Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Digital Image Processing and Analysis Applications with MATLAB and CVIPtools الثلاثاء 19 أكتوبر 2021, 1:07 am | |
|
أخواني في الله أحضرت لكم كتاب Digital Image Processing and Analysis Applications with MATLAB and CVIPtools Third Edition Scott E Umbaugh
و المحتوى كما يلي :
Contents Preface Acknowledgments Author Section I Introduction to Digital Image Processing and Analysis 1 Digital Image Processing and Analysis 1.1 Overview 1.2 Image Analysis and Computer Vision 1.3 Image Processing and Human Vision. 1.4 Key Points Exercises Further Reading References 2 Digital Image Processing Systems , .... 2.1 Digital Imaging Systems Overview 2.2 Image Formation and Sensing 2.2.1 Visible Light Imaging 2.2.2 Imaging outside the Visible Range of the EM Spectrum 2.2.3 Acoustic Imaging 2.2.4 Electron Imaging 2.2.5 Laser Imaging 2.2.6 Computer-Generated Images 2.3 The CVIPtools Software Environment 2.3.1 CVIPtools GUI Main Window 2.3.2 Image Viewer 2.3.3 Analysis Window 2.3.4 Enhancement Window 2.3.5 Restoration Window 2.3.6 Compression Window 2.3.7 Utilities Window..,.. 2.3.8 Help Window 2.3.9 Development Tools 2.4 Image Representation 2.4.1 Binary Images 2.4.2 Grayscale Images 2.4.3 Color Images..... 2.4.4 Multispectral Images 2.4.5 Digital Image File Formats 2.5 Key Points Exercises Supplementary Exercises Further Reading...,..,.,... References viiviii Contents Section II Digital Image Analysis and Computer Vision 3 Introduction to Digital Image Analysis.. Introduction 3.1.1 Overview 3.1.2 System Model 3.2 Preprocessing 3.2.1 Region of Interest (ROI) Image Geometry 3.2.2 Arithmetic and Logic Operations 3.2.3 Spatial Filters 3.2.4 Image Quantization 3.3 Binary Image Analysis .... .. ... 3.3.1 Basic Image Thresholding 3.3.2 Connectivity and Labeling..,,,,,,,,.,,,, 3.3.3 Basic Binary Object Features 3.3.4 Binary Object Classification 3.4 Key Points. , Exercises Supplementary Exercises Further Reading References 4 Segmentation and Edge/Line Detection Introduction and Overview. 4.2 Edge/Line Detection 4.2.1 Gradient Operators 4.2.2 Compass Masks ., 4.2.3 Advanced Edge Detectors .. 4.2.4 Edges in Color Images 4.2.5 Edge Detector Performance 4.2.6 Hough Transform 4.2.6.1 4.2.7 Corner Detection.,... 4.3 Segmentation 4.3.1 Region Growing and Shrinking 4.3.2 Clustering Techniques 4.3.3 Boundary Detection 4.3.4 Combined Segmentation Approaches 4.3.5 Morphological Filtering 4.4 Key Points. Exercises Supplementary Exercises Further Reading References CVIPtools Parameters for the Hough Transform 161 5 Discrete Transforms 5.1 Introduction and Overview 5.2 Fourier Transform ...... 5.2.1 The One-Dimensional Discrete Fourier Transform . 5.2.2 The Two-Dimensional Discrete Fourier Transform . 5.2.3 Fourier Transform Properties 5.2.3.1 Linearity 5.2.3.2 Convolution 5.2.3.3 Translation .240Contents ix 5.2.3.4 Modulation. 5.2.3.5 Rotation d.2.3.6 Periodicity . 5.2.3.7 Sampling and Aliasing. 5.2.4 Displaying the Discrete Fourier Spectrum 5.3 Discrete Cosine Transform 5.4 Discrete Walsh-Hadamard Transform..... 5.5 Discrete Haar Transform 5.6 Principal Components Transform 5.7 Filtering 5.7.1 Low-Pass Filters., ... 5.7.2 High-Pass Filters 5.7.3 Band-pass and Band-reject Filters 5.8 Discrete Wavelet Transform 5.9 Key Points Exercises Supplementary Exercises Further Reading References 6 Feature Analysis and Pattern Classification Introduction and Overview .... 6.2 Feature Extraction ,,.,,,.,....,....,,,,.,,,,.,,,,,,,,,,,,,. 6.2.1 Shape Features .... 6.2.2 Histogram Features 6.2.3 Color Features .... 6.2.4 Spectral Features.,....,,,,.,,,,.,,,.,,,,, 6.2.5 Texture Features .... 6.2.6 Region-Based Features: SIFT/SURF/GIST.. 6.2.7 Feature Extraction with CVIPtools 6.3 Feature Analysis 6.3.1 Feature Vectors and Feature Spaces,,.,.,.. .... 6.3.2 Distance and Similarity Measures 6.3.3 Data Preprocessing ....»., 6.4 Pattern Classification 6.4.1 Algorithm Development: Training and Testing Methods 6.4.2 Classification Algorithms and Methods 6.4.3 Cost/Risk Functions and Success Measures 6.4.4 Pattern Classification with CVIPtools 6.5 Key Points..,.,,.,,,,., Exercises — Supplementary Exercises Further Reading References Section III Digital Image Processing and Human Vision 7 Digital Image Processing and Visual Perception 7.1 Introduction and Overview 7.2 Human Visual Perception 7.2.1 The Human Visual System 7.2.2 Spatial Frequency Resolution 7.2.3 Brightness Adaptation ,370x Contents 7.2.4 Temporal Resolution 7.2.5 Perception and Illusion 7.3 Image Fidelity Criteria 7.3.1 Objective Fidelity Measures.. 7.3.2 Subjective Fidelity Measures. 7.4 Key Points,., Exercises Supplementary Exercises Further Reading References 8 Image Enhancement Introduction and Overview 8.2 Gray-Scale Modification 8.2.1 Mapping Equations 8.2.2 Histogram Modification 8.2.3 Adaptive Contrast Enhancement 8.2.4 Color 8.3 Image Sharpening 8.3.1 High-Pass Filtering 8.3.2 High-Frequency Emphasis 8.3.3 Directional Difference Filters 8.3.4 Homomorphic Filtering 8.3.5 Unsharp Masking 8.3.6 Edge Detector-Based Sharpening Algorithms 8.4 Image Smoothing 8.4.1 Frequency Domain Low-Pass Filtering............ 8.4.2 Convolution Mask Low-Pass Filtering....,,... 8.4.3 Nonlinear Filtering 8.5 Key Points..,.,,.,,,,., Exercises — Supplementary Exercises Further Reading..,,,,, References 9 Image Restoration and Reconstruction 9.1 Introduction and Overview 9.1.1 System Model 9.2 Noise Models 9.2.1 Noise Histograms 9.2.2 Periodic Noise.,....,...., 9.2.3 Estimation of Noise 9.3 Noise Removal Using Spatial Filters,,,,,,,,,, 9.3.1 Order Filters 9.3.2 Mean Filters 9.3.3 Adaptive Filters 9.4 The Degradation Function ,,,.,, 9.4.1 The Spatial Domain: The Point Spread Function 9.4.2 The Frequency Domain: The Modulation/Optical Transfer Function 9.4.3 Estimation of the Degradation Function 9.5 Frequency Domain Filters 9.5.1 Inverse Filter 9.5.2 Wiener Filter 9.5.3 Constrained Least Squares Filter 9.5.4 Geometric Mean Filters. . 521Contents xi 9.5.5 Adaptive Filtering.. 9.5.6 Band-pass, Band-reject, and Notch Filters 9.5.7 Practical Considerations 9.6 Geometric Transforms 9.6.1 Spatial Transforms. HWH«W.WWHWWI.W 9.6.2 Gray-Level Interpolation 9.6.3 The Geometric Restoration Procedure — 9.6.4 Geometric Restoration with CVIPtools 9.7 Image Reconstruction —...... 9.7.1 Reconstruction Using Backprojections 9.7.2 The Radon Transform 9.7.3 The Fourier-Slice Theorem and Direct Fourier Reconstruction 9.8 Key Points .......... Exercises , , Supplementary Exercises Further Reading , , References 10 Image Compression 10.1 Introduction and Overview 10.1.1 Compression System Model 10.2 Lossless Compression Methods 10.2.1 Huffman Coding 10.2.2 Run-Length Coding 10.2.3 Lempel-Ziv-Welch Coding............ 10.2.4 Arithmetic Coding 10.3 Lossy Compression Methods 10.3.1 Gray-Level Run-Length Coding 10.3.2 Block Truncation Coding 10.3.3 Vector Quantization 10.3.4 Differential Predictive Coding.,,,,,, 10.3.5 Model-based and Fractal Compression 10.3.6 Transform Coding 10.3.7 Hybrid and Wavelet Methods 10.4 Key Points Exercises Supplementary Exercises Further Reading References Section IV Application Development with the Matlab CVIP Toolbox and CVIPtools 11 Matlab CVIP Toolbox and CVIPlab 11.1 The Matlab CVIP Toolbox 11.1.1 CVIP Toolbox Function Categories .. 