contact 12
1.8.1 Open belt 12
1.8.2 Cross belt 13
1.9 Power through a Belt 14
1.10 Belt Tensions 15
1.11 Belt Tensions Ratio (Capstan Equation) 15
1.11.1 Flat belts 15
1.11.2 V belts 16
1.12 Initial Tension 17
1.13 Centrifugal Tension 19
1.14 Maximum Tension 20
1.15 Condition for Maximum Power 21
1.16 Slip of Belt 22
1.17 Creep of Belt 23
1.18 Length of Belt 23
1.19 Design of Flat Belt Drive 28
1.20 Center Distance 32
1.21 Power Rating of V Belts 32
1.22 Life of Belts 33
1.23 Design of V Belt Drive 36
1.24 Types of Pulleys 43
1.25 Flat Belt Pulleys 44
1.25.1 Solid pulley 45
1.25.2 Webbed pulley 46
1.25.3 Armed pulley 46
1.25.4 Built-up pulley 49
1.25.5 Stepped pulley 50
1.25.6 Fast and loose pulley 51
1.26 Grooved Pulleys 51
1.26.1 Single belt grooved pulley 52
1.26.2 Multibelt grooved pulley 52
1.26.3 Stepped grooved pulley 53
1.27 Toothed Pulley 53
2. Rope Drives
2.1 Rope Drives 68
2.2 Fibre Rope Drive 69
2.2.1 Advantages 69
2.2.2 Fibre rope materials 69Contents ix
2.3 Sheave for Fiber Ropes 70
2.4 Design of Rope Drive 70
2.5 Wire Ropes 74
2.5.1 Advantages of wire ropes 74
2.5.2 Wire rope material 74
2.6 Construction of Wire Ropes 75
2.6.1 Core 75
2.6.2 Wires 75
2.6.3 Strands 76
2.7 Lay of Wire Ropes 76
2.7.1 Regular lay 76
2.7.2 Lang lay 76
2.7.3 Ordinary lay 77
2.7.4 Alternate right and left lay 77
2.8 Types of Wire Ropes 77
2.8.1 Spiral ropes 77
2.8.2 Stranded ropes 77
2.9 Designation of Ropes 78
2.10 Classification of Wire Ropes 78
2.10.1 Classification according to usage 79
2.11 Wire Rope Terminations 79
2.12 Selection of Wire Ropes 81
2.12.1 Selecting a type of wire rope center 81
2.13 Stresses in Wire Rope 82
2.14 Drum and Sheave Arrangement 84
2.14.1 Construction of sheave 85
2.14.2 Groove size 86
2.14.3 Groove hardness 86
2.14.4 Throat angle 86
2.14.5 Fleet angle 86
2.14.6 Sheave alignment 87
2.15 Design Procedure for Wire Rope Drive 87
3. Chain Drives
3.1 Introduction 104
3.2 Advantages / Disadvantages 106
3.3 Classification of Chains 106
3.3.1 Hoisting chains 107
3.3.2 Conveyor chains 107x Contents
3.3.3 Power transmission chains 107
3.3.4 Roller chains 108
3.3.5 Multiple-strand chains 108
3.4 Pitch and Pitch Circle Diameter 109
3.5 Minimum Number of Teeth 110
3.6 Chordal Action 111
3.7 Length of Chain and Center Distance 112
3.8 Chain Designation 114
3.9 Forces on Chain 117
3.10 Breaking Load and Factor of Safety 117
3.11 Power Capacity of Chains 118
3.12 Design Power and Corrected Power 119
3.12.1 Tooth correction factor 119
3.12.2 Load factor 119
3.12.3 Service factor 120
3.12.4 Lubrication factor 120
3.13 Maximum Number of Teeth 123
3.14 Maximum Chain Speed 123
3.15 Bearing Pressures 123
3.16 Design of Chain Drive 124
3.17 Silent Chains 132
3.17.1 Comparison with roller chains 132
3.17.2 Use of silent chains 132
3.17.3 Construction of silent chains 133
3.17.4 Standard widths 134
3.17.5 Specifying a chain 134
3.17.6 Selection and design tips 134
3.17.7 Chain designation 135
3.17.8 Factor of safety 135
3.17.9 Power capacity 136
3.17.10 Maximum speed of silent chain 136
3.18 Lubrication of Chains 139
3.19 Sprockets 139
3.19.1 Body styles 140
3.19.2 Sprocket mounting 140
3.19.3 Sprocket proportions 141
4. Gear Fundamentals
4.1 Introduction 151
4.2 Gear Drives versus Other Drives 152Contents xi
4.3 Advantages and Disadvantages of Gear Drives 153
4.4 Types of Gear Drives 153
4.4.1 Spur gears 153
4.4.2 Helical gears 154
4.4.3 Bevel gears 154
4.4.4 Worm and worm wheel 155
4.5 Terminology 155
4.6 Types of Pitches 157
4.7 Gear Tooth Proportions and Standard Modules 158
4.8 Tooth Profiles 159
4.8.1 Cycloid profile 159
4.8.2 Involute profile 160
4.8.3 Properties of involute teeth 161
4.8.4 Involute versus cycloid profile 161
4.9 Involute Gear Tooth Systems 162
4.10 Base Circle 163
4.11 Law of Gearing 164
4.12 Velocity Ratio 164
4.13 Path of Contact 165
4.14 Arc of Contact 167
4.15 Contact Ratio 169
4.16 Interference 171
4.16.1 Parameters affecting interference 172
4.17 Maximum Addendum Radius 172
4.18 Minimum Number of Teeth to Avoid Interference 173
4.18.1 Minimum teeth for a pinion 173
4.18.2 Minimum teeth for a gear wheel 174
