Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Multi-Sensor Data Fusion with MATLAB الأربعاء 27 أكتوبر 2021, 11:02 pm | |
|
أخواني في الله أحضرت لكم كتاب Multi-Sensor Data Fusion with MATLAB Jitendra R. Raol
و المحتوى كما يلي :
Contents Preface . xix Acknowledgments xxi Author .xxiii Contributors . xxv Introduction .xxvii Part I: Theory of Data Fusion and Kinematic-Level Fusion (J. R. Raol, G. Girija, and N. Shanthakumar) 1. Introduction 3 2. Concepts and Theory of Data Fusion . 11 2.1 Models of the Data Fusion Process and Architectures . 11 2.1.1 Data Fusion Models 13 2.1.1.1 Joint Directors of Laboratories Model . 13 2.1.1.2 Modified Waterfall Fusion Model 17 2.1.1.3 Intelligence Cycle–Based Model 18 2.1.1.4 Boyd Model . 19 2.1.1.5 Omnibus Model . 20 2.1.2 Fusion Architectures 21 2.1.2.1 Centralized Fusion . 21 2.1.2.2 Distributed Fusion . 21 2.1.2.3 Hybrid Fusion . 22 2.2 Unified Estimation Fusion Models and Other Methods . 23 2.2.1 Definition of the Estimation Fusion Process . 24 2.2.2 Unified Fusion Models Methodology 25 2.2.2.1 Special Cases of the Unified Fusion Models 25 2.2.2.2 Correlation in the Unified Fusion Models 26 2.2.3 Unified Optimal Fusion Rules 27 2.2.3.1 Best Linear Unbiased Estimation Fusion Rules with Complete Prior Knowledge . 27 2.2.3.2 Best Linear Unbiased Estimation Fusion Rules without Prior Knowledge . 28 2.2.3.3 Best Linear Unbiased Estimation Fusion Rules with Incomplete Prior Knowledge 28 2.2.3.4 Optimal-Weighted Least Squares Fusion Rule 28 2.2.3.5 Optimal Generalized Weighted Least Squares Fusion Rule . 29viii Contents 2.2.4 Kalman Filter Technique as a Data Fuser . 29 2.2.4.1 Data Update Algorithm . 30 2.2.4.2 State-Propagation Algorithm . 31 2.2.5 Inference Methods 32 2.2.6 Perception, Sensing, and Fusion . 32 2.3 Bayesian and Dempster–Shafer Fusion Methods 33 2.3.1 Bayesian Method . 34 2.3.1.1 Bayesian Method for Fusion of Data from Two Sensors 36 2.3.2 Dempster–Shafer Method . 38 2.3.3 Comparison of the Bayesian Inference Method and the Dempster–Shafer Method . 40 2.4 Entropy-Based Sensor Data Fusion Approach . 41 2.4.1 Definition of Information 41 2.4.2 Mutual Information 43 2.4.3 Entropy in the Context of an Image . 44 2.4.4 Image-Noise Index 44 2.5 Sensor Modeling, Sensor Management, and Information Pooling . 45 2.5.1 Sensor Types and Classification . 45 2.5.1.1 Sensor Technology . 46 2.5.1.2 Other Sensors and their Important Features and Usages 48 2.5.1.3 Features of Sensors 51 2.5.1.4 Sensor Characteristics . 52 2.5.2 Sensor Management . 53 2.5.2.1 Sensor Modeling 55 2.5.2.2 Bayesian Network Model 58 2.5.2.3 Situation Assessment Process 58 2.5.3 Information-Pooling Methods 60 2.5.3.1 Linear Opinion Pool 60 2.5.3.2 Independent Opinion Pool . 61 2.5.3.3 Independent Likelihood Pool . 61 3. Strategies and Algorithms for Target Tracking and Data Fusion . 63 3.1 State-Vector and Measurement-Level Fusion . 69 3.1.1 State-Vector Fusion . 70 3.1.2 Measurement Data–Level Fusion . 71 3.1.3 Results with Simulated and Real Data Trajectories . 71 3.1.4 Results for Data from a Remote Sensing Agency with Measurement Data–Level Fusion . 72 3.2 Factorization Kalman Filters for Sensor Data Characterization and Fusion 73 3.2.1 Sensor Bias Errors . 73Contents ix 3.2.2 Error State-Space Kalman Filter . 75 3.2.3 Measurement and Process Noise Covariance Estimation 76 3.2.4 Time Stamp and Time Delay Errors . 77 3.2.5 Multisensor Data Fusion Scheme . 77 3.2.5.1 UD Filters for Trajectory Estimation . 80 3.2.5.2 Measurement Fusion . 81 3.2.5.3 State-Vector Fusion . 82 3.2.5.4 Fusion Philosophy 82 3.3 Square-Root Information Filtering and Fusion in Decentralized Architecture . 86 3.3.1 Information Filter 87 3.3.1.1 Information Filter Concept . 87 3.3.1.2 Square Root Information Filter Algorithm 88 3.3.2 Square Root Information Filter Sensor Data Fusion Algorithm . 88 3.3.3 Decentralized Square Root Information Filter . 89 3.3.4 Numerical Simulation Results 91 3.4 Nearest Neighbor and Probabilistic Data Association Filter Algorithms . 93 3.4.1 Nearest Neighborhood Kalman Filter . 94 3.4.2 Probabilistic Data Association Filter 96 3.4.3 Tracking and Data Association Program for Multisensor, Multitarget Sensors . 97 3.4.3.1 Sensor Attributes 99 3.4.3.2 Data Set Conversion . 99 3.4.3.3 Gating in Multisensor, Multitarget 100 3.4.3.4 Measurement-to-Track Association . 100 3.4.3.5 Initiation of Track and Extrapolation of Track . 101 3.4.3.6 Extrapolation of Tracks into Next Sensor Field of View . 101 3.4.3.7 Extrapolation of Tracks into Next Scan . 102 3.4.3.8 Track Management Process 102 3.4.4 Numerical Simulation 103 3.5 Interacting Multiple Model Algorithm for Maneuvering Target Tracking . 106 3.5.1 Interacting Multiple Model Kalman Filter Algorithm 106 3.5.1.1 Interaction and Mixing . 108 3.5.1.2 Kalman Filtering 108 3.5.1.3 Mode Probability Update 109 3.5.1.4 State Estimate and Covariance Combiner 109 3.5.2 Target Motion Models .110 3.5.2.1 Constant Velocity Model 110 3.5.2.2 Constant Acceleration Model 110x Contents 3.5.3 Interacting Multiple Model Kalman Filter Implementation 111 3.5.3.1 Validation with Simulated Data . 112 3.6 Joint Probabilistic Data Association Filter 116 3.6.1 General Version of a Joint Probabilistic Data Association Filter .117 3.6.2 Particle Filter Sample–Based Joint Probabilistic Data Association Filter .119 3.7 Out-of-Sequence Measurement Processing for Tracking 120 3.7.1 Bayesian Approach to the Out-of-Sequence Measurement Problem . 120 3.7.2 Out-of-Sequence Measurement with Single Delay and No Clutter 121 3.7.2.1 Y Algorithm 121 3.7.2.2 Augmented State Kalman Filters . 122 3.8 Data Sharing and Gain Fusion Algorithm for Fusion . 