11.1.1.1 Arithmetic and Logic 11.1.1.2 Band 11.1.1.3 Color ..,, 11.1.1.4 Conversion of Image Files 11.1.1.5 Display 11.1.1.6 Edge/Line Detection 11.1.1.7 Geometry...,,, .632xii Contents 11.1.1.8 Histogram 11.1.1.9 Mapping 11.1.1.10 Morphological „ 11.1.1.11 Noise 11.1.1.12 Objective Fidelity Metrics 11.1.1.13 Pattern Classification 11.1.1.14 Segmentation 11.1.1.15 Spatial Filters 11.1.1.16 Transform 11.1.1.17 Transform Filters............... 11.1.2 Help Files 11.1.3 M-Files 11.2 CVIPlab for Matlab 11.2.1 Vectorization 11.2.2 Using CVIPlab for Matlab 11.2.3 Adding a Function .......... 11.2.4 A Sample Batch Processing M-File... 11.2.5 VIPM File Format 11.3 CVIPlab for C Programming 11.3.1 Toolkit, Toolbox Libraries, and Memory Management in C/C++ 11.3.2 Compiling and Linking CVIPlab with Visual Studio 11.3.3 The Mechanics of Adding a Function with Visual Studio ............. 11.3.4 Using CVIPlab in the Programming Exercises 11.3.5 Image Data and File Structures 11.4 CVIP Projects 11.4.1 Digital Image Analysis and Computer Vision Projects 11.4.1.1 Example Project Topics 11.4.2 Digital Image Processing and Human Vision Projects 11.4.2.1 Example Project Topics Further Reading References 12 Application Development 12.1 Introduction and Overview 12.2 CVIP Algorithm Test and Analysis Tool 12.2.1 Overview and Capabilities..,,,.,,,,,,.,.,,.,.,..,, 12.2.2 How to Use CVIP-ATAT,. 12.2.2.1 Running CVIP-ATAT..,,., .... 12.2.2.2 Creating a New Project.... 12.2.2.3 Inserting Images 12.2.2.4 Inputting an Algorithm 12.2.2.5 Performing an Algorithm Test Run 12.2.2.6 Comparing Images.. 12.2.3 Application Development Example with Fundus Images 12.2.3.1 Introduction and Overview 12.2.3.2 The New Algorithm....,,., 12.2.3.3 Conclusion.. 12.3 CVIP Feature Extraction and Pattern Classification Tool 12.3. 1 Overview and Capabilities 12.3.2 How to Use CVIP-FEPC 12.3.2.1 Running CVIP-FEPC 12.3.2.2 Creating a New Project..,.,,.,... 12.3.2.3 Entering Classes in CVIP-FEPC 12.3.2.4 Adding Images and Associated Classes 12.3.2.5 Applying Feature Extraction and Pattern Classification .691Contents xiii 12.3.2.6 Running a Single Test with Training and Test Sets 12.3.2.7 The Result File 12.3.2.8 Running a Leave-One-Out Test in Combinatoric Mode 12.3.3 Application Development Example with Veterinary Thermographic Images 12.3.3.1 Introduction and Overview 12.3.3.2 Setting up Experiments 12.3.3.3 Running the Experiments and Analyzing Results 12.3.3.4 Conclusion 12.4 Automatic Mask Creation for Feline Hyperthyroidism from Veterinary Thermograms using the Matlab CVIP Toolbox 12.4.1 Introduction 12.4.2 Matlab CVIP Toolbox 12.4.3 Automatic Creation of Masks for Veterinary Thermographic Images 12.4.3.1 Background 12.4.3.2 Materials Required 12.4.3.3 Methods 12.4.3.4 Algorithm Development and Testing. 705 12.4.4 Results 706 12.4.5 Summary and Conclusions Acknowledgments References 12.5 Thermographic Image Analysis for Detection of Anterior Cruciate Ligament Rupture in Canines 12.5.1 Introduction and Overview 12.5.2 Materials and Methods 12.5.2.1 Image Database 12.5.2.2 Image Preprocessing 12.5.2.3 Feature Selection and Extraction 12.5.2.4 Data Normalization and Pattern Classification 12.5.3 Results and Discussion 12.5.4 Conclusion Acknowledgments References 12.6 Thermographic Image Analysis for the Detection of Canine Bone Cancer 12.6.1 Introduction 12.6.2 Material and Methods 12.6.2.1 Experimental Animals 12.6.2.2 Digital Infrared Thermal Imaging System 12.6.2.3 Thermographic Images 12.6.2.4 Software Tools Used 12.6.2.5 Mask Creation 12.6.2.6 Color Normalization 12.6.2.7 Feature Selection and Extraction 12.6.2.8 Data Normalization and Pattern Classification 12.6.2.9 Experimental Methods 12.6.3 Results and Discussion 12.6.4 Summary and Conclusion Acknowledgments References 12.7 A New Algorithm for Blood Vessel Segmentation in Retinal Images Developed with CVIP-ATAT 12.7.1 Introduction 12.7.2 Materials 12.7.3 Methods 12.7.4 Results 725xiv Contents 12.7.5 Future Work M ,HW». HWHWH«H~ 12.7.6 Summary and Conclusion. Acknowledgments References 12.8 Automatic Mask Creation and Feature Analysis for Detection of IVDD in Canines 12.8.1 Introduction 12.8.2 Background 12.8.3 Materials and Methods 12.8.3.1 Thermographic Images 12.8.3.2 Masks 12.8.3.3 Programs and Methods ............. 12.8.3.4 Experimental Process 12.8.3.5 Input Images ............. 12.8.3.6 Extract Band 12.8.3.7 Binary Threshold 12.8.3.8 Morphological Filtering. .730 .730 12.8.4 Results .732 12.8.5 Conclusion Acknowledgments ............ References 12.9 Skin Lesion Classification Using Relative Color Features ............ 12.9.1 Introduction and Project Overview 12.9.2 Materials and Methods ............ 12.9.2.1 Image Database 12.9.2.2 Creation of Relative Color Images ........ 12.9.2.3 Segmentation and Morphological Filtering 12.9.2.4 Feature Extraction ............ 12.9.2.5 The Lesion and Object Feature Spaces 12.9.2.6 Statistical Models — ........ 12.9.3 Experiments and Data Analysis 12.9.3.1 Lesion Feature Space...... ........ 12.9.3.2 Object Feature Space............... 12.9.4 Conclusions ............ Acknowledgments... References ............ 12.10 Automatic Segmentation of Blood Vessels in Retinal Images 12.10.1 Introduction and Overview ............ 12.10.2 Materials and Methods 12.10.3 Results ............ 12.10.4 Postprocessing with Hough Transform and Edge Linking. 12.10.5 Conclusion Acknowledgments... References ............ 12.11 Classification of Land Types from Satellite Images Using Quadratic Discriminant Analysis and Multilayer Perceptrons ............ 12.11.1 Introduction and Overview 12.11.2 Data Reduction and Feature Extraction .................... 12.11.3 Object Classification..... 12.11.4 Results ............ 12.11.5 Conclusion Acknowledgments ............ References 12.12 Watershed-based Approach to Skin Lesion Border Segmentation. ............ 12.12.1 Introduction . 760Contents xv 12.12.2 Materials and Methods 12.12.2.1 Preprocessing 12.12.2.2 The Watershed Algorithm 12.12.2.3 Object Histogram Merging , , 12.12.2.4 Noise Removal 12.12.2.5 B-Spline Border Smoothing 12.12.2.6 Error Estimating.,,,,,,,,,,,,,, 12.12.3 Experiments, Results and Conclusions Acknowledgments References 12.13 Faint Line Defect Detection in Microdisplay (CCD) Elements 12.13.1 Introduction and Project Overview „ 12.13.2 Design Methodology 12.13.3 The Line-Detection Algorithm „ „ 12.13.3.1 Preprocessing,,,.,,,,,,,,,,,,,, 12.13.3.2 Edge Detection 12.13.3.3 Analysis of the Hough Space 12.13.4 Results and Discussion 12.13.5 Summary and Conclusion.. Acknowledgments... References 12.14 Melanoma and Seborrheic Keratosis Differentiation Using Texture Features 12.14.1 Introduction and Overview 12.14.2 Materials and Methods 12.14.3 Texture Analysis Experiments. IIWHWWMHW«wi.4 12.14.4 Results and Discussion 12.14.5 Conclusion Acknowledgments.....,,.,.,, References ................. 12.15 Compression of Color Skin Tumor Images with Vector Quantization 12.15.1 Introduction and Project Overview 12.15.2 Materials and Methods 12.15.2.1 Compression Schemes 12.15.2.2 Subjective Evaluation of the Images 12.15.2.3 Objective Measurement of the Images ................. 12.15.3 Compression Schemes 12.15.3.1 Preprocessing and Transforms. 12.15.3.2 Vector Quantization..,,,,...,,.,.,, 12.15.3.3 Postprocessing 12.15.4 Results and Analysis 12.15.4.1 Results and Analyses for the Schemes with Compression Ratio 4:1.. 