4.18.3 Minimum teeth for a pinion with a rack 175
4.18.4 Largest gear with a specified pinion 179
4.19 Slide Velocity 179
5. Spur Gears
5.1 Introduction 191
5.2 Gear Materials 192
5.3 Gear Design Considerations 193
5.4 Gear Tooth Strength 193
5.4.1 Loads on gear tooth 193
5.4.2 Lewis equation 195xii Contents
5.5 Dynamic Loads 199
5.5.1 Velocity factor 199
5.6 Buckingham’s Equation for Dynamic Load 200
5.6.1 Dynamic load 200
5.6.2 Beam strength 201
5.6.3 Deformation factor 202
5.6.4 Errors in gears 203
5.6.5 Maximum allowable error 203
5.7 Gear Design for Wear Strength 205
5.7.1 Hertz stresses on tooth surface 205
5.7.2 Buckingham equation for wear 208
5.8 Factors Affecting Gear Design 212
5.8.1 Overload factor 212
5.8.2 Load distribution factor 212
5.8.3 Mounting factor 213
5.8.4 Surface finish factor 213
5.8.5 Rotation factor 213
5.8.6 Reliability factor 213
5.8.7 Size factor 214
5.8.8 Temperature factor 214
5.9 Design Procedure 214
5.9.1 Design procedure with given center distance 215
5.9.2 Design procedure when center distance is not given 219
5.10 Internal Gears 223
5.10.1 Advantages and disadvantages 224
5.10.2 Interference in internal gears 224
5.10.3 Design of internal gears 225
5.11 Non-circular Gears 227
6. Helical Gears
6.1 Introduction to Helical Gears 241
6.2 Terminology for Helical Gears 242
6.3 Types of Helical Gears 243
6.4 Face Width and Overlap 245
6.5 Gear and Tooth Proportions 245
6.6 Equivalent Number of Teeth of Helical Gears 247
6.7 Normal Modules 247
6.8 Forces on Tooth 248
6.9 Design of Helical Gears 249Contents xiii
6.10 Lewis Equation for Helical Gears 250
6.11 Effective Load 251
6.11.1 Service factor 251
6.11.2 Velocity factor 251
6.12 Dynamic Load 253
6.13 Wear Strength of Helical Gears 254
7. Bevel Gears
7.1 Introduction 271
7.2 Terminology 272
7.3 Types of Bevel Gears 273
7.4 Pitch Angle and Gear Ratio 274
7.5 Cone Distance 275
7.6 Proportions of Bevel Gear 276
7.7 Formulative Number of Teeth 276
7.8 Forces on Gear Tooth 277
7.8.1 Forces on tooth of pinion 277
7.8.2 Forces on tooth of bevel gear 279
7.9 Strength of Bevel Gear Tooth 280
7.10 Dynamic Load 283
7.11 Wear Strength 284
7.12 Spiral Bevel Gears 291
8. Worm Gears
8.1 Worm and Worm Wheel 300
8.2 Advantages / Disadvantages of the Drive 301
8.3 Applications 302
8.4 Terminology 302
8.5 Diameter Quotient 304
8.6 Pressure Angle 304
8.7 Types of Worms and Worm Wheels 305
8.7.1 Types of worms 305
8.7.2 Types of worm gears 305
8.8 Material Selection 306
8.8.1 Materials for worm 306
8.8.2 Materials for worm gear 307
8.9 Drive Proportions 308
8.9.1 Worm proportions 308
8.9.2 Worm gear proportions 309xiv Contents
8.10 Drive Designation 310
8.11 Center Distance 310
8.12 Force Analysis 314
8.13 Strength of Worm Gear Tooth 317
8.13.1 Strength in bending 317
8.13.2 Endurance strength 318
8.13.3 Strength in wear 321
8.14 Friction in Worm Drives 322
8.15 Efficiency of Worm Drive 322
8.16 Heat Generated 324
8.16.1 Heat transfer coefficient 326
8.16.2 Use of oil cooler 326
8.17 Design of Worm and Worm Wheel Drive 328
8.17.1 Approximate center distance given 328
8.17.2 Center distance not given 333
9. Gear Trains and Gear Boxes
9.1 Function of a Gear Box 345
9.2 Applications 346
9.3 Construction 346
9.4 Gear Trains 346
9.4.1 Simple gear train 347
9.4.2 Compound gear train 347
9.5 Pitch Line Velocity 348
9.6 Epicyclic Gear Trains 351
9.7 Speed Ratio of Epicyclic Gear Trains 353
9.7.1 Translation method 353
9.7.2 Formula method 1 355
9.7.3 Formula method 2 356
9.7.4 Compound epicyclic gear trains 359
9.8 Torque Ratios of Epicyclic Gears 361
9.9 Classification of Gear Boxes 362
9.10 Selection of Type of Gear Box 364
9.11 Speed Ratios in Geometric Progression 365
9.12 Kinematic Diagram 367
9.13 Structural Formula 368
9.14 Structural Diagram 368
9.15 Number of Speeds and Stages 369
9.16 Alternate Structural Formulas 369Contents xv
9.17 Transmission Ratio of a Stage 371
9.18 Optimum Structural Formula 372
9.19 Ray Diagram 373
9.20 Two-stage Gear Box with Fixed Ratio 384
9.21 Sliding Mesh Gear Box 384
9.22 Constant Mesh Gear Box 385