124 3.8.1 Kalman Filter–Based Fusion Algorithm 124 3.8.2 Gain Fusion–Based Algorithm . 125 3.8.3 Performance Evaluation . 126 3.9 Global Fusion and H-Infinity Filter–Based Data Fusion . 127 3.9.1 Sensor Data Fusion using H-Infinity Filters . 127 3.9.2 H-Infinity a Posteriori Filter–Based Fusion Algorithm . 130 3.9.3 H-Infinity Global Fusion Algorithm 131 3.9.4 Numerical Simulation Results 132 3.10 Derivative-Free Kalman Filters for Fusion 134 3.10.1 Derivative-Free Kalman Filters . 136 3.10.2 Numerical Simulation 137 3.10.2.1 Initialization of the Data Fusion-Derivative Free Kalman Filter Algorithm 140 3.10.2.2 Computation of the Sigma Points 140 3.10.2.3 State and Covariance Propagation 141 3.10.2.4 State and Covariance Update 141 3.11 Missile Seeker Estimator 143 3.11.1 Interacting Multiple Model–Augmented Extended Kalman Filter Algorithm . 143 3.11.1.1 State Model 144 3.11.1.2 Measurement Model 145 3.11.2 Interceptor–Evader Engagement Simulation 146 3.11.2.1 Evader Data Simulation . 147 3.11.3 Performance Evaluation of Interacting Multiple Model–Augmented Extended Kalman Filter . 147 3.12 Illustrative Examples 151Contents xi 4. Performance Evaluation of Data Fusion Systems, Software, and Tracking . 157 4.1 Real-Time Flight Safety Expert System Strategy 160 4.1.1 Autodecision Criteria 161 4.1.2 Objective of a Flight Test Range 161 4.1.3 Scenario of the Test Range 161 4.1.3.1 Tracking Instruments .162 4.1.3.2 Data Acquisition . 163 4.1.3.3 Decision Display System . 163 4.1.4 Multisensor Data Fusion System 163 4.1.4.1 Sensor Fusion for Range Safety Computer 164 4.1.4.2 Algorithms for Fusion . 164 4.1.4.3 Decision Fusion 165 4.2 Multisensor Single-Target Tracking . 166 4.2.1 Hierarchical Multisensor Data Fusion Architecture and Fusion Scheme . 166 4.2.2 Philosophy of Sensor Fusion . 168 4.2.3 Data Fusion Software Structure . 169 4.2.3.1 Fusion Module 1 . 169 4.2.3.2 Fusion Modules 2 and 3 169 4.2.4 Validation . 170 4.3 Tracking of a Maneuvering Target—Multiple-Target Tracking Using Interacting Multiple Model Probability Data Association Filter and Fusion 171 4.3.1 Interacting Multiple Model Algorithm 171 4.3.1.1 Automatic Track Formation 171 4.3.1.2 Gating and Data Association 172 4.3.1.3 Interaction and Mixing in Interactive Multiple Model Probabilistic Data Association Filter . 174 4.3.1.4 Mode-Conditioned Filtering 174 4.3.1.5 Probability Computations . 175 4.3.1.6 Combined State and Covariance Prediction and Estimation . 176 4.3.2 Simulation Validation . 177 4.3.2.1 Constant Velocity Model . 177 4.3.2.2 Constant Acceleration Model . 178 4.3.2.3 Performance Evaluation and Discussions 179 4.4 Evaluation of Converted Measurement and Modified Extended Kalman Filters . 183 4.4.1 Error Model Converted Measurement Kalman Filter and Error Model Modifi ed Extended Kalman Filter Algorithms . 184 4.4.1.1 Error Model Converted Measurement Kalman Filter Algorithm 185xii Contents 4.4.1.2 Error Model Modified Extended Kalman Filter Algorithm 186 4.4.2 Discussion of Results 189 4.4.2.1 Sensitivity Study on Error Model Modified Extended Kalman Filter 191 4.4.2.2 Comparison of Debiased Converted Measurements Kalman Filter, Error Model Converted Measurement Kalman Filter, and Error Model Modifi ed Extended Kalman Filter Algorithms 191 4.5 Estimation of Attitude Using Low-Cost Inertial Platforms and Kalman Filter Fusion 193 4.5.1 Hardware System 195 4.5.2 Sensor Modeling . 195 4.5.2.1 Misalignment Error Model . 196 4.5.2.2 Temperature Drift Model 196 4.5.2.3 CG Offset Model 196 4.5.3 MATLAB/Simulink Implementation . 196 4.5.3.1 State Model 197 4.5.3.2 Measurement Model 198 4.5.4 Microcontroller Implementation 200 Epilogue . 203 Exercises 203 References 206 Part II: Fuzzy Logic and Decision Fusion (J. R. Raol and S. K. Kashyap) 5. Introduction 215 6. Theory of Fuzzy Logic 217 6.1 Interpretation and Unification of Fuzzy Logic Operations 218 6.1.1 Fuzzy Sets and Membership Functions 218 6.1.2 Types of Fuzzy Membership Functions 220 6.1.2.1 Sigmoid-Shaped Function . 220 6.1.2.2 Gaussian-Shaped Function . 220 6.1.2.3 Triangle-Shaped Function 222 6.1.2.4 Trapezoid-Shaped Function 222 6.1.2.5 S-Shaped Function . 222 6.1.2.6 Π-Shaped Function 224 6.1.2.7 Z-Shaped Function . 224 6.1.3 Fuzzy Set Operations . 225 6.1.3.1 Fuzzy Logic Operators 226Contents xiii 6.1.4 Fuzzy Inference System . 227 6.1.4.1 Triangular Norm or T-norm . 228 6.1.4.2 Fuzzy Implication Process Using T-norm 232 6.1.4.3 Triangular Conorm or S-norm . 239 6.1.4.4 Fuzzy Inference Process Using S-norm 240 6.1.5 Relationships between Fuzzy Logic Operators 247 6.1.6 Sup (max)–Star (T-norm) Composition 248 6.1.6.1 Maximum–Minimum Composition (Mamdani) . 249 6.1.6.2 Maximum Product Composition (Larsen) . 250 6.1.7 Interpretation of the Connective “and” 250 6.1.8 Defuzzification 251 6.1.8.1 Centroid Method, or Center of Gravity or Center of Area . 251 6.1.8.2 Maximum Decomposition Method . 252 6.1.8.3 Center of Maxima or Mean of Maximum . 252 6.1.8.4 Smallest of Maximum . 253 6.1.8.5 Largest of Maximum . 253 6.1.8.6 Height Defuzzification 253 6.1.9 Steps of the Fuzzy Inference Process . 253 6.2 Fuzzy Implication Functions 255 6.2.1 Fuzzy Implication Methods 255 6.2.2 Comparative Evaluation of the Various Fuzzy Implication Methods s with Numerical Data . 264 6.2.3 Properties of Fuzzy If-Then Rule Interpretations 265 6.3 Forward- and Backward-Chain Logic Criteria 266 6.3.1 Generalization of Modus Ponens Rule 266 6.3.2 Generalization of Modus Tollens Rule . 267 6.4 Tool for the Evaluation of Fuzzy Implication Functions . 268 6.4.1 Study of Criteria Satisfaction Using MATLAB Graphics . 