12.15.4.2 Results and Analyses for the Schemes with Compression Ratio 8:1.. 12.15.4.3 Results and Analyses for the Schemes with Compression Ratio 14:1 12.15.4.4 Results and Analyses for the Schemes with Compression Ratio 20:1 12.15.4.5 Comprehensive Analysis of the Four Compression Ratios.................. 12.15.5 Conclusions and Future Work Acknowledgments — ............ ... References 12.16 Embedded Application: Image Sensor Power Requirements for Vole Detection Application with CVIPtools and OpenCV. 12.16.1 Introduction 12.16.2 Common Vole Detection 12.16.3 Vole Detection Algorithm... 12.16.4 The Camera Sensor..,,.., .804xvi Contents 12.16.5 Conclusions Acknowledgments.. References 12.17 Gabor Filters for Pathology Classification in Veterinary Thermograms .... 12.17.1 Overview 12.17.2 Background 12.17.2.1 Gabor F i l t e r , 12.17.2.2 Feature Extraction ... 12.17.2.3 Classification 12.17.3 Results and Discussion 12.17.3.1 Bone Cancer: Elbow/Knee—Anterior 12.17.3.2 Bone Cancer: Elbow/Knee—Lateral 12.17.3.3 Bone Cancer: Wrist-Lateral 12.17.3.4 Feline Hyperthyroid 12.17.3.5 ACL 12.17.4 Future Work Acknowledgments References 12.18 Thermography-Based Prescreening Software Tool for Veterinary Clinics 12.18.1 Introduction 12.18.2 Clinical Application Development 12.18.2.1 The Image Database.,,..,., 12.18.2.2 Algorithm Database,,,,,, 12.18.2.3 Process Flow ,, 12.18.2.4 Graphical User Interface (GUI) 12.18.3 Results and Discussion 12.18.4 Summary and Conclusions Acknowledgments.,...,....,, References Appendices Appendix A: Installing and Updating CVIPtools Appendix B: Installing and Updating the Matlab CVIP Toolbox Appendix C: CVIPtools Software Organization Appendix D: CVIPtools C Functions Appendix E: Common Object Module (COM) Functions - cviptools.dll Appendix F: Matlab CVIP Toolbox Functions Appendix G: CVIP Resources Index .861 861 Index Note: The letters ‘t’ and ‘f’ followed by numbers represents ‘table’ and ‘figures’ respectively� A Aberrations, 22 ACE filter, 418 Acoustic imaging, 26 Acoustical (sound) energy, 17 Activation function, 331 Adaptive contrast enhancement (ACE) filters, 415, 419f, 634 Adaptive contrast filter 2 (ACE2), 420f Adaptive filter, 483, 497–508; see also Kuwahara filter Adaptive filtering, 523 Adaptive median filter and standard median filter, 504f Adding a function with visual studio, mechanics, 659–662 Adding a new function to CVIPlab, 660f Adding an image capture program to CVIPlab, 659f Advanced edge detectors, 128–139 with Gaussian noise, 157f with salt and pepper noise, 156f Affine transformations, 605 Algorithm development, 327 Alpha-trimmed filter, 489f–490f Amplitude-modulated (AM) phase shift, 30 Analysis window, 35 AND method, 203f Anisotropic diffusion (AD) filter, 449–450, 450f–451f Anti-aliasing filter, 93f Application libraries, 655 Apply button, 35 Arithmetic coding, 582–583, 582f Arithmetic mean filter, 489, 491f Arithmetic operations, 76–80 addition, 76 division, 76 multiplication, 76 subtraction, 76 Artificial neural networks (ANNs), 330 Aspect ratio, 15, 298 for high-definition television, 15f for standard-definition television, 15f Atmospheric turbulence degradation model, 513f Automatic gain control (AGC), 370f Automatic mask creation, 703 automatic creation of masks, 703 Matlab CVIP toolbox, 703 algorithm development and testing, 705–706 background, 703 materials required, 703–704 methods, 704–705 results, 707–709 Automatic mask creation and feature analysis, 727 background, 727–728 materials and methods, 728 binary threshold, 730 experimental process, 729 extract band, 730 input images, 729–730 masks, 728 morphological filtering, 730–732 programs and methods, 728–729 results, 732 thermographic images, 728 Automatic segmentation of blood vessels in retinal images, 744 introduction and overview, 744–745 materials and methods, 745–746 postprocessing with hough transform and edge linking, 748–751 Average value thresholding image after Sobel edge detector, 179f original image, 179f Sobel image, 179f unimodal histogram, 179f Axis of least second moment, 99f B Background subtraction, 78 Backprojection, 539f Band, 631 Band-pass (BP) filters, 267–271, 270f–271f, 523–526, 525f–526f Basic binary object features, 97–100 Basic block truncation coding (BTC), 591f–592f Basic image thresholding, 93–95 Basis images set, 228f Basis vectors and images, 226f Bilinear interpolation, 76, 531 BIN format, 55 Binary dilation, 186f Binary erosion, 187f Binary image analysis, 93–109 Binary images, 45–46 binary text, 46t edge detection, 46t image by threshold operation, 46t threshold operation, 46t Binary object classification, 101–109 Binary opening, 188f Binary threshold, 141f Bit allocation, 606 Bit plane images, 570f Bit plane run length coding, 579f862 Index Bitmap images, 55 Bits per pixel, 566 Blind spot, 362 Block truncation coding, 585–589 Block-by-block processing, 523 Blocking artifact, 523 Blocking effect, 523 Blood vessel segmentation in retinal images, 723 future work, 725 materials, 723 methods, 723–725 Blue cones, 362 Blur (PSF) masks, 511f Blur circle, 21f Blurry, noisy composite image, 106f Bogus lines, 371 Boie–Cox algorithm, 133, 137f Boundary detection, 176–182 Brightness adaptation, 370–371, 370f false contours, 371 small curve, 371 subjective brightness, 371 Brightness constancy, 375, 378f Brittlestar, 29f Building the project, 658f Butterworth filter, 262 C Camera interface specifications, 16t Camera link, 16 Cancel button, 35 Canny algorithm, 131, 137f Canny parameters, 162 Central-slice theorem, see Fourier-slice theorem Cervenka and Charvat method, 632 Cervenka and Charvatmultispectral image detector, 144f Charge-coupled device (CCD), 23 Chessboard distance, 146 Chiari malformation, 24 Chromaticity coordinates (XYZ), 631 CIE La*b* (LAB), 631 CIE Lu*v* (LUV), 631 Circle and ellipse, XOR, 104f Circular convolution, 272, 273f City block, 319 City block distance, 146 Classification algorithms and methods, 328–332 Closing operation, 185, 186f, 189f Clustering algorithm, 593 Clustering techniques, 168–176 CMOS image sensors, 23 Coding redundancy, 567 Coherent light, 29 Color, 423–431 Color contrast enhancement algorithm compared to histogram equalization, 430f, 431f flowchart, 429f Color edge detection in HSV Space, 142f in RGB Space, 143f Color features, 305–306 Color image representation, 48f Colorimages, 47–54 Color model, 47 Color perception, 53f Color pixel vector, 47 Color skin tumor images with vector quantization, 783 compression schemes, 786 postprocessing, 790–791 preprocessing and transforms, 786–787 vector quantization, 787–790 materials and methods, 784 compression schemes, 784 objective measurement of the images, 785 subjective evaluation of the images, 785 results and analysis, 791–797 Color space, 47 Color transform, 47 Color triangle, 174f Color video standards NTSC, 13 PAL, 13 SECAM, 13 Combined segmentation approaches, 182–183 Common filters for filtering projections, 541f Common object module (COM), 32 Comparison tests, 381 Compass masks, 128 Compiling and linking CVIPlab with visual studio, 656–658 Compiling and running CVIPlab, 658f Complement image—NOT operation, 83 Complementary metal-oxide- semiconductor (CMOS), 23 Complex numbers, 235f Compression