9.23 Synchromesh Gear Box 386
9.24 Gear Box Housing 387
9.25 Power Losses in Gear Box 388
9.26 Fluid Couplings 390
9.27 Torque Converters 392
Unit 2– Bearings
10. Hydrodynamic Bearings
10.1 Introduction 406
10.2 Construction of Bearings 407
10.3 Classification of Bearings 407
10.4 Properties of Bearing Material 411
10.5 Bearing Materials 411
10.6 Properties of Lubricants 412
10.6.1 Viscosity 413
10.6.2 Units of viscosity 414
10.6.3 SAE designation of oils 414
10.6.4 Viscosity index 415
10.7 Hydrodynamic Lubrication 415
10.7.1 Terminology 415
10.7.2 Working principle 416
10.7.3 Reynolds equation 417
10.7.4 Long bearings 417
10.7.5 Short bearings 418
10.8 Finite Bearings 418
10.8.1 Eccentricity ratio and Sommerfeld number 418
10.8.2 Critical pressure 420
10.8.3 Unit load 420
10.8.4 Maximum pressure 421
10.9 Oil Flow through Bearings 423xvi Contents
10.10 Energy Loss due to Friction 426
10.11 Heat Generated and Temperature Rise 428
10.12 Heat Dissipated 431
10.13 Selection of Parameters for Design of Bearings 433
10.13.1 Length to diameter ratio (L/D) 434
10.13.2 Radial clearance 434
10.13.3 Minimum oil film thickness 435
10.13.4 Clearance ratio 435
10.13.5 Minimum oil thickness to clearance ratio 435
10.13.6 Bearing pressure 435
10.13.7 Temperature rise 435
10.13.8 Oil viscosity 435
10.13.9 Bearing modulus 436
10.14 Design Procedure 437
10.15 Thrust Bearings 441
10.15.1 Foot step bearing 441
10.15.2 Collar bearing 442
10.15.3 Hydrodynamic thrust bearing 443
10.16 Squeeze Film Journal Bearings 444
11. Rolling Bearings
11.1 Introduction 457
11.2 Construction and Nomenclature 459
11.3 Classification of Rolling Bearings 460
11.3.1 Ball bearings 460
11.3.2 Roller bearings 461
11.4 Bearing Designation 462
11.4.1 ISO designation 462
11.4.2 AFBMA designation 463
11.5 Size of Bearings 463
11.5.1 Ball bearings 464
11.5.2 Roller bearings 464
11.6 Static Load Capacity 465
11.7 Static Equivalent Load 468
11.8 Basic Dynamic Load Capacity 469
11.9 Dynamic Equivalent Load 471
11.10 Rated Life of a Bearing 472
11.11 Reliability of Bearings 474
11.12 Life with Varying Loads 477Contents xvii
11.13 Cyclic Loads 479
11.14 Load Factor 481
11.15 Design Procedure for Rolling Bearings 481
11.16 Bearing Lubrication 486
11.17 Mounting of Rolling Bearings 487
11.18 Failure of Rolling Element Bearings 488
Unit 3 - Design of I.C. Engine Parts
12. Cylinder of an I.C. Engine
12.1 Introduction to I.C. Engines 500
12.2 Types of Cylinders 501
12.3 Cylinder 502
12.4 Mean Effective Pressure 503
12.5 Size of Cylinder and Power Developed 503
12.6 Design of Cylinder 505
12.6.1 Stresses in cylinder 505
12.6.2 Wall thickness of cylinder 506
12.6.3 Flange size 508
12.6.4 Studs / Bolts 508
12.7 Cylinder Head 509
13. Pistons
13.1 Definition and Function 518
13.2 Desirable Characteristics of Piston 518
13.3 Piston Materials 519
13.4 Types of Pistons 519
13.5 Construction of Pistons 520
13.6 Piston Design 521
13.6.1 Piston head 521
13.6.2 Ring grooves 523
13.6.3 Barrel 524
13.6.4 Bosses 524
13.6.5 Skirt 524
13.7 Piston Rings 525
13.7.1 Compression rings 525
13.7.2 Oil rings 526xviii Contents
13.8 Gudgeon Pin 526
13.8.1 Fixing of gudgeon pin 527
13.8.2 Design of gudgeon pin 527
14. Connecting Rod
14.1 Introduction 539
14.2 Construction 540
14.3 Forces on Connecting Rod 541
14.3.1 Axial force due to gas pressure 541
14.3.2 Axial force due to inertia of reciprocating parts 541
14.3.3 Bending force due to inertia of reciprocating parts 542
14.3.4 Frictional forces due to friction between piston rings and cylinder 543
14.3.5 Frictional forces due to friction between gudgeon pin and crank pin 544
14.4 Design of Connecting Rod 544
14.4.1 Small end of the rod 544
14.4.2 Cross section of connecting rod 545
14.4.3 Big end of the rod 548
14.4.4 Cap bolts 548
14.4.5 Strap thickness 549
15. Crank Shaft
15.1 Introduction 560
15.2 Types of Crank Shafts 561
15.3 Crank Materials 561
15.4 Forces on Crank Shaft 562
15.5 Design of Crank Shaft 562
15.5.1 Design of crank at dead center position 562
15.5.2 Design of crank at position of maximum torque 565
15.6 Design of Side Crank 575
16. Valve Gears