268 6.5 Development of New Implication Functions 275 6.5.1 Study of Criteria Satisfaction by New Implication Function Using MATLAB and GUI Tools . 278 6.6 Fuzzy Logic Algorithms and Final Composition Operations 281 6.7 Fuzzy Logic and Fuzzy Integrals in Multiple Network Fusion . 289 7. Decision Fusion 293 7.1 Symbol- or Decision-Level Fusion 293 7.2 Soft Decisions in Kalman Filtering 296 7.3 Fuzzy Logic–Based Kalman Filter and Fusion Filters . 297 7.3.1 Fuzzy Logic–Based Process and Design . 298xiv Contents 7.3.2 Comparison of Kalman Filter and Fuzzy Kalman Filter . 299 7.3.3 Comparison of Kalman Filter and Fuzzy Kalman Filter for Maneuvering Target Tracking 301 7.3.3.1 Training Set and Check-Set Data . 301 7.3.3.2 Mild and Evasive Maneuver Data . 302 7.3.4 Fuzzy Logic–Based Sensor Data Fusion 303 7.3.4.1 Kalman Filter Fuzzification 304 7.3.4.2 Fuzzy Kalman Filter Fuzzification 306 7.3.4.3 Numerical Simulation Results . 307 7.4 Fuzzy Logic in Decision Fusion 308 7.4.1 Methods Available to Perform Situation Assessments 310 7.4.2 Comparison between Bayesian Network and Fuzzy Logic 310 7.4.2.1 Situation Assessment Using Fuzzy Logic .311 7.4.3 Level-3 Threat Refinement and Level-4 Process Refinement . 312 7.4.4 Fuzzy Logic–Based Decision Fusion Systems 313 7.4.4.1 Various Attributes and Aspects of Fuzzy Logic–Based Decision Fusion Systems 314 7.5 Fuzzy Logic Bayesian Network for Situation Assessment 316 7.5.1 Description of Situation Assessment in Air Combat . 317 7.5.1.1 Exercise Controller . 317 7.5.1.2 Integrated Sensor Model 318 7.5.1.3 Data Processor .318 7.5.1.4 Pilot Mental Model .318 7.5.2 Bayesian Mental Model .318 7.5.2.1 Pair Agent Bayesian Network 319 7.5.2.2 Along Agent Bayesian Network 320 7.5.2.3 Attack Agent Bayesian Network 320 7.5.3 Results and Discussions 320 7.6 Fuzzy Logic–Based Decision Fusion in a Biometric System 321 7.6.1 Fusion in Biometric Systems . 322 7.6.2 Fuzzy Logic Fusion . 322 8. Performance Evaluation of Fuzzy Logic–Based Decision Systems 325 8.1 Evaluation of Existing Fuzzy Implication Functions 325 8.2 Decision Fusion System 1—Formation Flight . 328 8.2.1 Membership Functions 329 8.2.2 Fuzzy Rules and the Fuzzy Implication Method . 330 8.2.3 Aggregation and Defuzzification Method 330 8.2.4 Fuzzy Logic–Based Decision Software Realization 330Contents xv 8.3 Decision Fusion System 2—Air Lane . 331 8.3.1 Membership Functions 332 8.3.2 Fuzzy Rules and Other Methods 333 8.3.3 Fuzzy Logic–Based Decision Software Realization for System 2 . 334 8.4 Evaluation of Some New Fuzzy Implication Functions 334 8.5 Illustrative Examples 337 Epilogue . 347 Exercises 347 References 351 Part III: Pixel- and Feature-Level Image Fusion (J. R. Raol and V. P. S. Naidu) 9. Introduction 357 10. Pixel- and Feature-Level Image Fusion Concepts and Algorithms 361 10.1 Image Registration 361 10.1.1 Area-Based Matching . 363 10.1.1.1 Correlation Method . 364 10.1.1.2 Fourier Method 364 10.1.1.3 Mutual Information Method 365 10.1.2 Feature-Based Methods . 365 10.1.2.1 Spatial Relation . 366 10.1.2.2 Invariant Descriptors . 366 10.1.2.3 Relaxation Technique 367 10.1.2.4 Pyramids and Wavelets . 367 10.1.3 Transform Model 368 10.1.3.1 Global and Local Models 368 10.1.3.2 Radial Basis Functions 368 10.1.3.3 Elastic Registration 369 10.1.4 Resampling and Transformation 369 10.1.5 Image Registration Accuracy 369 10.2 Segmentation, Centroid Detection, and Target Tracking with Image Data . 370 10.2.1 Image Noise . 370 10.2.1.1 Spatial Filter 371 10.2.1.2 Linear Spatial Filters 372 10.2.1.3 Nonlinear Spatial Filters . 372 10.2.2 Metrics for Performance Evaluation 373 10.2.2.1 Mean Square Error . 373 10.2.2.2 Root Mean Square Error . 373 10.2.2.3 Mean Absolute Error . 373xvi Contents 10.2.2.4 Percentage Fit Error 373 10.2.2.5 Signal-to-Noise Ratio 374 10.2.2.6 Peak Signal-to-Noise Ratio 374 10.2.3 Segmentation and Centroid Detection Techniques 374 10.2.3.1 Segmentation .374 10.2.3.2 Centroid Detection . 376 10.2.4 Data Generation and Results . 377 10.2.5 Radar and Imaging Sensor Track Fusion 378 10.3 Pixel-Level Fusion Algorithms . 380 10.3.1 Principal Component Analysis Method 380 10.3.1.1 Principal Component Analysis Coefficients 382 10.3.1.2 Image Fusion . 382 10.3.2 Spatial Frequency 383 10.3.2.1 Image Fusion by Spatial Frequency 384 10.3.2.2 Majority Filter . 384 10.3.3 Performance Evaluation . 385 10.3.3.1 Results and Discussion . 387 10.3.3.2 Performance Metrics When No Reference Image Is Available 390 10.3.4 Wavelet Transform 394 10.3.4.1 Fusion by Wavelet Transform . 398 10.3.4.2 Wavelet Transforms for Similar Sensor Data Fusion . 398 10.4 Fusion of Laser and Visual Data . 400 10.4.1 3D Model Generation . 400 10.4.2 Model Evaluation 402 10.5 Feature-Level Fusion Methods . 402 10.5.1 Fusion of Appearance and Depth Information 403 10.5.2 Stereo Face Recognition System 404 10.5.2.1 Detection and Feature Extraction 405 10.5.2.2 Feature-Level Fusion Using Hand and Face Biometrics 406 10.5.3 Feature-Level Fusion 407 10.5.3.1 Feature Normalization 407 10.5.3.2 Feature Selection 407 10.5.3.3 Match Score Generation 408 10.6 Illustrative Examples 408 11. Performance Evaluation of Image-Based Data Fusion Systems . 415 11.1 Image Registration and Target Tracking . 415 11.1.1 Image-Registration Algorithms 415 11.1.1.1 Sum of Absolute Differences 415 11.1.1.2 Normalized Cross Correlation . 417 11.1.2 Interpolation 418 11.1.3 Data Simulation and Results . 420Contents xvii 11.2 3D Target Tracking with Imaging and Radar Sensors 429 11.2.1 Passive Optical Sensor Mathematical Model 430 11.2.2 State-Vector Fusion for Fusing IRST and Radar Data . 431 11.2.2.1 Application of Extended KF . 432 11.2.2.2 State-Vector Fusion . 