Admin مدير المنتدى
عدد المساهمات : 18940 التقييم : 35326 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Strength of Materials الأربعاء 05 يناير 2022, 12:40 am | |
|
أخواني في الله أحضرت لكم كتاب Strength of Materials Second Edition A.k. Srivastava Manager (Design) Aircraft Upgrade Research and Design Centre Hindustan Aeronautics Limited Nasik P.C. GOPE Professor College of Technology G.B. Pant University of Agriculture and Technology Pantnager
و المحتوى كما يلي :
Contents Foreword xiii Preface xv Preface to the First Edition xvii 1. SIMPLE AND COMPOUND STRESS 1–48 1.1 Introduction 1 1.2 Stress 1 1.3 Uniformly Distributed Stress 3 1.3.1 Tensile and Compressive Stresses 3 1.3.2 Stress Due to Bending Moment 4 1.3.3 Stress Due to Twisting Moment 5 1.4 Complex Stresses 6 1.4.1 Plane Stress 6 1.4.2 Stresses on an Inclined Plane 7 Exercises 46 2. ANALYSIS OF STRESS AND STRAIN 49–94 2.1 Introduction 49 2.2 Force Distribution 49 2.3 The State of Stress at a Point 50 2.4 Stress Notations 50 2.5 Stress Tensor at a Point 50 2.6 Stress Gradient 51 2.7 Differential Equations of Equilibrium 51 2.8 Equilibrium Equations for Plane Stress State 53 2.9 Generalized Hooke’s Law 53 2.10 Direction Cosines 55 2.11 Normal and Shear Stresses 56 Contents 2.12 Principal Directions 57 2.13 Stress Components on an Arbitrary Plane 57 2.14 Principal Stress 59 2.15 Stress Invariants 60 2.16 Principal Directions 61 2.17 Octahedral Stress 68 2.18 Mean and Deviator Stresses 70 2.19 Strain Analysis 74 2.20 Strain-Displacement Relation 75 2.21 Three-dimensional Strains 79 2.22 Normal and Shearing Strains 80 2.23 Principal Strains 80 2.24 Principal Strain Directions 81 2.25 Concept of Compatibility 81 2.26 St-Venant’s Equations of Compatibility 83 2.27 Solution of Stress Differential Equation 86 2.28 Types of Airy’s Stress Function 88 2.29 Application of Airy’s Stress Function 90 2.30 Mohr’s Circle for the Three-dimensional State of Stress 92 Exercises 94 3. THEORY OF FAILURE 95–139 3.1 Introduction 95 3.2 Failure Theory for Ductile Material 96 3.2.1 Maximum Shear Stress Theory 96 3.2.2 Maximum Distortion Energy Theory 102 3.2.3 Strain Energy Density or Total Strain Energy Criterion 105 3.3 Theory of Failure or Yield Criterion for Brittle Materials 106 3.3.1 Maximum Principal Stress Criterion 106 3.3.2 Maximum Principal Strain Criterion 107 3.4 Mohr’s Theory 108 3.5 Experimental Verification of Theory of Failure 111 3.5.1 Comparison of Failure Criteria 113 3.6 Theory of Failure for Cyclic Loads 123 3.6.1 Stress Parameters 123 3.6.2 Strength Parameter 124 Exercises 139 4. ENERGY METHODS 140–157 4.1 Introduction 140 4.2 Strain Energy 140 4.2.1 Strain Energy with Simple Loading 143 4.2.2 Strain Energy due to Moment M 143Contents 4.2.3 Strain Energy due to Torsional Loading 143 4.2.4 Strain Energy due to Transverse Shear 144 4.3 Castigliano’s First Theorem 147 Exercises 156 5. DEFLECTION OF BEAMS 158–195 5.1 Introduction 158 5.2 Relation between Slope, Deflection and Radius of Curvature 158 5.3 Method for Slope and Deflection 159 5.3.1 Double Integration Method for Slope and Deflection 160 5.3.2 Macaulay’s Method 172 5.3.3 Moment Area Method 179 5.3.4 Mohr’s Theorems 181 5.4 Indeterminate Structure 185 5.5 Continuous Beam 186 5.6 Clapeyron’s Theorem of Three Moments 186 Exercises 194 6. CURVED BEAM 196–224 6.1 Introduction 196 6.2 Stresses in Curved Beam (Winkler–Bach Theory) 196 6.3 Position of Neutral Axis 200 6.4 Values of h2 200 6.4.1 Rectangular Cross-section 201 6.4.2 Circular Cross-section 201 6.4.3 I-section 202 6.4.4 T-section 202 6.4.5 Trapezoidal Cross-section 203 6.5 Stresses in a Ring 214 6.6 Stresses in a Chain Link 220 Exercises 223 7. THIN CYLINDER AND SPHERE 225–240 7.1 Introduction 225 7.2 Classification of Pressure Vessels 225 7.3 Stresses in a Thin Cylindrical Shell due to an Internal Pressure 225 7.4 Circumferential or Hoop Stress 226 7.5 Longitudinal Stress 227 7.6 Effect of Internal Pressure on the Dimensions of a Thin Cylindrical Shell 230 7.7 The Spherical Shells Subjected to an Internal Pressure 236 7.8 Change in Dimensions of Thin Spherical Shell due to an Internal Pressure 237 Exercises 240 Contents 8. THICK AND COMPOUND CYLINDER 241–262 8.1 Introduction 241 8.2 Lame’s Theory 241 8.3 Application of Theories of Failure 250 8.4 Compound Cylindrical Shell 252 8.5 Thick Spherical Shells 256 Exercises 262 9. UNSYMMETRICAL BENDING AND SHEAR CENTRE 263–281 9.1 Introduction 263 9.2 