16.1 Valve Gear Mechanism 593
16.2 Ports 594
16.3 Valves 596
16.3.1 Valve temperatures 598
16.3.2 Valve materials 598
16.3.3 Size of valves 599
16.3.4 Lift of valves 600
16.3.5 Thickness of valve 600
16.3.6 Size of valve stem 601Contents xix
16.3.7 Valve Timings 601
16.3.8 Forces on valves 602
16.4 Valve Spring 607
16.5 Rocker Arm 611
16.6 Rocker Shaft 615
16.7 Push Rod 616
16.7.1 Materials 616
16.7.2 Design of push rod 617
16.8 Cam Shaft 619
16.9 Cams 619
16.9.1 Followers 620
16.9.2 Lift diagrams 621
16.10 Drawing Cam Profile 622
16.10.1 Cam profile with a roller follower 623
16.10.2 Cam profile with a flat follower 624
17. Fly Wheels
17.1 Function 641
17.2 Construction of a Flywheel 642
17.3 Design of Shaft, Hub, and Key 642
17.4 Fluctuation in Energy and Speed 643
17.5 Rim Velocity 648
17.6 Stresses in Flywheel 649
17.6.1 Tensile stresses due to centrifugal force 649
17.6.2 Bending stresses due to constrained arms 650
17.7 Mass and Energy Stored in Flywheel 651
17.7.1 Solid f lywheel 651
17.7.2 Flywheel with web 654
17.7.3 Flywheel with arms 655
17.7.4 Split flywheel 659
17.8 Flywheels for Engines 661
17.9 Flywheels for Punches 666
Unit 4 – Design of Miscellaneous Parts
18. Clutches
18.1 Definition and Function 681
18.2 Types of Clutches 682xx Contents
18.3 Positive Drive Clutch 683
18.4 Friction Clutch 683
18.4.1 Friction materials 684
18.4.2 Coefficient of friction 684
18.4.3 Variation of bearing pressure 685
18.4.4 Torque transmitting capacity 685
18.4.5 Maximum torque transmitting capacity 690
18.5 Design of a Single Plate Clutch 690
18.6 Time for Clutch Engagement 692
18.7 Heat Generated during Clutching 694
18.8 Multi-plate Clutch 699
18.9 Cone Clutch 701
18.9.1 Design of a cone clutch 702
18.10 Centrifugal Clutch 704
18.10.1 Construction and working 704
18.10.2 Design of a centrifugal clutch 705
19. Brakes
19.1 Definition and Functions 719
19.2 Types of Brakes 720
19.3 Materials for Brake Lining 720
19.4 Energy Absorbed by Brakes 721
19.4.1 Pure rotation 721
19.4.2 Pure translation 722
19.4.3 Combined rotation and translation 722
19.5 Heat Dissipated 723
19.6 Lining Wear (pv Value) 724
19.7 Block Shoe Brakes 726
19.7.1 Fixed block shoe brakes 726
19.7.2 Self-energizing brakes 729
19.7.3 Self-locking 729
19.7.4 Small / long shoe brake 730
19.7.5 Pivoted block brakes 733
19.7.6 Double block shoe brakes 734
19.8 Design Procedure for Block Shoe Brakes 737
19.9 Band Brakes 738
19.9.1 Simple band brakes 738
19.9.2 Differential band brakes 741
19.9.3 Band and block brakes 743Contents xxi
19.10 Internally Expanding Shoe 746
19.10.1 Analysis of internal shoe brakes 747
19.10.2 Shoe actuation 749
19.10.3 Shoe and brake factor 750
19.10.4 Maximum normal force for retarding wheel 751
19.11 Externally Contracting Brakes 754
19.12 Disc Brakes 755
19.12.1 Arctual pads 755
19.12.2 Disc brakes with circular pads 757
20. Pressure Vessels
20.1 Introduction and Applications 772
20.2 Classification 773
20.3 Materials and Allowable Stresses 773
20.4 Corrosion Allowance 774
20.5 Class of Pressure Vessels 774
20.6 Stresses due to Internal Pressure 774
20.6.1 Circumferential stresses 774
20.6.2 Longitudinal stresses 775
20.6.3 Effect of pressure on size 777
20.7 Thick Cylinders 778
20.7.1 Lame’s equation 779
20.7.2 Clavarino’s equation 781
20.7.3 Birnie’s equation 782
20.7.4 Barlow’s equation 783
20.8 Thin Spherical Vessels 784
20.8.1 Plate thickness 784
20.8.2 Change in size of spherical pressure vessel with internal pressure 785
20.9 End Covers 787
20.9.1 Flat circular 787
20.9.2 Flat rectangular 788
20.9.3 Elliptical plate 789
20.9.4 Hemispherical 790
20.9.5 Dished 792
20.9.6 Semi-ellipsoid 793
20.9.7 Tori-spherical end cover 793
20.9.8 Conical end covers 794
20.10 Fixing of End Covers 795
20.10.1 Integral 796
20.10.2 Bolted 796xxii Contents
20.11 Welded Joints 797
20.12 Opening in Pressure Vessels 798
20.13 Boiler Code 798
References 811
Index 81
Index
AFBMA designation, 463
Alternate structural formulas, 369
Angle of contact
open belt, 12
cross belt, 12
gears, 167
Angular gears, 274
ANSI number of chain, 114
Applications of
gear boxes, 346