433 11.2.3 Numerical Simulation 435 11.2.4 Measurement Fusion 437 11.2.4.1 Measurement Fusion 1 Scheme 437 11.2.4.2 Measurement Fusion 2 Scheme 439 11.2.5 Maneuvering Target Tracking 440 11.2.5.1 Motion Models 441 11.2.5.2 Measurement Model 442 11.2.5.3 Numerical Simulation . 442 11.3 Target Tracking with Acoustic Sensor Arrays and Imaging Sensor Data 448 11.3.1 Tracking with Multiple Acoustic Sensor Arrays 448 11.3.2 Modeling of Acoustic Sensors . 449 11.3.3 DoA Estimation . 451 11.3.4 Target-Tracking Algorithms 453 11.3.4.1 Digital Filter 455 11.3.4.2 Triangulation 455 11.3.4.3 Results and Discussion . 455 11.3.5 Target Tracking . 457 11.3.5.1 Joint Acoustic-Image Target Tracking . 459 11.3.5.2 Decentralized KF . 460 11.3.5.3 3D Target Tracking . 463 11.3.6 Numerical Simulation 465 Epilogue . 471 Exercises 471 References .474 Part IV: A Brief on Data Fusion in Other Systems (A. Gopal and S. Utete) 12. Introduction: Overview of Data Fusion in Mobile Intelligent Autonomous Systems 479 12.1 Mobile Intelligent Autonomous Systems 479 12.2 Need for Data Fusion in MIAS . 481 12.3 Data Fusion Approaches in MIAS 482 13. Intelligent Monitoring and Fusion 485 13.1 The Monitoring Decision Problem . 485 13.2 Command, Control, Communications, and Configuration 488xviii Contents 13.3 Proximity- and Condition-Monitoring Systems . 488 Epilogue . 491 Exercises 492 References 492 Appendix: Numerical, Statistical, and Estimation Methods . 495 A.1 Some Definitions and Concepts 495 A.1.1 Autocorrelation Function . 495 A.1.2 Bias in Estimate . 496 A.1.3 Bayes’ Theorem . 496 A.1.4 Chi-Square Test . 496 A.1.5 Consistency of Estimates Obtained from Data 496 A.1.6 Correlation Coefficients and Covariance 497 A.1.7 Mathematical Expectations . 497 A.1.8 Efficient Estimators . 498 A.1.9 Mean-Squared Error (MSE) . 498 A.1.10 Mode and Median . 498 A.1.11 Monte Carlo Data Simulation 498 A.1.12 Probability 499 A.2 Decision Fusion Approaches . 499 A.3 Classifier Fusion 500 A.3.1 Classifier Ensemble Combining Methods . 501 A.3.1.1 Methods for Creating Ensemble Members 501 A.3.1.2 Methods for Combining Classifiers in Ensembles . 501 A.4 Wavelet Transforms 502 A.5 Type-2 Fuzzy Logic . 504 A.6 Neural Networks 505 A.6.1 Feed-Forward Neural Networks 506 A.6.2 Recurrent Neural Networks 508 A.7 Genetic Algorithm 508 A.7.1 Chromosomes, Populations, and Fitness 509 A.7.2 Reproduction, Crossover, Mutation, and Generation 509 A.8 System Identification and Parameter Estimation . 509 A.8.1 Least-Squares Method 510 A.8.2 Maximum Likelihood and Output Error Methods .511 A.9 Reliability in Information Fusion 516 A.9.1 Bayesian Method . 518 A.9.1.1 Weighted Average Methods 518 A.9.2 Evidential Methods 518 A.9.3 Fuzzy Logic–Based Possibility Approach . 519 A.10 Principal Component Analysis . 519 A.11 Reliability . 520 References 520 Index . Index A Absolute errors, 425–427, 429 Acceleration estimates, 445 Acceleration profiles, 112–113 Acoustic target, tracking schemes for, 449 Active sensors, 45 Adaptive sampling systems, 489 AEKF algorithm, see Augmented extended Kalman filter algorithm Aggregation process, 289, 330 Air combat (AC), situation assessment in, 316, 317–318 ALEX system, 193, 194 Alignment errors, 369 Along agent BNW (AAN) model, 320 Angular coordinates, 430, 431 Area-based matching (ABM), 363–365 Arithmetic rule of fuzzy implication (ARFI), 325 Artificial intelligence (AI), 15, 217 Artificial neural networks (ANN), 310, 505–506 Attack agent BNW (AtAN) model, 320 Augmented extended Kalman filter (AEKF) algorithm IMM, 143–146 performance evaluation of, 147–150 Augmented state Kalman filters, 122 Autocorrelation function, 495–496 B Backward chain inference rule, 266 Backward chain logic criteria, 266–268 Bayes’ classifier, 290, 500 Bayesian approach to OOSMs problem, 120–121 Bayesian filtering, 118 Bayesian inference method (BIM), 32, 40–41 Bayesian mental model, 318–320 Bayesian method, 33, 34–36, 518 for data fusion from two sensors, 36–38 vs. DS method, 40–41 Bayesian network (BNW) model, 57, 58, 59, 60 vs. fuzzy logic, 310 Bayes’ rule, 32, 34–36 Bayes’ theorem, 35, 496 Best linear unbiased estimation (BLUE) fusion rules, 27, 28 Bias errors, 73–75 Bias in estimate, 496 BIM, see Bayesian inference method Binary neuron, 506 Biological neural networks (BNNs), 505 Biometrics, feature-level fusion methods using, 406–407 Biometric system, 321–323 BNW, see Bayesian network Boolean rule of fuzzy implication (BRFI), 325 Boyd control cyclic loop (BCL) model, 19, 20 C Cartesian coordinates, trajectory of target in, 457–458, 465 Cartesian product (CP), 232, 240 CDT algorithm, see Centroid detection and tracking algorithm Center of maxima technique, 252 Centralized fusion, 21, 24, 29 Centroid detection and tracking (CDT) algorithm, 370, 371524 Index Centroid detection techniques, 376–377 Centroid method, 251–252 Chi-square test, 496 Classifier ensemble members, methods for creating, 501 Classifier fusion, 500–502 Classifiers, combining methods in ensembles, 501 CMKF, see Converted measurements Kalman filter Cognitive-refinement, 16 Color transformation (CT) method, 358 Command, control, and communication theory, 488 Competitive sensor network, 12–13 Complementary sensor network, 11–12 Composite operations, 281, 289 Condition-monitoring, 485, 488–490 Consistent estimates of data, 496–497 Constant acceleration model (CAM), 110–111, 178–179, 299–300, 435, 465 Constant velocity (CV) model, 110, 177–178, 441–442, 457 Contact-state sensors (CSSs), 46 Continuous wavelet transform (CWT), differences in STFT, 503 Converted measurements Kalman filter (CMKF) debiased, 191 evaluation of, 183 Cooperative sensor