ratio, 565 Compression system model, 568–572, 568f Compression window, 38 Compressor, 568, 569f Computational intelligence-based methods, 523 Computed tomography (CT), 538 Computer-generated images, 30 error image, 31f Fourier transform spectrum image of an ellipse, 31f graphics image of a simple 3D hand, 30f graphics image of an insect, 30f image of a butterfly, 31f X-ray image of a hand, 31f Computer graphics, 55 Computer vision and image processing tools (CVIPtools), 13, 32 Computer vision system, 3 Computerized tomography (CT), 24 Cones, 361f, 362f Connect distance (max), 161 Connectivity and labeling, 95–97 Constrained least squares (CLS)filter, 520–521, 522f Contra-harmonic mean (CHM) filter, 491, 494Index 863 Contrast stretching image enhanced, 9f image with poor contrast, 9f Convolution mask low-pass filtering, 443 Convolution mask, 72 Convolution process, 72–73, 75f Convolution theorem, 272 Corner detection, 162–165 Correlation, 310 Correlation coefficient, 319 Correlation factor, 319 Cosine spectrum, 276f Cosine symmetry, 249f Cost/risk functions and success measures, 332–335 Creation of image by backprojections, 540f Crop process, 72 Custom remap curvebutton, 426 Cutoff frequency, 260 CVIP algorithm test and analysis tool, 673 application development example with fundus images, 681 introduction and overview, 681–683 new algorithm, 683–687 CVIP-ATAT, 674 overview and capabilities, 673–674 comparing images, 681 creating a new project, 674–677 inputting an algorithm, 678 performing an algorithm test run, 678–681 running, 674 CVIP Feature Extraction and Pattern Classification Tool, 688 application development example, 698 introduction and overview, 698 running the experiments and analyzing results, 699 setting up experiments, 698–699 CVIP-FEPC, 688 overview and capabilities, 688–689 adding images and associated classes, 689–691 applying feature extraction and pattern classification, 691 creating a new project, 689 entering classes in CVIP-FEPC, 689 result file, 696 running, 689 running a leave-one-out test in combinatoric mode, 696–698 running a single test with training and test sets, 691–695 CVIP function information, 33 CVIPlab C program, 651 CVIPlab�c, 651 CVIPlab�h, 651 threshold_lab�c, 651 CVIPlab for Matlab, 638 adding a function, 646–647 CVIPlab for C programming, 650–654 sample batch processing M-file, 647–648 toolkit/toolbox libraries/memory management in C/C++, 655 usingCVIPlab for Matlab, 643–646 vectorization, 642–643 VIPM file format, 649 adding a function with visual studio, mechanics, 659–662 compiling and linking CVIPlab with visual studio, 656–658 image data and file structures, 664–669 usingCVIPlab in the programming exercises, 663 CVIP Matlabhelp window, 44f–45f CVIP Matlabtoolbox, 4 CVIP projects, 669 digital image analysis and computer vision projects, 669–670 digital image processing and human vision projects, 671 example project topics, 670 CVIP toolbox help, 637f CVIPtools analysis window, 36 drop-down menu, 36f with edge/line detection tab, 36f CVIPtools software environment, 32 analysis window, 35 compression window, 38–39 CVIPtools GUI main window, 32–34 development tools, 40 enhancement window, 35 help window, 40 image viewer, 34–35 restoration window, 36–38 utilities window, 40 CVIPlab command window, 645f CVIPlab figure display window, 645f CVIPlab in the programming exercises, 663 CVIPlab prototype program, 4 CVIPlab�m, 638 CVIPlab�m file modifications, 648f CVIPlab�mscript, 638 CVIPtools after creating the circle image, 102f CVIPtools C libraries, 656f CVIPtools compression window, 38f CVIPtools development utility main windows, 43f CVIPtools enhancement window, 37f CVIPtools geometric restoration window, 534f, 537f CVIPtools GUI main window, 32–33 CVIPtools help window, 41f CVIPtools histogram slide/stretch/shrink, 410f CVIPtools image viewer keyboard, 34t CVIPtools main window, 33, 101f CVIPtools restoration window, 37f CVIPtools software, 4 CVIPtools utilities, 39 Cyan, 54 Cylindrical coordinate transform (CCT), 51, 52f, 631 D Dark current, 24 Data compaction, 572 Data preprocessing, 323–326 Data visualization, 56864 Index Decimation filter, 93f Decision tree, 109f Decomposition level, 274 Decompressor, 568, 569f Deconvolution, 510 Degradation function, 509, 512–514 estimation of, 512–514 frequency domain, 510–512 spatial domain, 509–510 Degradation process model, 471 Delta length, 161 Depth maps, 29 Depth of field, 21 Detail/edge information, 433f Detection, 145 Detection of anterior cruciate ligament rupture in Canines, 711 introduction and overview, 711 materials and methods, 711 data normalization and pattern classification, 714 feature selection and extraction, 713–714 image database, 712 image preprocessing, 712–713 results and discussion, 714–716 Detection of Canine bone cancer, 717 material and methods, 718 color normalization, 719 data normalization and pattern classification, 720 digital infrared thermal imaging system, 718 experimental animals, 718 experimental methods, 720 feature selection and extraction, 719–720 mask creation, 719 software tools used, 719 thermographic images, 718–719 results and discussion, 720–721 Development tools, 40 DFT spectrum with various remap methods, 246f Diagonal masks, 193 Differential coding, 570 Differential predictive coding (DPC), 596–603, 598f–599f quantization comparison, 601f with Lloyd–Max quantization, 602f–603f Differential pulse code modulation (DPCM), 596 Digital cameras, 13 Digital image analysis, 69 arithmetic and logic operations, 76–80 basic binary object features, 97–100 basic image thresholding, 93–95 binary image analysis, 93–109 binary object classification, 101–109 connectivity and labeling, 95–97 image quantization, 86–93 preprocessing, 71–93 region of interest (ROI) image geometry, 71–76 spatial filters, 80–85 system model, 69–70 Digital image analysis and computer vision projects, 669–670 Digital image file formats, 55–57 Digital image processing, 3, 4f Digital image processing and human vision projects, 671 Digital image processing system hardware, 14f Digital image processing systems, 13 Digital image processing, overview, 384–391 Digital images, 17 Digital negative, 398 mapping equation, 398f modified by inverse mapping equation, 398f negative of image, 398f original image, 398f Digital subscriber lines (DSL) connections, 566 Digital television (DTV), 14 Digitization, 13 Digitizing (sampling), 15f Dilation, 183–184, 187f with iterative MOD method, 201–202 Direct Fourier reconstruction, 543 Directional difference filters, 435, 436f, 437f Discrete cosine transform (DCT), 248–251, 606 Discrete cosine transform basis images, 251f Discrete Fourier transform (DFT), 233 Discrete Haar transform, 255–257 Discrete transforms, 225–230, 226f Discrete Walsh–Hadamardtransform, 252–255 Discrete wavelet transform, 272–277 Discriminant functions, 329 Domains, 606 DPC predictor, 600f Dynamic window range, 584 Dynamic window range RLC, 589f–590f Dynamically linked library (dll), 32 E Eccentricity, see Aspect ratio Edge detection errors in, 145f examples, 151f examples with direction images, 152f–153f with noise, 155f Edge detection methods, 122, 200–201, 203f Edge detection thresholding via histogram, 177f Edge detector performance, 144–154 Edge detector-based sharpening algorithms, 439 Edge