pressure vessels, 772
worm gears, 302
Arc
contact factor, 39
of approach, 167
of recess, 167
Arm / spider, 351
Attitude angle, 418–419
Axial pitch of
helical gears, 243
worm gears, 302
Axial width of
land on piston, 523
piston ring, 523
top land of piston, 523
Babbitt, 411
Back cone
angle, 273
radius, 273
Backlash in gears, 156
Ball bearings, 457, 461
Band and block brakes, 743
Band brakes, 738
Barlow’s equation, 783
Base circle, 163
Basic dynamic load capacity, 469
Bearing
designation, 462
lubrication, 486
materials, 411
modulus, 436
pressure, 123, 435
Belt
angle of contact, 12
compound, 6
construction, 7
folded layer, 8
raw edge, 8
tensions ratio, 15
Belt materials, 7814 Index
Belt joints
Bolted, 12
Hinged comb, 11
Laced, 10
Birnie’s equation, 782
Block shoe brakes, 726
Boiler code, 798
Brakes, 719
Breaking loads of chains, 117
Buckingham equation for wear, 208
Built up pulley, 49
Cage of roller bearings, 459
Cam profile with
flat follower, 620, 624
roller follower, 623
Cam shaft, 619
Cams, 619
Cap bolts for connecting rod, 548
Capstan equation, 15
Center distance between
gear box shafts, 380
pulleys, 23, 32
Centrifugal clutch design, 705
Centrifugal tension, 19
Chain drive, 104
advantages/disadvantages, 106
classification, 106
designation, 114, 135
design, 124
driving links, 133
Change in vessel size with pressure, 785
Chordal action in sprockets, 111
Circular pitch, 156, 242
Class of pressure vessels, 774
Classification of
bearings, 407
gear boxes, 362
rolling bearings, 460
Clavarino’s equation, 781
Clearance ratio in bearings, 435
Clutches, 681
electro-magnetic, 683
centrifugal, 704
cone, 701
multiplate, 699
single plate, 683
Coefficient of friction, 684
Collar bearing, 442
Combined rotation and translation in brakes,
722
Comparison of silent chains with roller chains ,
132
Compound
belt drive, 6
epicyclic gear trains, 359
gear train, 347
Compression rings, 525
Condition for maximum power with belts, 21
Cone
center, 272
clutch, 701
distance, 275
Connecting rod, 539
axial force due to gas pressure, 541
axial force due to inertia, 541
bending force due to inertia, 542
big end, 548
Connecting rod design, 544
cross section, 545
large end, 548
small end, 544
Constant acceleration cam, 620
Constant mesh gear box, 385
Construction of
centrifugal clutch, 704
gear boxes, 346
flywheel, 642
pistons, 520
rolling bearings, 459
sheave, 85
silent chains, 133
V belts, 2–4
wire ropes, 75
Contact ratio of mating gears, 169
Conveyor chains, 107
Core of rope, 75
Correction factor for pitch length, 39Index 815
Corrosion allowance in pressure vessels, 774
Crankshaft materials, 561
Crankshaft design for
TDC position, 562
maximum torque position, 565
Creep of belt, 23
Critical pressure in bearings, 420
Cross belt, 13
Crossed helical gears, 243
Crosshead pistons, 520
Crown on pulleys, 45
Crown gears, 274
Cyclic loads, 479
Cycloid profile, 159
Cylinder air cooled, 502
Cylinder design, 506
Cylinder head, 509
Cylindrical roller bearing, 460
Cylindrical worm, 305
Dedendum, 156
Deep groove bearing, 460, 470
Definition and function of
brakes, 719
clutches, 681
pistons, 518
Deflector pistons, 520
Deformation factor, 202
Design of
arms of flywheel, 656
cone clutch, 702
side crank, 575
shaft, 562, 642
single plate clutch, 690
Design power and corrected power, 119
Design procedure for
block shoe brakes, 737
chain drive, 124
cone clutch, 702
rolling bearings, 481
wire rope drive, 87
Design for gear drive with center distance
given, 215
not given, 219
Desirable qualities of piston, 518
Diameter quotient, 304
Differential band brakes, 741
Disc brakes with
arctual pads, 755
circular pads, 757
Double block shoe brakes, 734
Double helical gears, 245
Drawing cam profile, 622
Drive designation of worms, 310
Drive proportions, 308
Drum and sheave arrangement, 84
Dynamic
equivalent load, 253, 283, 471
load, 199
strength, 319, 338
Eccentricity ratio, 418
Effect of pressure on size of pressure vessel,
777
Effective load for helical gears, 251
Efficiency of worm drive, 322
Elliptical bearing, 409
End covers, 787
End cover fixing, 795
bolted, 796
integral, 796