Definitions 263 9.3 Stresses due to Unsymmetrical Bending 264 9.4 Deflection of Beam due to Unsymmetrical Bending 266 9.5 Shear Centre 275 9.5.1 Shear Centre for Channel Section 275 9.5.2 Shear Centre of Unequal I-section 278 Exercises 280 10. COLUMNS AND STRUTS 282–307 10.1 Introduction 282 10.2 Definitions 282 10.3 Classification of Column 282 10.4 Assumptions Made in the Euler’s Column Theory 283 10.5 Expressions for Crippling Load of Different Cases 283 10.5.1 Both the Ends are Hinged or Pinned 283 10.5.2 One End is Fixed and Other is Free 284 10.5.3 Both Ends are Fixed 286 10.5.4 One End is Fixed, Other is Hinged 287 10.6 Effective Length of a Column 288 10.7 Slenderness Ratio 289 10.8 Crippling Stress in Terms of Effective Length and Radius of Gyration 289 10.9 Limitation of Euler’s Formula 290 10.10 Rankine’s Formula 296 10.11 Eccentric Loading 302 10.12 Johnson’s Formula for Columns 304 10.12.1 Johnson’s Straight Line Formula for Columns 304 10.12.2 Johnson’s Parabolic Formula for Columns 305 Exercises 305 11. SPRING 308–333 11.1 Introduction 308 11.2 Definitions 308 11.3 Types of Springs 309Contents 11.4 Helical Spring 309 11.4.1 Closely-coiled Helical Springs 309 11.4.2 Open-coiled Helical Springs 312 11.5 Strain Energy in the Spring 314 11.6 Springs under Impact Load 315 11.7 Springs in Series 315 11.8 Springs in Parallel 315 11.9 Leaf Springs or Carriage Springs 326 11.9.1 Semi-elliptical Spring 326 11.9.2 Quarter-elliptical Leaf Spring 330 Exercises 333 12. ROTATING DISCS AND CYLINDERS 334–349 12.1 Introduction 334 12.2 Rotating Disc 334 12.2.1 Strain Considerations 335 12.3 Hollow Disc (Disc with a Central Hole) 337 12.4 Solid Disc 338 12.5 Disc of Uniform Strength 338 12.6 Rotating Cylinder 340 12.7 Solid Cylinder 342 12.8 Hollow Cylinder 343 Exercises 348 13. FINITE ELEMENT METHOD AND ITS APPLICATION USING ANSYS SOFTWARE 350–391 13.1 Introduction 350 13.2 The Steps 350 13.3 Principle of Minimum Potential Energy 351 13.3.1 Potential Energy 352 13.4 Computer Aided Stress Analysis Technique 353 13.5 Elements Type and Shapes 354 13.6 One-dimensional Problems 358 13.6.1 Natural Coordinate (Intrinsic Coordinate) 358 13.6.2 Isoparametric Element 359 13.6.3 Element Strain Displacement Matrix 359 13.6.4 Element Stiffness Matrix 360 13.6.5 Forces 362 13.7 Application of Finite Element Analysis Using the ANSYS Software 367 13.7.1 Application of Finite Element Analysis Using 1D Element 367 13.7.2 Application of Finite Element Analysis Using 2D Element 379 13.7.3 Application of Finite Element Analysis Using 3D Element 386 INDEX 393–39 7 reduction factor, 127 Finite element method, 350 Generalized Hooke’s law, 53 Gerber equation, 128 Goodman diagram, 128–129 Helical spring, 308 Hooke’s law, 53 Hoop or circumferential stress, 226, 236 Indeterminate structure, 185 Lame’s equations, 243 theory, 241 Load factor, 126 Long column, 283 Longitudinal stress, 225–226 Macaulay’s method, 159, 172 Maximum distortion energy theory, 102 normal stress, 10 Index principal strain criterion, 107 principal stress criterion, 106 shear stress, 10 shear stress theory, 96 Mean and deviator stresses, 70 stress, 123 Medium column, 283 Mohr’s circle, 15 theory, 108 Mohr–Coulomb criterion, 111 Moment area method, 159, 179 Neutral axis, 196, 200 Normal stress, 2 Octahedral plane, 68 stress, 68 Open-coiled spring, 308 PI plane, 99 Plane stress, 6 Principal stress, 14 Radial stress, 226 Radius of gyration, 289 Rankine’s formula, 296 Safe load, 282 Second moment area, 263 Shear stress, 5, 8 Short column, 282 Size factor, 125 Slenderness ratio, 228–283 Soderberg criterion, 132, 136 Solution of stress differential equation, 86 Spring index, 312 St. Venant’s equations, 83 State of pure shear, 71 State of stress, 71 Statically indeterminate problems, 185 structures, 185 Stiffness, 158, 315 Strain energy density, 105 Strain-displacement relation, 74–75 Stress, 1–2 gradient, 51 invariants, 60 on an inclined plane, 7 tensor, 60 Strut, 282 Surface finish factor, 125 forces, 125 Tensile and compressive stresses, 3 Theory of failure, 132 Thick shell, 225 Thin shell, 225 Torsional rigidity, 309 Tresca criterion, 96 Two-dimensional state of stress, 41 Unsymmetrical bending, 263 Variable stress, 124 von Mises theory, 102 Wahl’s correction factor, 312 Winkler-Bach theory, 196 Yield criterion, 96
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Strength of Materials رابط مباشر لتنزيل كتاب Strength of Materials
|
|