detectors, 432 Edge model, 126 Edge/line detection, 122–165 advanced edge detectors, 128–139 compass masks, 128 corner detection, 162–165 edge detector performance, 144–154 edges in color images, 139–144 gradient operators, 124–128 Hough transform, 154–162 Edge/line detection group, 632 Edge-preservingsmoothing filter, 446 Edges and lines, 122f Edges in color images, 139–144 Editing CVIPlab�h, 662fIndex 865 Eight masks, 193 Ektachrome, 306 Electromagnetic (EM) spectrum, 17, 18f, 361 gamma waves, 17 infrared, 17 microwaves, 17 radio waves, 17 ultraviolet, 17 visible light, 17 x-rays, 17 Electron beams, 17 Electron imaging, 28 Electron microscopes, 28 Elongation, see Aspect ratio Emboss filters, 85; see also Directional difference filters EM radiation alternating (sinusoidal) electric, 17 magnetic fields, 18 Encapsulated postscript (EPS), 56 Energy, 303 Energy compaction, 606 Enhancement filters, 82, 86f Enhancement window, 35 histogram/contrast, 35 pseudocolor, 35 sharpening, 35 smoothing, 35 Entropy, 303, 572, 574f Entry level parameter, 168 Erosion, 183–185, 185f appendage removal, 200 with iterative MOD method, 199 Estimation of noise, 479–482 Euclidean distance, 146, 318 Euler number, 100f Exponential adaptive contrast filter (Exp-ACE), 422f F Faint line defect detection in microdisplay (CCD) elements, 766 design methodology, 767 line-detection algorithm, 767 analysis of the hough space, 771–772 edge detection, 769–771 preprocessing, 767–769 results and discussion, 772–773 False contouring, 372f False contouring effect, 87, 88f Fast algorithm filter, 445 Feature analysis, 295f, 317 data preprocessing, 323–326 distance and similarity measures, 318–322 feature vectors and feature spaces, 317–318 Feature extraction, 4, 296 color features, 305–306 feature extraction with CVIPtools, 313–316 histogram features, 300–305 region-based features, 313 shape features, 296–300 spectral features, 306–308 texture features, 308–313 Feature extraction with CVIPtools, 313–316, 317t Feature file data, 109t Feature selection window, 698 Feature spaces, 317–318 Feature tab, 107f–108f Feature vectors, 317–318 Field of view (FOV), 21, 22f Filtering, 259 band-pass filters, 267–271 band-reject filters, 267–271 high-pass filters, 264–266 low-pass filters, 259–264 Filtering with a sliding window, 418f FireWire (IEEE 1394), 16 Flicker sensitivity, 371 F-number, 21 Four masks, 193 Fourier descriptors (FDs), 300 Fourier magnitude data, direct mapping of, 245f Fourier spectra of noise images, 480f of real images, 480f to reduce Gaussian noise effects, 492f–493f Fourier spectrum, 276f Fourier spectrum power, 308 Fourier transform, 230–248 decomposing a square wave, 231f discretefourier spectrum, 243–248 example, 232f fourier transform properties, 239–242 one-dimensional discrete fourier transform, 233–236 two-dimensional discrete fourier transform, 237–239 Fourier transform phase, 238f Fourier transform properties, 239–242 convolution, 240 linearity, 239 modulation, 240, 242f periodicity, 241–242 rotation, 240, 243f sampling and aliasing, 242–243 translation, 240 Fourier-slice theorem, 543, 543F Fovea, 364 Fractal compression, 604f Frame grabber, 13 FreeBSD, 32 Frei–Chen masks, 134, 138f Frei–Chen masks for corner detector, 165f Frei–Chen projection, 139f Frei–Chen results using CVIPtools, 140f Frequency domain filtering, 514f Frequency domain filters, 514 adaptive filtering, 523 band-pass filters, 523–526 band-reject filters, 523–526 constrained least squares filter, 520–521 geometric mean filters, 521–522 inverse filter, 515–517866 Index Frequency domain filters (Continued) notch filters, 523–526 practical considerations, 526–528 Wiener filter, 518–520 Frequency domain low-pass filtering, 443 Frequency domain pseudocolor, 427f Frequency-modulated (FM) beat signals, 30 F-stop, 21 Fundus images application development example, 683f Fuzzy c-means, 172 Fuzzy features, 320 G Gabor filters, 312 Gabor filters for pathology classification in veterinary thermograms, 807 background, 808 feature extraction, 808–809 gabor filter, 808 results and discussion, 809 ACL, 811–812 bone cancer: elbow/knee—anterior, 810–811 bone cancer: elbow/knee—lateral, 811 bone cancer: wrist-lateral, 811 feline hyperthyroid, 811 Gamma-correctionequation, 404 Gaussian/uniform/salt-and-pepper noise distribution, 474f–476f Generalized Hough transform, 181 Generic imaging sensors linear/line sensor, 23f single imaging sensor, 23f two dimensional/array sensor, 23f Geometric distortion, 529f Geometric distortion correction distorted image, 9f restored image, 9f Geometric mean (GM) filter, 494, 495f, 521–522 Geometric restoration procedure, 532–534, 533f, 535f–536f Geometric restoration with CVIPtools, 534–537 Geometric shapes images, 247f–248f Geometric transforms, 528, 528f geometric restoration procedure, 532–534 geometric restoration with CVIPtools, 534–537 gray-level interpolation, 531–532 spatial transforms, 528–531 Gigabit Ethernet (IEEE 802�3), 16 GIST features, 313 Gradient masks, 138f Gradient operators, 124–128 Gradient vector flow snake (GVF snake), 181, 182f Graphical user interface (GUI), 32 Graphics interchange format (GIF), 55; see also Image file formats Gray code, 580f Gray-level compression, 395 Gray level co-occurrence matrices, 311f Gray level co-occurrence matrix methods, 310 Gray level dependency matrix methods, 310 Gray-level histogram, 404 Gray-level interpolation, 531–532, 531f Gray-level mapping II in CVIPtools, 425f Gray-level morphological filtering, 204f Gray-level reduction, 86 Gray-level run-length coding, 583–585 Gray-level scaling, 395; see also Gray-scale modification Gray-level stretching, 395–396 Gray-level stretching with clipping, 397 mapping equation, 397f modified image, 397f original image, 397f Gray-level transformation, 395; see also Gray-scale modification Gray-level variance, 167 Gray scale images, 46–47, 47t Gray-scale modification, 395, 396f Gray-scale modification with CVIPtools, 400f Green cones, 362 H Haar transform, 256f Halftoning and dithering, 90, 91f Hamming filter, 538 Harmonic mean filter, 495, 496f Harris corner detector, 164f CRF(r,c) result, 164 final detected corners, 164f horizontal and vertical gradient, Gaussian, 164f horizontal lines strength, 164f original image, 164f vertical lines strength, 164f Harris method, 162 HDTV screen resolution, 369–370 Help button, 35 Help window, 40 Hexagonal grid, 198f Hierarchical image pyramid, 16, 17f High-boost spatial filtering, 434f High-definition television (HDTV), 15f, 369 High-frequency emphasis (HFE) filtering, 266f, 269f, 432–435 High-pass filtering, 432 High-pass filters, 264–266, 267f–268f, 269f Histogram equalization, 408–411, 411f, 413f–414f, 417f Histogram equalization of color images, 428f Histogram features, 300–305, 301f–302f, 304f–305f Histogram modification, 404–415, 405f Histogram peak finding, 172f Histograms, 95f Histogram scaling, 404 Histogram shrinking, 408 histogram of image, 408f image after shrinking, 408f original image, 408f Histogram slide technique, 408, 410f Histogram specification, 409, 411–412, 415f–416f Histogram stretching, 406 after histogram stretch, 406f histogram of image after stretch, 406fIndex 867 histogram of image, 406f image, 406f low-contrast image, 406f tight cluster, 406f Histogram stretching with clipping, 407 histogram