riveted, 796
Endurance strength of worms, 318
Energy absorbed by brakes, 721
Energy in
combined rotation and translation, 722
pure rotation, 721
pure translation, 722
Energy loss due to friction, 426
Epi-cycloid curve, 160
Epicyclic gear trains solutions, 351
formula method 1, 355
formula method 2, 356
translation method, 353
Equivalent number of teeth of
helical gears, 247
bevel gears, 276
Errors in gears, 203816 Index
Externally contracting brakes, 754
Eye splice for ropes, 80
Face
advance for spiral gears, 291
angle of bevel gears, 273
contact ratio for spiral gears, 291
width of bevel gears, 273
width and overlap of helical gears, 245
Factor of safety, 87, 117, 135, 254
Factors affecting gear design, 212
Failure of rolling element bearings, 488
Fast and loose pulley, 51
Fiber rope drive, 69
Fiber rope materials, 69
Finite bearings, 418
Fixed block shoe brakes, 726
Flange size of cylinder, 508
Flank, 141, 155
Flat belts
joints, 10
pulleys, 44
specifications, 9
Flat follower, 620
Fleet angle, 86
Fluctuation in energy and speed, 643
Fluid couplings, 390
Flywheels, 641
bending stresses in constrained arms, 650
solid, 651
with arms, 655
with web, 654
Flywheels for
engines, 661
punches, 666
Followers, 620
Foot step bearing, 441
Force analysis on worms, 314
Forces on
chain, 117
connecting rod, 541
crank shaft, 562
gear tooth, 248
tooth of bevel gear, 279
tooth of pinion, 277
valves, 602
Formulative number of teeth
bevel gears, 276
helical gears, 247
Four lobe bearing, 410
Friction clutch, 683
Friction in worm drives, 322
Friction materials, 684
Frictional forces between
gudgeon pin and crank pin, 544
piston rings and cylinder, 543
Function of a gear box, 345
Gas force, 521, 528
Gear box housing, 387
Gear design considerations, 193
Gear design for wear strength, 205
Gear drives
advantages /disadvantages, 153
versus other drives, 152
Gear materials, 192
Gear profiles
cycloid, 159
involute, 160
Gear ratios, 311–312, 347
Gear tooth proportions, 158, 245
Gear tooth strength, 193
Gear trains, 346, 351
Grooved pulleys, 51
Gudgeon pin, 526
design, 527
fixing, 527
fully floating, 527
Guide links in chains, 133
Gun metal, 412
Hand of helix, 242
Hand of spiral, 292
Heat dissipated from bearings, 431
Heat generated
and temperature rise, 428
during clutching, 694
Heat transfer coefficient, 326
Helical gears design, 241, 249
Helix angle, 242
Herringbone gears, 244Index 817
Hertz stresses on tooth surface, 205
Hoisting chains, 107
Hydraulic clutch, 682
Hydrodynamic bearings, 406
Hydrodynamic thrust bearing, 443
Hydrostatic bearing, 408, 441
Hydrostatic test pressure, 773
Hypo-cycloid curve, 160
Hypoid gears, 362
I head engine, 593–594
Independent wire rope center, 75
Inertia force in connecting rod, 540, 542
Initial tension in belts, 17
Inner race, 459
Interference, 171
Interference in internal gears, 224
Internal combustion engine, 500
Internal gear design, 223, 225
Internally expanding shoe analysis, 746–747
Involute gear tooth systems, 162
Involute profile, 160
Involute versus cycloid profile, 161
ISO designation of bearings, 462
ISO number of chains, 144
Keys, 140
Kinematic diagram, 367
Kinematic viscosity, 414
L head engine, 594
Lame’s equation, 779
Largest gear with a specified pinion, 179
Law of gearing, 164
Lay of wire ropes, 72
alternate right and left, 73
lang, 72
ordinary, 73
regular, 72
Lead, 303, 311
Lead angle, 303, 311–312
Length of
belt and center distance, 32
crossed belt, 24
open belt, 23
worm, 304, 309
Length to diameter ratio of sleeve bearing,
434
Lewis equation, 195
Lewis equation for helical gears, 250
Lewis form factor, 197
Life and reliability factors, 210
Life of belts, 33
Life of rolling bearings with varying loads,
477
Lift
diagrams, 622
of valves, 600
Lining wear, 724
Load capacity, 241, 244
Load distribution factor, 212
Load factor, 481
Loads on gear tooth, 193
Long bearing, 417
Longitudinal stresses in pressure vessels, 775
Lubrication factor for chains, 120
Lubrication hydrodynamic, 415
Main dimensions of radial ball bearings, 464
Mass and energy stored in flywheel, 651
Materials and allowable stresses for pressure