network, 12, 13 Correlation coefficients, defined, 497 Correlation method, 364 Covariance, defined, 497 Covariance matrices, 73 computing, 434 norms of, 152, 154, 155 Covariance propagation, 141 Cramer–Rao (CR) lower bound, 512, 513 Crisp set, membership functions of, 218–219 Cross-entropy, 393 CWT, see Continuous wavelet transform D Data association (DA), 23, 50, 64, 67 Data compression, 420 Data fusion (DF) applications in manufacturing, 8–9 architectures, 21–22 conceptual chain of, 12 methods, 23, 24 in MIAS, 481–484 models, 13 process and taxonomy, 23 sensor networks, 11–13 wavelet transform for sensor, 398–400 Data processor (DP), 318 Data set conversion, 99 Data sharing, 126–127 Data simulation (DS), 301–302 for maneuvering target, 112–114 using PC-MATLAB, 420 Data update algorithm, 30–31 Dead-reckoning errors, 481 Debiased converted measurements Kalman filter (CMKF-D), 191, 192, 193 Decentralized fusion networks, merits of, 86 Decentralized square root information filter (SRIF), 89–91 Decision accuracy (DA), 41 Decision fusion, 293–296 algorithm, 358 in biometric systems, 321–323 fuzzy logic in, 308 method, 499–500 rule, 519 Decision fusion systems (DFS), 313–316 air lane, 331–334 formation flight, 328–331 Decision making, 486, 487Index 525 Decision problem, 485–487 Decision process, 293 Defuzzification, 251–253, 306, 331 Delta-4 aircraft, specifications for, 341 Dempster–Shafer (DS) method, 34, 38, 518–519 fusion rule, 39 vs. BIM, 40–41 Derivative-free Kalman filters (DFKF), 134–137, 140 DFS, see Decision fusion systems Differential GPS (DGPS), 48 Direction of arrival (DoA) estimation, 449, 451–453 Distributed fusion, 21, 22, 24 DoA, see Direction of arrival Doppler effect, 49 DS, see Data simulation DS method, see Dempster–Shafer method Dynamic world modeling (DWM), 33 E Earth-centered, earth-fixed (ECEF) frame, 74–75 East-North-Vertical (ENV) frame, 74–75 ECMKF algorithm, see Error model converted measurement KF algorithm Efficient estimator, 498 EKF, see Extended Kalman filters Elastic registration method, 369 Electronically scanned antennae (ESA) radars, 67 Electro-optical tracking systems (EOTs), 52, 83 Embedded MATLAB–based fuzzy implication method (EMFIM), 335 EMEKF algorithm, see Error model modified extended KF algorithm EM-induction (EMI) sensor, 50 ENSS, see External navigational state sensors Entropy, 392 Entropy-based sensor data fusion approach, 41 image information, 44 image-noise index, 44–45 information, 41–43 mutual information, 43–44 Error covariance time propagation, 80 Error model converted measurement Kalman filter (ECMKF) algorithm, 184–186, 193 features of, 192 performance of, 190–191 Error model Kalman filter (EMKF), 185–186 Error model modified extended Kalman filter (EMEKF) algorithm, 186–189, 193 features of, 192 performance of, 190–191 sensitivity study on, 191 Error-state Kalman filter (ESKF) formulation for estimating bias errors, 73 Error state-space Kalman filter, 75–76 Estimate error, 149 Estimation fusion (EF), 21; see also Unified fusion models process, definition of, 24–25 rules, 27–29 Estimator filter, 143 Evader data simulation, 147 Evasive maneuver (EM) data, 302–303 Event detector (ED), 314 Exercise controller (EC), 317–318 Exponential mixture density (EMD) models, 483 Extended Kalman filters (EKF), 183–184, 194, 296 application of, 432–433 limitations, 134–135 Exterioceptive sensors, 481 External navigational state sensors (ENSS), 47–48 Extrapolation of track, 101–102526 Index F Face detection, 405 Feature-based methods, 365–367 Feature detection, 363, 365 Feature extraction, 405–406 Feature-level fusion methods, 358, 402–403 using hand and face biometrics, 406–407 Feature matching, 363, 365, 366, 367 Feature normalization, 407 Feature selection, 407 Feed-forward neural networks (FFNNs), 506–508 FIE, see Fuzzy inference engine Field of view (FOV) sensor, extrapolation of tracks into, 101–102 Filter initialization parameters, 147 FIM, see Fuzzy implication methods FIP, see Fuzzy implication process Fitness value, 509 FL, see Fuzzy logic FLDS, see Fuzzy logic–based decision software Flight safety expert system strategy, real-time, 160 autodecision criteria, 161 decision fusion, 165–166 flight test range, see Flight test range multisensor data fusion system, 163–165 Flight test range, 160 data acquisition, 163 decision display system, 163 hierarchical MSDF fusion scheme, 166–168 objective of, 161 tracking instruments, 161, 162 Flight vehicle computation of trajectories of, 160 decision for termination of, 160, 163 Forward chain-inference rule, 265 Forward chain logic criteria, 266–268 Forward-looking IR (FLIR) sensors, 48, 49 data generation from, 377 Fourier method, 364 FOV sensor, see Field of view sensor Frequency-domain filtering (FDF), 371 Function approximation (FA), 288–289 Fusion of appearance and depth information, 403–404 of laser and visual data, 400–402 by wavelet transform, 398 Fusion covariance matrix, computing, 434–435 Fusion equations, 89 Fusion filters, 297 H-Infinity norm, 133 performance evaluation, 126–127 Fusion processes applications, 8–9 levels of modes, 7 Fusion quality index (FQI), 393–394 Fusion similarity metric (FSM), 394 Fusion state vector, computing, 434–435 Fuzzification, 228, 305; see also Defuzzification Fuzzy complement, 245–246 Fuzzy composition, 248–250 Fuzzy disjunction (FD), 240 Fuzzy engineering, 281, 288 Fuzzy if-then rule, 265, 288 Fuzzy implication functions and aggregation process, 289 development of, 275–278 evaluation of, 325–328, 334–337 evaluation tool for, 268–274 rule of, 275–277 for satisfying GMP and GMT criteria, 268, 278–281 Fuzzy implication methods (FIM), 215, 