of image, 407f histogram of original image, 407f image after histogram stretching with clipping, 407f image after histogram stretching without clipping, 407f original image, 407f Histogram thresholding segmentation, 172, 173f Hollyhock pollen, 29f Homomorphic filtering process, 435–438, 437f, 438f filtering, 436 fourier transform, 436 inversefourier transform, 436 inverse log function, 436 natural log transform (base e), 436 Horizontal synch pulse, 13 Hough transform, 154–162, 157f CVIPtools parameters, 161–162 flowchart, 158f postprocessing algorithm details, 160f quantization block size, effects, 159f to find airport runway, 161f Hue/saturation/lightness (HSL), 48, 49f, 428 Hue/saturation/value (HSV), 428 Hue–saturation–lightness (HSL), 631 Hue–saturation–value (HSV), 631 Huffman coding example, 576f–577f, 579f Huffman coding, 575–577 Human eye, 361f blind spot, 362 cones, 361f energy receptors, 361 Fovea, 364 image sensors, 361f iris, 362 lateral inhibition, 365 lens, 361 neural system model, 365f photoreceptors, 361 pupil, 361 retina, 361 RGB values, 363 rods, 361f tristimulus (three stimuli) curves, 362, 362f Human visual perception, 359 brightness adaptation, 370–371 human visual system, 360–365 perception and illusion, 373–378 spatial frequency resolution, 365–370 temporal resolution, 371–373 Human visual system, 3, 360 brain, 360 eye, 360 Hybrid and Wavelet methods, 610–616 Hybrid median filter, 485 Hybrid median filtering, 486f Hyperplane, 330 Hyperquadrics, 330 Hysteresis thresholding, 133 I Ideal and real edge, comparison, 125f Ideal low-pass filter, 261f Image addition examples, 78f Image after thresholding, 106f Image analysis, 3, 4–6 Image analysis and computer vision, 4–6 Image analysis details of data reduction, 70f Image analysis domains, 69 Image analysis process, 69 data reduction, 69 feature analysis, 69 preprocessing, 69 Image comparison interface, 682f Image compression, 9, 565 image file compressed to 1/100, 10f image file compressed to 1/200, 10f image file compressed to 1/50, 10f original image, 10f Image corrupted by periodic noise, 481f Image data and file structures, 664–669, 665f Image division, 80f Image enhancement, 9 gray-scale modification, 395 adaptive contrast enhancement, 415–422 color, 423–431 histogram modification, 404–415 mapping equations, 395–404 image sharpening, 432 directional difference filters, 435 edge detector-based sharpening algorithms, 439 high-frequency emphasis, 432–435 high-pass filtering, 432 homomorphic filtering, 435–438 unsharp masking, 438 image smoothing, 442 convolution mask low-pass filtering, 443 frequency domain low-pass filtering, 443 nonlinear filtering, 443–452 Image enhancement examples, 394f Image enhancement process, 393f, 394f Image enhancement techniques global operations, 393 mask operations, 393 point operations, 393 Image enlargement, 72 Image fidelity criteria, 379, 386–387 objective fidelity measures, 379–381, 386–387 subjective fidelity measures, 381–383, 387 Image file formats, 55 Image file header, 55 Image formation and sensing, 17 acoustic imaging, 26–27 computer-generated images, 30–31 electron imaging, 28 imaging outside the visible range, 24–26868 Index Image formation and sensing (Continued) laser imaging, 28–30 visible light imaging, 18–24 Image masking, 80 Image morphing, 78 Image multiplication, 81f Image objects, 124 image of objects in kitchen corner, 124f morphological filtering, 183–204 Image processing, 11 Image processing and human vision, 7–11 Image processing systems hardware, 13 software, 13 Image quantization, 76, 86–93 Image queue, 32 Image reconstruction, 538 fourier-slice theorem and direct fourier reconstruction, 543 radon transform, 538–542 reconstruction using backprojections, 538 Image representation, 45 binary images, 45–46 color images, 47–54 digital image file formats, 55–57 grayscale images, 46–47 multispectral images, 54 Image restoration, 7 image with distortion, 8f process, 471, 472f restored image, 8f Image rotation, 77f Image segmentation categories, 4, 121f, 165 Image sensors, 361 Image sharpening original image, 10f sharpened image, 10f Image smoothing, 442–452 arithmetic mean, 445f, 446f Gaussian, 446f original image, 445f with median filter, 447f–448f Image subtraction, 79f Image transforms, 4 Image translation, 77f Image viewer, 34–35 Impairment tests, 381 Improved grayscale (IGS) quantization method, 87, 89f Improved MMSE filter flowchart, 500f–501f Impulse noise, 475 Incoherent light, 29 Individual bit-planes in a color image, 373f–374f Inertia, 310 Information, 567 Information theoretic definition, 572 Information theory, 591 Infrared (IR) images, 24 near infrared band, 26f showing water vapour, 26f thermographic images, 26 Infrared imaging, 5 Input_image�m, 639 Intensity level slicing, 400 Intensity-level slicing, 397, 399 desired gray level range, 399f intensity (brightness) levels, 399f original image, 399f returns the original gray levels, 399f Intensity slicing, 424 Interband redundancy, 568 Interframe redundancy, 568 Interlaced video, 13 Intermediate image after processing, 7f International standards organization (ISO), 607 International telecommunications union-radio (ITU-R), 581 Interpixel redundancy, 568 Invariant moment features, 299t Inverse cosine transform, 250 Inverse difference, 310 Inverse filter and Wiener filter, comparison, 519f–520f Inverse filter, 515–517, 517f Inverted LoG, 130f Invoking CVIP-ATAT, 674f, 690f Irradiance, 19, 20f Iterated median filtering, 485f Iterative morphological filtering, surrounds, 198f ITU-R 601, 53 J Joint photographers expert group (JPEG), 55, 250, 607 JPEG2000, 55 JPEG2000 algorithm, 613 JPEG2000 compared to standard JPEG, 615f–616f K Kernel functions, 330 Kirsch compass masks, 128 Kirsch direction, 153f Kirsch magnitude, 153f Kirsch operator, 151f K-means, 593 K-means clustering algorithm, 94 K-nearest neighbor method, 328 Kodachrome, 306 Kuwahara filter, 446, 448f–449f L Labelingalgorithm flowchart, 97f Land types, 753 data reduction and feature extraction, 754–755 introduction and overview, 753–754 object classification, 756–758 Laplacian masks, 127, 138f Laplacian of a Gaussian (LoG), 129 Laplacian operators, 127, 151f Laplacian-type filters, 85 Laser imaging, 28–30Index 869 Lasers, 17 Lateral inhibition, 373 Laws texture energy masks, 311 Leave-one-out testing in combinatoricmode, 697f Lempel–Ziv–Welch Coding, 581–582 Lempel–Ziv–Welch (LZW) coding algorithm, 55, 581 Light amplification by stimulated emission of radiation (LASER), 28 Lighting and object effects, 94f Limit parameter, 96f Line angles, 161 Line masks, 138f Line pixels (min), 161 Linear discriminant, 330f Linear filter, 82 Linear interpolation technique, 73 Linux, 32 Lloyd–Max quantizer, 600f Local enhancement, 415 Localization, 145 Lock input, 32 Logarithmic adaptive contrast filter (Log-ACE), 421f Logic operations, 76–80 AND, 76 NOT, 76 OR, 76 Look-up-table (LUT), 55, 56f Lossless compression methods, 572 arithmetic coding, 582–583 Huffman coding, 575–577 Lempel–Ziv–Welch coding, 581–582 run-length coding, 578–581 Lossless methods, 38, 567 Lossy, 38 Lossy bitplane-run length coding, 586f–587f Lossy compression methods, 583 block truncation coding, 585–589 differential predictive coding, 596–603 gray-level run-length coding, 583–585 hybrid and wavelet