vessels, 773
Materials for
brake lining, 720
worm, 306–307
Maximum
addendum radius, 172
allowable error in gears, 203
chain speed, 123
error between meshing gears, 284
number of teeth on gear, 179
pressure in sleeve bearings, 421, 433
speed of silent chain, 136
tension, 20
torque transmitting capacity of clutch, 690
Mean effective pressure, 503
Mechanical efficiency of engine, 504
Minimum film thickness, 435818 Index
Minimum number of teeth to avoid
interference, 173
Minimum
oil film thickness, 435
oil thickness to clearance ratio, 435
pulley diameter, 31
teeth for a gear wheel, 174
teeth for a pinion, 173
teeth for a pinion with rack, 175
Miter gears, 274
Module, 156, 158, 216
Mounting factor in gears, 213
Mounting of rolling bearings, 487
Multi belt grooved pulley, 52
Multi-plate clutch, 699
Multiple-strand chains, 108
Needle bearings, 460–461
Non circular gears, 227
Normal
module, 247
pitch, 242
pressure angle, 242
Number of speeds and stages in a gear box,
369
Number of start, 303
Offset bearing, 410
Offset link, 108
Oil
flow through bearings, 423
ring grooves, 521
rings, 526
Oil viscosity, 435
Open belt, 12
Opening in pressure vessels, 798
Optimum structural formula, 372
Orthogonally displaced bearing, 410
Oscillating loads, 483
Outer race, 459
Overload factor, 212
Parallel helical gears, 243
Parameters affecting interference, 172
Partial bearing, 409
Parts of roller chain, 108
Path of contact, 165
Phosphorous bronze, 301, 318, 321
Piston, 518
barrel, 524
bosses, 524
design, 521
head, 521
materials, 519
rings, 525
Pitch
angle, 272
angle and gear ratio, 274
circle diameter, 109
cone, 272
line, 272
line velocity, 348
Pivoted block brakes, 733
Planetary gear, 352
Plastics, 9, 412
Plate thickness for pressure vessels, 784, 799
Ports, 594
Positive drive clutch, 683
Power capacity of chains, 118, 136
Power losses in gear box, 388
Power rating of V belts, 32
Power transmission chains, 107
Pressure angle, 304
14.5° composite, 162
14.5° full depth, 162
20° full depth, 162
20° stub, 162
of worm, 304
Pressure vessels, 772
circumferential stresses, 774
longitudinal sreesses, 775
Properties of
bearing material, 411
belt materials, 9
brake lining materials, 721
friction materials, 684
involute teeth, 161
lubricants, 412
Proportions of bevel gear, 276Index 819
PTFE, 412
Pulleys
armed, 46
solid, 44
webbed, 46
Push rod design, 616–617
Quarter twist belt, 6
Rack, 152
Radial clearance in sleeve bearings, 434
Rated life of a bearing, 472
Ray diagram, 373
Reliability factor for gears, 210
Reliability of bearings, 474
Reynolds equation, 417
Rim velocity, 648
Ring
axial width, 523
depth of grooves , 523
Rocker arm, 611
Rocker shaft, 615
Roller bearing dimensions, 464
Roller chains, 108
Roller follower, 621
Rolling bearings, 457, 461
advantages, 458
angle of contact, 469, 490
dimensions, 464
disadvantages, 458
Rolling elements, 459
Root angle, 273
Rope drives design, 70
Ropes, 68
Rotation factor, 213, 471
SAE designation of oils, 414
Selection of
lubricant, 486
parameters for design of bearings, 433
type of gear box, 364
wire rope, 81
wire rope center, 81
Self aligning bearing, 460
Self aligning thrust bearing, 460
Self- energizing brakes, 729
Self locking brakes, 729
Semi global face, 306
Semi-floating gudgeon pin, 527
Serpentine belt, 7
Service factor, 120, 251
Sheave, 85
alignment, 87
for fiber ropes, 70
groove hardness, 86
groove size, 86
Shoe actuation, 749
Shoe and brake factor, 750
Short bearings, 418
Silent chains allowable pressures, 132
Simple band brakes, 738
Simple gear train, 347
Simple harmonic motion, 604
Single belt grooved pulley, 52
Size factor for gears, 214
Size of
bearings, 463
cylinder and power, 503
valve stem, 601
valves, 599
Skirt of piston, 524
Slide bearings, 457
Slide velocity between gear teeth, 179
Sliding mesh gear box, 384
Slip of belt, 22
Small / long shoe brake, 730
Solid flywheel, 651
Solid pulley, 45
Sommerfeld number, 416, 418
Specifying a chain, 134
Speed ratio of epicyclic gear trains, 353
Speed ratios in geometric progression, 365
Spelter socket, 80
Spherical roller bearings, 461
Spiral