216, 255–258, 325 development of, 275–278 evaluation using numerical data, 264 menu panel ideas for, 269 Fuzzy implication process (FIP), 228 standard methods, 256–257 using T-norm, 232–238Index 527 Fuzzy inference engine (FIE), 225, 330, 331, 336 Fuzzy inference process steps, 253–255 using S-norm, 240–246 Fuzzy inference system (FIS), 228, 299 Fuzzy integrals (FI), 289–291 Fuzzy Kalman filter (FKF), 297 fuzzification, 306 vs. Kalman filter, 299–303 Fuzzy logic (FL) algorithms, 281 applications, 215 based on Kalman filters and fusion filters, 297 based on sensor data fusion, 303–308 Bayesian network and, 310–312, 316–321 controller, 217 in decision fusion, 308 and fuzzy integrals, 289–291 and Kalman filter, 216 operators, 218, 226–227, 247 system, 217, 218 Fuzzy logic–based decision fusion systems, 313–316 Fuzzy logic–based decision software (FLDS) for air lane, 334, 335 performance of, 328 realization, 330–331, 334 Fuzzy logic–based process (FLP), 298–299, 301 Fuzzy logic–based process variable (FLPV) vector, 298 Fuzzy logic possibility method, 519 Fuzzy measure, 290–291 Fuzzy membership function (FMF), 218, 220–225 Fuzzy rules for aircraft, 330, 333 Fuzzy sets Cartesian product (CP) of, 232 membership functions of, 218–220, 329, 332–333 operations, 225–227 Fuzzy variable, 219, 288, 322–323 G Gain fusion algorithm, 126–127 Gating in MSMT, 93, 100 use of, 64 validation/confirmation region, 65 Gaussian distribution, 421 Gaussian lease square (GLS) method, 512 Gaussian noise, 147, 371, 375 Gaussian-shaped function, 220–222 Gauss Newton method, see Modified Newton–Raphson method Generalized modus ponens (GMP), 216, 325, 326 comparison of, 282–284 criteria, 265, 268, 278–281 Generalized modus tollens (GMT), 126, 265, 325, 327 comparison of, 285–287 criteria, 266, 268, 278–281 Genetic algorithms (GAs), 508–509 GKF, see Global Kalman filter Global fused estimate, 92 Global Kalman filter (GKF), 460, 461, 463, 465 Global positioning systems (GPS), 47, 73, 184, 193 Goguen’s rule of fuzzy implication (GRFI), 325 GPS, see Global positioning systems Gram–Schmidt orthogonalization process, 80 Graphic user interface (GUI) tools, 278–281 Ground-penetrating radars (GPRs), 50 H Height defuzzification, 253 H-Infinity a posteriori filter-based fusion algorithm, 130–131 H-Infinity filters, sensor data fusion using, 127–130 H-Infinity global fusion algorithm, 131–132528 Index Human-computer interface (HCI), 15, 17 Hybrid fusion, 22, 25 I Identity fusion, 16 IF, see Information fusion Image decomposition, 2D, 395–396 Image fusion algorithms, performance evaluation of, 385–387, 390–394 approaches for, 357 levels of, 358 PCA based, 382–383 by spatial frequency, 384–385 wavelet transform, 398 Image noise, 370–372 Image-noise index (INI), 44–45 Image registration accuracy, 369 algorithms, 415 applications, 362 area-based matching, 363–365 feature-based methods, 365–367 methods of, 363 process, 361 resampling, 369 transformation, 369 transform model, 368–369 Image restoration, 2D, 397 Imaging sensor, track fusion, 378 IMMKF, see Interacting multiple model Kalman filter IMMPDAF, see Interacting multiple model probability data association filters Independent likelihood pool (ILP), 61 Independent opinion pool, 61 Inertial measurement units (IMUs), 193 Inference methods (IM), 32, 33 Information filter (IF), 87–91 Information fusion (IF), 4, 516–519 Information-pooling methods, 60–61 Information process cycle, 294 Infrared (IR) sensors, 50, 57 Infrared search-and-track (IRST) sensor azimuth and elevation data of, 442, 443 simulated measurement, 436, 444 state-vector fusion for, 431–435 Innovation sequence, 158–159 Integrated sensor model, 318 Intelligence cycle–based (IC) model, 18–19 Intelligent monitoring, 485, 489–490 Intensity spikes, 370 Interacting multiple model Kalman filter (IMMKF) algorithm, 106–109 implementation in MATLAB, 111–116 Interacting multiple model probability data association filters (IMMPDAF), 171 algorithm automatic track formation, 171 gating and data association, 172–174 interaction and mixing, 174 mode-conditioned filtering, 174–175 probability computations, 175–176 state estimate and covariance prediction, 176–177 for multiple sensor data fusion, 180–183 performance evaluation of, 179–183 simulation validation, 177–179 Interceptor-evader engagement simulation, 146–147 Internal state sensors (ISSs), 46 Interpolation, 418–419 Inverse 2D wavelet transform (IWT) process, 397 IRST sensor, see Infrared search-andtrack sensor Iterative-end-point-fit (IEPF) algorithm, 400Index 529 J JDL fusion model, see Joint Directors of Laboratories fusion model Joint acoustic-image target tracking, 459–460 Joint Directors of Laboratories (JDL) fusion model, 13–17 Joint Gaussian random variable, 121 Joint probabilistic data association filter, 116–120 K Kalman filter (KF) augmented state, 122 as Bayesian fusion algorithm, 33 covariance of, 109 decentralized, 460–463, 464 error state-space, 75–76 fusion algorithm, 124 and fusion filters, 297 and fuzzy logic, 216 as MATLAB S-function, 197 soft decisions in, 296–297 state estimate, 64, 109 technique, 29–32 vs. fuzzy Kalman filter, 299–303 Kalman filter fuzzification (KFF), 304–306 Kalman gain, 296 KF, see Kalman filter Kinematic fusion, 7, 16, 29, 92 Kinematic model, 328 L Laplacian pyramids, 359 Largest of maximum method, 253 Laser data fusion, 400, 401 Laser ranging systems, 49 Least-squares method, 364, 510–511 Linear measurement models, 461 Linear opinion pool, 60–61, 500, 518 Linear spatial filters, 372 Line-of-sight (LOS) rates, 147 LKF, see Local Kalman filter Localization errors, 369 Local Kalman filter (LKF), 460, 461, 465 Logarithmic opinion pools, 518 M MAE, see Mean absolute error Maneuver data, 302–303 Maneuver mode probabilities, 114 Maneuvering target tracking, 106, 171, 179 comparison of KF and FKF for, 301–303 models for, 440–442 Markov chain transition matrix, 111, 112, 443 MASAs, see Multiple acoustic sensor arrays Matching errors, 369 Mathematical expectation, defined, 497 MATLAB, 216, 325, 328, 334 FLDS in, 330 to satisfy GMP and GMT criteria, 268, 278–281 Maximum decomposition method for defuzzification, 252 Maximum likelihood estimation (MLE), 511–516 Maximum product composition, 250 Max-min composition, 249 Max-min rule of fuzzy implication (MRFI), 325, 328 Mean absolute error (MAE), 373, 386, 423, 437, 448 Mean filter, see Spatial filter Mean square error (MSE), 373, 498 Measurement errors, 149, 511 Measurement fusion, 81–82, 437–439 Measurement level fusion, 69, 71, 72 Measurement model, 145–146, 442 Measurement noise covariance, estimation of, 76–77 Measurement-noise variances, 443 Measurement-to-track association, 100–101 Median, 498530 Index Median filter, state error reduction, 429 MEKF algorithm, see Modified extended Kalman filter (MEKF) algorithm Membership functions for FLP, 298 of fuzzy sets, 218–220, 329, 332–333 MIAS, see Mobile intelligent autonomous systems Microelectrical mechanical sensors (MEMS)–based IMU, 193 Microwave radars, 49, 51 Mild maneuver (MM) data, 302–303 Millimeter wave radar (MMWR) sensor, 51–52 Miniaturized inertial platform (MIP) attitude estimation using, 193, 194 hardware system, 195 MATLAB/Simulink implementation, 196–200 microcontroller implementation, 200–202 sensor modeling, 195–196 Min-operation rule of fuzzy implication (MORFI), 235, 257, 270–274, 325 MIP, see Miniaturized inertial platform Missile seeker estimator, 143 Mobile intelligent autonomous systems (MIAS), data fusion in, 479, 481–484 Mobile robots, 481, 482 Mode probabilities, 109, 148, 150, 445 Mode switching process, 108 Modified extended Kalman filter (MEKF) algorithm error model, 186–189 evaluation of, 183–184 Modified Newton–Raphson method, 513 Modular robotics, 7–8 Modus ponens rule, 266–267 Modus tollens rule, 267–268 Monte Carlo simulation, 142, 437, 498–499 Movie parameters, 420 MSMT sensors, see Multisensor, multitarget sensors MSST tracking, see Multisensor single-target tracking Multibiometric systems, levels of, 406–407 Multilayer perceptrons (MLPNs), 506 Multiple acoustic sensor arrays (MASAs), 448–451 Multiple network fusion, 289–291 Multiple-server monitoring, 485 Multiresolution method (MRM), 359 Multisensor, multitarget (MSMT) sensors, 93–94, 173 Multisensor imaging fusion (MSIF), 380 Multisensor single-target (MSST) tracking, 166 multisensor data fusion (MSDF) architecture, 166–168 fusion scheme, 166–168 range limit of sensors, 168 software structure, 169 validation of, 170–171 Multitarget (MTT) system, 67 Multitarget tracking, 97 Multivariate polynomial (MP) technique, 402, 403 MUSIC algorithm, 451–453 Mutual information (MI) method, 365, 386 N NASA Mars Pathfinder Mission’s Sojourner Rover, 8 Nearest neighborhood Kalman filter (NNKF), 68, 94–95 features of, 99 numerical simulation, 103–106 Network fusion, multiple, 289–291 Network-monitoring sensor systems, 489 NNKF, see Nearest neighborhood Kalman filterIndex 531 Noise image, 370–372 parameters, 420 variances, 111 Noise attenuation factors (NAF), 148, 150 Non-contact state sensors (NCSSs), 46 Nondestructive testing (NDT), 8, 9 Nonlinear spatial filters, 372 Nonstandard distributed fusion, 27 Nonvision-based ENSS, 47 Normalized cross correlation (NCC), 364, 417–418, 428–429 Normalized estimation error square, 159 Normalized innovation square, 159 Normalized random noise, 132 O Object refinement (OR), 15–16, 309 Offline monitoring, 486 Omnibus (OB) model, 20–21 Online monitoring, 486 Optimal generalized weighted least squares fusion rule, 29 Optimal-weighted least squares fusion rule, 28 Order filters (OF), 372 Out-of-sequence measurements (OOSMs) for tracking, 120–123 Output error method (OEM), 511–516 P Pair agent Bayesian network (PAN), 319 Parameter estimation, 509–510 Parametric sensors, see Active sensors Particle filters, 116, 119 Passive optical sensor, mathematical model, 430–431 Passive sensors, 46 PCA, see Principal component analysis PCBSAP, 275, 278–281, 335 PC MATLAB for data generation, 132, 151–153, 420 IMMKF implementation in, 111–112 PDAF, see Probabilistic data association filter Peak signal-to-noise ratio (PSNR), 374, 386, 391, 392 Percentage fit errors (PFEs), 133, 373, 378–380, 385, 423 calculation, 92 metrics, 105, 437, 448 in position, 157 residual, 126 for track positions, 105 of trajectory, 71 Percentage state errors, 133–135 Perceptual fusion, 32–33 PFEs, see Percentage fit errors Pilot mental model (PMM), 318 Pixel coordinates, 430, 431 Pixel-level fusion, 358, 361, 380 Point mass models, 328 Poisson clutter model, 97 PORFI, see Product-operation rule of fuzzy implication Principal component analysis (PCA), 519–520 based image fusion, 382–383 of blurred images, 390 coefficients, 382 error images by, 388, 389, 392, 393 fused images by, 388, 389, 392, 393 PSNR of, 391 RMSE of, 390 method, 380–381 Probabilistic data association filter (PDAF), 68, 96–99 computational steps, 98 numerical simulation, 103–106 Probability, defined, 499 Process noise coefficient matrix, 79 Process noise covariance, estimation of, 76–77 Process noise gain matrix, 102 Process noise variance, 443532 Index Process refinement (PR), 16, 312–313 Product-operation rule of fuzzy implication (PORFI), 325, 333, 334 Propositional calculus standard union algebraic product (PCSUAP), 337 Proprioceptive sensors, 49, 481 Proximity-monitoring systems, 488–490 ∏-shaped function, 224 PSNR, see Peak signal-to-noise ratio Pyramids, 359, 367 R Radar, 49, 51 data, 74 state-vector fusion for, 431–435 measurements, 436, 444 track fusion, 378–379 Radar cross section (RCS) fluctuation, 147 Radial basis function (RBF), 368 Range safety officer (RSO), 160, 167 Real flight test data, 72 Recurrent neural networks (RNNs), 508 Reduced multivariate polynomial model (RMPM), 403, 404 Relational matrices, 249, 264 Relaxation technique, 367 Reliability coefficients, 517, 519 defined, 520 in information fusion, 516–519 Remote sensing agency (RSA) data using measurement level fusion, 72–73 RMSE, see Root mean square error RMSPE, see Root mean square percentage error RMSVE, see Root mean square vector error Robotic system, 479 Root mean square error (RMSE), 157–158, 373, 385, 390, 391 Root mean square error in acceleration (RMSAE), 437 Root mean square percentage error (RMSPE), 103, 378, 379, 380 for data loss in track 1, 105 performance metrics, 423, 437 Root mean square vector error (RMSVE), 378, 379, 380, 437 Root-sum-square (RSS) errors, 158 in acceleration, 438, 445, 446 in position, 85, 445, 446 variances, 115, 445, 447 in velocity, 445, 446 S Salt-and-pepper (SP) noise, 370, 375 Segmentation, 370, 374–376 Sensor attributes, 99 characteristics, 52–53 data fusion, 303–308 using H-Infinity filters, 127–130 wavelet transform for, 398–400 features, 48–52 fusion networks, 11–13, 45 management, 53–55 measurement system advantages, 5 problems in, 4–5 modeling, 55–57 nodes, 86 technology, 46–48 types, 45–46 usages, 48–50 Sensor-targets-environment data fusion (STEDF), 54 SF, see Spatial frequency Short time Fourier transform (STFT), 502, 503 Sigma points, 135, 136, 140–141 Sigmoid neuron, 506 Sigmoid-shaped function, 220, 221 Signal-to-noise ratio (SNR), 374, 386 Simulink, 216, 330, 334Index 533 Singer–Kanyuck association metrics, 105 Singular value decomposition (SVD), 452 Situation assessment (SA), 315 in air combat, 316, 317–318 fuzzy logic Bayesian network for, 316–321 methods for, 310 process, 58–60 stages of, 308 using fuzzy logic, 311–312 Situation refinement, 16 Smallest of maximum method, 253 S-norm defined, 239 fuzzy inference process using, 240–246 SNR, see Signal-to-noise ratio Soft decisions in Kalman filtering, 296–297 Software, MSDF, 169 Spatial-domain filtering (SDF), 371 Spatial filter, 371–372, 428, 429 Spatial frequency (SF), 383–384 error images by, 388, 389, 392, 393 fused images by, 388, 389, 391, 392, 393 image fusion process, 384–385 Split-and-merge algorithm (SAMA), 401 Square root information filter data fusion (SRIFDF) algorithm advantage of, 87 nodes of, 92 S-shaped function, 222–224 Standard deviation (STD), 391 Standard distributed fusion, 25 Standard fuzzy complement (SFC), 245–246 State error, 158 State-estimate time propagation, 80 State estimation, 109 error, 148, 152–155, 424 using Kalman filter, 151 State model, 144 State propagation, 31–32, 141 State transition matrix, 79 State-vector fusion (SVF), 7, 69–70, 82, 297 for IRST and radar data, 431–435 simulated data for, 72 Statistical and numerical (SN) approach for pixel-level fusion, 358 Stereo face recognition system, 404–405 Sum of absolute differences (SAD), 415–417, 428–429 Sup-star composition, 248–250 Surveillance-system model (SSM), 54, 56–57 Switching probabilities, 111 Symbol-level fusion, see Decision fusion System identification, 509–510 T Target motion models, 69, 79, 110–111 numerical simulation in position of, 91–92 Target tracking, 63–68, 457–459; see also Maneuvering target tracking 3D, 463–464 joint acoustic-image, 459–460 with MASAs, 448–449 motion model for, 432 performance evaluation for, 421–422 using image data, 370 Target trajectory, simulation of, 71–72, 442 Threat assessment (TA), 316 Threat refinement (TR), 16, 312–313 3-degrees-of-freedom (DOF) kinematic model, see Constant acceleration model (CAM) 3D image capture, techniques for, 403 3D model, 400–402 3D target tracking, 463–464 Time delay errors, 77 Time stamp, 77534 Index Time synchronization, 77 T-norm, 228 composition, 248–250 fuzzy implication process using, 232–238 Tool failure detection system, 8 Track extrapolation of, 101–102 initiation, 101 loss simulation, 105 management process, 102–103 Tracking filters, performance of, 83–84 Tracking sensors classification of, 82 flight test range, 161, 162 Track-to-measurement correlation matrix (TMCR), 100 Track-to-track correlation, 69 Transform domain (TD) algorithms, 358 Trapezoid-shaped function, 222 Triangle-shaped function, 222 Triangular conorm, 239 Triangular norm, see T-norm Triangulation, 460, 463 2-degrees-of-freedom (DOF) kinematic model, see Constant velocity (CV) model Type-2 fuzzy logic, 504 U UD filter factorization, 75 for sensor characterization, 74 for trajectory estimation, 80–81 Unified fusion models (UM), 23–27 Unified optimal fusion rules, 27–29 Universal quality index, 386–387 V Value of information (VOI), 41, 44 Velocity estimates, 445 Vision-based ENSS, 48 Visual data fusion, 400, 401 W Waterfall fusion process (WFFP) model, 17–18 Wavelet package (WP) method, 359 Wavelets, 359, 367, 395 Wavelet transforms (WT), 394–397, 502–503 analysis, 395 image fusion, 398 package fusion method, 359, 360 for sensor data fusion, 398–400 Weighted average methods, 518 Weighted least squares (WLS) fusion rule, 28, 29 White noise processes, 130 WT, see Wavelet transforms Y Y algorithm, 121–122 Z Z-shaped function, 224–225 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Multi-Sensor Data Fusion with MATLAB رابط مباشر لتنزيل كتاب Multi-Sensor Data Fusion with MATLAB
|
|