methods, 610–616 model-based and fractal compression, 603–606 transform coding, 606–610 vector quantization, 589–596 Lossyimage compression, 584f Low-pass butterworth filters, 263f–266f Low-pass filters, 259–264 Lumber counting and grading, 7f M Macbeth color chart, 306 Mach band effect, 373, 376f Magnetic resonance imaging (MRI), 24, 538 Magnitude image information, 238f Mapping equations, 395–404 Marr–Hildreth algorithm, 129 Matlab CVIP toolbox, 32, 631 CVIP toolbox function categories, 631 arithmetic and logic, 631 band, 631 color, 631–632 conversion of image files, 632 display, 632 edge/line detection, 632 geometry, 632 histogram, 632 mapping, 633 morphological, 633 noise, 633 objective fidelity metrics, 633 pattern classification, 633 segmentation, 634 spatial filters, 634 transform, 634 transform filters, 634 help files, 634–636 M-files, 636 Matlabhelp, 635f–636f Matrices and pointers, 666f Matrix, 45 Max video frequency, 368–369 Maximum filter, 486, 487f–488f Mean, 302 Mean filters, 82, 483, 489–497 Median filter, 82–83, 84f, 484, 484f Median segmentation algorithms, 172 Medical imaging, 78 Melanoma and seborrheic keratosis differentiation, 774 materials and methods, 775–776 texture analysis experiments, 776–781 Memory aid, 235f Merge parameter, 168 Metameric colors, 363–364 Metamers, 363 Mexican hat operator, 129, 130f Microchip, logic gate, 29f Microdisplay chips, 5, 6f Microsoft windows bitmap (BMP) format, 55 Midpoint filter, 487 Minimizing within group variance, 176 Minimum filter, 486, 487f–488f Minimum mean-square error estimator (MMSE), 518 Minimum mean-squared error (MMSE) filter, 498, 499f Mode, 303 Model-based and fractal compression, 603–606 Modeling the PSF for motion Blur, 510f Modulation transfer function (MTF), 511 Modulation/optical transfer function, 511–512 Monochrome (“one color”) images, 46, 47t Monochrome video standards RS-170A, 13 RS-330, 13 RS-343A, 13 Moore–Penrose generalized inverse matrix, 432 Moravec detector, 162, 163f Morphological filtering, 183–204 Mosquito, SEM image, 29f Mouse commands, 34t Multilevel block truncation coding (BTC), 594f Multiresolution algorithms, 166870 Index Multiresolution decomposition, 274 Multispectral and radio wave images, 27 GOES, 27f MRI images, 27f Multispectral geostationary operational environmental satellite (GOES), 27 Multispectral images, 24, 54 N Nearest centroid, 328 Nearest neighbor method, 328 Negative image, creating, 199 Negative predictive value (NPV), 334 Neural network, 332f Neural processing system model, 365f New algorithm resulting images, 685f–686f Noise, 69 Noise histograms, 473–478 Noise in images, 123f Noise models, 472–482 estimation of noise, 479–482 noise histograms, 473–478 periodic noise, 478–479 Noise pattern, 527f Noise removal noise removed, 8f noisy image, 8f Noise removal using spatial filters, 483–508 adaptive filters, 497–508 mean filters, 489–497 order filters, 483–489 Noise with crop and histogram, estimating, 482f Nonideal low-pass filters, 262f Noninterlaced video, 13 Nonlinear filter, 84 Nonlinear filtering, 443–452 Nonmaximasuppression, 133f Nonuniform quantization, 571, 606 Notch filters, 270f, 523–526, 524f NTSC, 13 Nyquist rate, 242 O Objective fidelity criteria, 379 Objective fidelity measures peak signal-to-noise ratio, 380f root-mean-square error, 381f OFFSET value, 408 One-dimensional discrete fourier transform, 233–236 1D Walsh–Hadamard basis functions, 252f Opening CVIPlab_Project�sln, 657f Opening operation, 185, 185f, 189f Optic nerve, 360 Optical illusions, 375, 378f Optical image, 45 Optical transfer function (OTF), 511 OR’ing two circles, 103f Order filters, 483–489 Order statistics, 483 Original DCT-based JPEG, 611f–612f Original JPEG DCT coefficient quantization tables, 610f Orthogonal image, 230 Orthonormal image, 230 Otsu method, 176 Outlier removal, 323 Output from CVIPtoolsanalysis, 336f P PAL, 13 Parametric anisotropic diffusion (AD) filter, 508f Parametric Wiener filter, 521 Passband, 60 Pattern classification, 4, 295f, 326 algorithm development, 327 classification algorithms and methods, 328–332 cost/risk functions and success measures, 332–335 pattern classification with CVIPtools, 336 Pattern classification with CVIPtools, 336 PBM (binary), 55; see also PPM formats PCT/median color segmentation algorithm, 174 PCT/median segmentation algorithm, 177f Peak signal-to-noise ratio, 380, 382f Perception and illusion, 373–378 Perimeter, 297f Periodic noise, 478–479 Periodicity and discrete Fourier transform symmetry, 244f Persistence, 371 PGM (grayscale), 55; see also PPM formats Phase contrast filtering, 432 Photon noise, 24 Photons, 17 Photopic(day-light) vision, 362 Piece-wise linear modification with CVIPtools, 401, 403f CVIPtools screen shot, 401f–402f mapping equation, 401f Pixel-by-pixel processing, 523 Pixels, 16, 96 Plate of spaghetti, 131 PNM, 55; see also PPM formats Point spread function (PSF), 509–511 Points in the world and in image, 20f Portable document format (PDF), 56 Portable network graphics (PNG), 56 Positron emission tomography (PET), 538 Power, 306 Power spectrum equalization filter, 521 power-law equation, 404 power-law transform, 404 PPM (color), 55; see also PPM formats PPM formats, 55 Practical Wiener, 519 Pratt’s figure of merit (FOM), 145–146, 148f–150f Preprocessing, 38, 71, 71f Prewitt direction, 152f Prewitt magnitude, 152f Prewitt operator, 151f Principal component analysis (PCA), 259Index 871 Principal component transform (PCT), 54, 172, 176f, 225, 257–259, 258f, 326, 631 Probability density function (PDF), 473 Probe, 185 Programming exercises, 390 brightness adaptation, 390 optical illusions, 390 spatial resolution, 390 Project interface, 676f Project topics, example, 670 Projections, 100f Projection-slice theorem, see Fourier-slice theorem Pruning, 196–197 Pseudocolor, 423 Pseudocolor in frequency domain, 426 block diagram of the process, 426f fourier filters, 426f Pseudocolor in spatial domain, 423f Pseudocolor techniques, 427 Pseudomedian filter, 445 Psychovisual redundancy, 568 Pulses, 30 Pupil, 370 Q Quadtreedata structure, 167f Quality tests, 381 Quantized hough space, 158f Quantizing with a codebook, 595f Quantum efficiency, 24 R Radiance, 19, 20f Radon transform, 538–543, 542f Range compression, 404 Raster images, see Bitmap images Rayleigh, negative exponential and gamma noise distributions, 477f–478f Reconstruction using backprojections, 538 Recursive region splitting, 172 Red cones, 362 Reflectance function, 18 color image, 19f monochrome image, 19f Reflected ultraviolet imaging systems, 5 Region growing and shrinking methods, 165–168 Region of interest (ROI) image geometry, 71–76 Regular and irregular mapping, 535f Remapping for display, 57f Rendering, 55 Reset button, 35 Restoration window, 36–38 frequency filter, 38 geometric transforms, 38 noise, 36 spatial filter, 38 Result file, 696f Results from changing Gaussian variance, 135f–136f Results from changing high threshold, 134f RGB calculations using tristimulus curves, 363 Ripple masks, 138f Roberts operator, 125, 151f Robinson compass masks, 128 Robinson direction, 153f Robinson magnitude, 153f Robinson operator, 151f Rods, 361f, 362f Root-mean-square error, 379 Root-mean-square signal-to-noise ratio, 379 RST-invariant features, 299f with noise, 300f R-table, 181 Rubber-sheet transforms, 528 Run-length coding, 578–581 Running CVIPlab in Matlab, 644f S Salt and pepper noise to blurred composite image, 105f Save compressed data, 38 Scalar quantization, 591 Scale-invariant feature transform (SIFT), 313 Scanning electron microscope (SEM), 28, 29f Scatterplot, 330 Scotopic(night) vision, 362 SCT/Centercolor segmentation algorithm, 172, 174f applied to skin lesion image, 175f SDTV screen resolution, 368–369 SECAM, 13 Second-order histogram methods, 310 Seed regions, 167 Segmentation, 165 boundary detection, 176–182 butterfly after edge detection, 124f butterfly image, 124f clustering techniques, 168–176 combined segmentation approaches, 182–183 image after edge detection, 124f region growing and shrinking methods, 165–168 Segment length (min), 161 Sensitivity, 333 Sensor equation, 23 Sensors, 17 Separability, 239 Sequency, 252 Sequential method, 203f Settings for header files, 661f Shannon’s rate distortion theory, 591 Shape features, 296–300, 297f Sharpening algorithm I, 439, 441f Sharpening algorithm II, 439, 442f Shen–Castan algorithm, 133, 137f Shepp–Logan filter, 538 Shot noise, 475 Silicon Graphics, Inc (SGI), 56 Simple decision tree, 108 Simultaneous contrast, 374, 377f Single photon emission computed tomography (SPECT), 538872 Index Single response, 145 Sinusoidal waves, 234f Skeletonization, 192 after 10 iterations, 203f after 5 iterations, 203f original image, 203f results with eight masks, 203f results with four masks, 203f with irregular shapes, 194f with simple shapes, 193f Skew, 303 Skin lesion classification, 734 experiments and data analysis, 738 lesion feature space, 738–741 object feature space, 741–742 introduction and project overview, 734–735 materials and methods, 735 creation of relative color images, 735 feature extraction, 736 image database, 735 lesion and object feature spaces, 737 segmentation and morphological filtering, 736 statistical models, 737–738 Smoothing filters comparison, 452f Smoothing with convolution filters, 444f Snake eating edge linking algorithm, 178 Sobel direction image, 152f Sobel magnitude image, 152f Sobel operator, 125, 151f Softmax scaling, 326 Spatial domain processing methods, 393 Spatial filters, 80–85 Spatial frequency, 227f Spatial frequency resolution, 365–370 cycles per degree, 367f higher frequency, 366f low frequency, 366f one-dimensional square wave, 366f physical mechanisms, 367 Spatial reduction, 86, 92f Spatial transforms, 528–531, 529f Specificity, 333 Spectral aliasing, 244f Spectral bands, 361 Spectral features, 306–308, 307f Spectral region power, 06 Speeded up robust features (SURF), 313 Spherical coordinate transform (SCT), 51, 52f, 172, 631 Spike noise, 475 Split and merge technique, 166 local mean vs global mean, 168 local standard deviation vs global mean, 168 pure uniformity, 168 segmentation, 169f texture, 168 variance, 168 weighted gray-level distance, 168 Spur removal, 196f Standard anisotropic diffusion (AD) Filter, 503, 505f–507f Standard deviation, 303 Standard normal density (SND), 633 Standard ultrasound image, 28f Standard-definition television (SDTV), 15f Stopband, 60 Strawberry, 29f Structuring element (SE), 183 Subimage-by-subimageprocessing, 523 Subjective fidelity criteria, 379 Subjective fidelity scoring scales, 383t Subsampling, 92 Sun Raster format, 56 Sun Solaris, 32 Supervised training, 327 Supplementary programming exercises, 391 neural processing system model, 391 objective fidelity measures, 391 subjective fidelity measures, 391 Support vector machines (SVMs), 330 Support vectors, 330 SVM Kernel function, 331f SVM optimal hyperplane, 331f System model, 69–70, 471–472 System output, 7f T Tagged image file format (TIFF), 55; see also Image file formats Tanimoto metric, 319 Temporal resolution, 371––372, 375 Test interface, 680f Texture features, 308–313, 309f Thermographic imaging, 24 Thermography-based prescreening software tool, 814 clinical application development, 815 algorithm database, 815 graphical user interface (GUI), 815–817 image database, 815 process flow, 815 results and discussion, 817 Thinning operation, 191 Thinning the top horizontal line, 191–192 3D ultrasound image, 28f Threshold coding, 607 Threshold�m, 640 Threshold parameter, 168 Threshold_Setupfunction, 651 Thresholdingnoisy images, 180f Tiepoints, 529 Tomogram, 538 Toolbox libraries, 655 Toolkit libraries, 655 Training set size, 328f Training set, 109 Transform coding, 606–610 Transform coefficients, 228f Transform/VQ compression, 614f Transmission electron microscope (TEM), 28 Tristimulus curves, 362 Two images selection, XOR, 104fIndex 873 Two-dimensional discrete fourier transform, 237–239 Two-dimensional feature space, 318f Two-dimensional sinusoid, 237f Two-stage run of CVIP-ATAT, 680f Typical Blur mask coefficients, 512 U Ultrahigh definition (UHD), 16 Unequal (or variable) length code, 575 Uniform bin-width quantization, 90, 91f Uniform quantization, 571 Universal serial bus (USB), 16 Unsharp masking, 438, 440f Unsharp masking algorithm, 438 Unsharpmasking enhancement flowchart, 439f Unsupervised training, 327 UPDATE block, 97 Utilities functions, 101, 101f Utilities window, 40 UV imaging, 24 V Variable bin-width quantization, 91f–92f Variable bit rate, 572, 606 Vector, 45 Vector images, 55 Vector inner product, 134, 254 Vector inner product/projection, 230f Vector outer product, 253, 254f Vector quantization (VQ), 589–596, 596f–597f Vectorization, 642–643 Vertical synch pulse, 13 Video signals, 13, 14f analog video signal, 14f one frame, two fields, 14f View labeled image button, 315 Vignetting effect, 22f VIPM file format, 650t Visible light imaging, 18–24, 19f Visible light spectrum, 360f Vision, 360 Visual information, 3 Visualization in image processing (VIP) format, 56, 632 Vole detection application with CVIPtools and OpenCV, 801 camera sensor, 804–806 common vole detection, 802 vole detection algorithm, 802–804 W Walsh–Hadamard basis images, 254f–255f Walsh–Hadamard spectrum, 276f Walsh–Hadamard transform (WHT), 252, 252f Watershed-based approach to skin lesion border segmentation, 760 experiments, results and conclusions, 765–766 materials and methods, 760 B-spline border smoothing, 763–764 error estimating, 765 noise removal, 763 object histogram merging, 763 preprocessing, 760 watershed algorithm, 761–762 Watershed lines, 168 Watershed segmentation algorithm, 168, 170f–171f Wavelet transform 1-level decomposition, 275f 2-level decomposition, 275f display, 275f three-level decomposition, 275f Wavelet/VQ compression, 613f White noise, 477 Wiener filter, 518–520 Wiener filter response, 518f Write_Imagefunction, 668 X Xform/vector quantization(XVQ), 611 Xform/vector quantization compression algorithm parameters, 612t X-ray and UV Image chest X-ray, 25f dental x-ray, 25f fluorescence microscopy images of cells, 25f one “slice” of computerized tomography (CT), 25f Y Yp mean filter, 497f Z Zero-frequency coefficient, 608 Zonal coding, 607, 608f Zonal compression with DCT and Walsh transforms, 609f Zonal mask, 607 Zoom process, 72 Zooming methods, 73f
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Digital Image Processing and Analysis Applications with MATLAB and CVIPtools رابط مباشر لتنزيل كتاب Digital Image Processing and Analysis Applications with MATLAB and CVIPtools
|
|