angle, 292
bevel gears, 291820 Index
wrapped belt, 9
ropes, 77
Split bearing, 409
Split flywheel, 659
Spring force on valve, 603
Sprocket , 139
body styles, 140
mounting, 140
proportions, 141
Spur gears, 191
Squeeze film, 444
Squeeze film journal bearings, 444
Standard
modules, 158
pitch diameters of pulleys, 37
width of belts, 30
widths of silent chains, 134
wire diameter, 88
Static equivalent load, 468
Static load capacity, 465
Stepped flat pulley, 50
Stepped grooved pulley, 51, 53
Straight face of worm, 305
Straight hobbed face, 305
Strand center, 81
Strand factor, 118
Stranded ropes, 77
Strands, 76
Strap thickness of connecting rod, 549
Strength in bending for worm, 317
Strength in wear of worm, 321
Strength of bevel gear tooth, 280
Strength of worm gear tooth, 317
Stresses
due to internal pressure, 774
in cylinder, 505
in flywheel, 649
in wire rope, 82
Structural diagram, 368
Structural formula, 368
Studs/bolts for cylinder, 508
Surface finish factor for gears, 213
Swaged terminations, 80
Synchromesh gear box, 386
Taper roller bearing, 461
Temperature factor, 214
Temperature rise in bearings, 435
Tensile strength of wire rope, 88
Tensile stresses due to centrifugal force, 649
Terminology
gear drives, 155
helical gears, 242
worm and worm wheel, 302
Thick cylinders, 778
Thickness of valve, 600
Thimbles for ropes, 80
Thin spherical vessels, 784
Thread angle, 303
Three lobe bearing, 410
Throat angle, 86
Throat diameter, 303
Thrust bearings, 441
Time for clutch engagement, 692
Tolerance on adjacent pitch, 203
Tooth correction factor for chains, 119
Tooth length, 242
Tooth profiles, 159
Tooth thickness, 156
Toothed pulley, 53
Top land of piston, 521
Tori-spherical end cover, 793
Torque converters, 392
Torque ratios of epicyclic gears, 361
Torque transmitting capacity, 686
Transmission ratio of a stage, 371
Trunk pistons, 519
Two lobe bearing, 409
Two stage gear box with fixed ratio, 384
Types of
belts, 2
bevel gears, 273
brakes, 720
clutches, 682
crank shafts, 561
cylinders, 501
flat belt drive, 5
gear drives, 153
helical gears, 243
pistons, 519
pitches, 157Index 821
pulleys, 43
wire ropes, 77
worm gears, 305
worms, 305
Uniform pressure in clutch, 686
Uniform wear in clutch, 687
Unit load, 420
Units of viscosity, 414
Use of oil cooler, 326
Use of silent chains, 132
V belts drive design, 16, 36
Values of elastic coefficient, 207
Values of static load constant, 466
Values of modulus of elasticity, 83, 202
Valve, 593, 596
arrangements, 599
gear mechanism, 593
materials, 598
range of sizes, 599
spring, 607
temperatures, 598
timings, 601
seats, 595, 599
Variation of bearing pressure, 685
Velocity factor, 199
Velocity ratio, 164
Viscosity , 413
Viscosity index, 415
Wall thickness of cylinder, 506
Water cooled cylinder, 502
Wear strength of bevel gears, 284
Wear strength of helical gears, 254
Webbed pulley, 46
Wedge sockets for ropes, 80
Weight of chains, 116
Whole depth, 156
Width of belt, 30
Width of belt and width of pulley, 45
Wire rope clamps/clips, 80
Wire rope, 74
advantages, 74
classification, 78
designation, 78
materials, 74
terminations, 79
Wire strand core, 75
Wires, 75
Working depth of gear teeth, 156
Worm and worm wheel, 300
advantages/disadvantages, 301
design of drive, 328
hour glass worm, 305
proportions, 308
Worm and worm wheel design, 328
approx. center distance given, 328
center distance not given, 333
Worm gear proportions, 309
Zero film, 408


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Machine Design - Volume II
رابط مباشر لتنزيل كتاب Fundamentals of Machine Design - Volume II
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Fundamentals of Machine Design - Volume II
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Fundamentals of Machine Design
» كتاب Plastic Injection Molding - Volume III - Mold Design and Construction Fundamentals
» كتاب Fundamentals of Machine Component Design
» كتاب Plastic Injection Molding - Volume II - Material selection and product design fundamentals
» كتاب Fundamentals of Machine Component Design - Fifth Edition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: