Admin مدير المنتدى
عدد المساهمات : 19004 التقييم : 35512 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Plasticity Fundamentals and Applications الأربعاء 08 سبتمبر 2021, 12:24 am | |
|
أخواني في الله أحضرت لكم كتاب Plasticity Fundamentals and Applications P.M. Dixit, U.S. Dixit
و المحتوى كما يلي :
Contents Preface .xv Authors xvii 1. Solid Mechanics and Its Applications 1 1.1 Introduction .1 1.2 Continuum Hypothesis 2 1.3 Elasto-Plastic Solids 4 1.4 Applications of Solid Mechanics 5 1.5 Scope of This Textbook .8 Exercises 8 2. Review of Algebra and Calculus of Vectors and Tensors 9 2.1 Introduction .9 2.2 Index Notations . 10 2.3 Kronecker Delta and Levy-Civita Symbols . 16 2.4 Vectors 20 2.4.1 Norm of a Vector 21 2.4.2 Addition of Vectors 24 2.4.3 Dot Product .25 2.4.4 Cross Product .25 2.4.5 Derivative of a Vector Function .27 2.4.6 Gradient of a Scalar Field 27 2.4.7 Divergence and Curl of a Vector Field 30 2.4.8 Green’s Theorem in a Plane 33 2.4.9 Divergence Theorem of Gauss .35 2.4.10 Integral Theorem of Stokes . 37 2.5 Transformation Rules for Vector Components under the Rotation of Cartesian Coordinate System . 41 2.6 Tensors 44 2.6.1 Transformation Rules for Tensor Components under the Rotation of Cartesian Coordinate System 44 2.6.2 Contraction and Quotient Laws 47 2.6.3 Some Important Definitions and Properties of Tensor 48 2.6.4 Eigenvalues of a Tensor . 51 2.6.5 Polar Decomposition of Tensors 55 2.6.6 Tensor Calculus 60 2.6.7 Divergence Theorem . 62 2.6.8 Stokes’ Theorem . 62 2.6.9 Norm of a Tensor . 62viii Contents 2.7 Tensors and Vectors in Curvilinear Coordinates .69 2.7.1 Scale Factors for Cylindrical and Spherical Coordinates . 70 2.7.2 Gradient of a Vector .72 2.7.3 Divergence of a Vector .73 2.7.4 Laplacian of a Scalar 75 2.7.5 Curl of a Vector . 76 2.7.6 Volume of an Infinitesimal Element .78 Exercises 79 3. Stress .85 3.1 Introduction .85 3.2 Stress at a Point 87 3.3 Surface Forces and Body Forces 90 3.4 Momentum Balance Laws .92 3.5 Theorem of Virtual Work .94 3.6 Cauchy’s Theorem .95 3.7 Transformation of Stress Components . 103 3.8 Stresses on an Oblique Plane . 105 3.9 Principal Stresses 107 3.10 Maximum Shear Stress 111 3.11 Octahedral Stresses 113 3.12 Hydrostatic and Deviatoric Stresses 114 3.13 Mohr’s Circle 116 3.13.1 Two-Dimensional Case . 116 3.13.2 Three-Dimensional Case 120 Exercises 120 4. Measures of Deformation and Rate of Deformation 127 4.1 Introduction . 127 4.2 Deformation . 127 4.2.1 Linear Strain Tensor 130 4.2.2 Infinitesimal Rotation Tensor . 136 4.3 Deformation Gradient 139 4.4 Green Strain Tensor 144 4.5 Almansi Strain Tensor 148 4.6 Logarithmic Strain Tensor . 152 4.7 Strain–Displacement Relation in Curvilinear Coordinate 153 4.8 Transformation of Strain Components 156 4.9 Principal Strains 158 4.10 Maximum Shear Strain 158 4.11 Octahedral Strain 159 4.12 Volumetric Strain 162 4.13 Mean and Deviatoric Strain . 162 4.14 Mohr’s Circle for Strain 163Contents ix 4.15 Incremental Strain Tensor 165 4.15.1 Introduction 165 4.15.2 Incremental Linear Strain Tensor 166 4.15.3 Incremental Infinitesimal Rotation Tensor 168 4.16 Material and Local Time Derivative . 169 4.17 Rate of Deformation Tensor . 172 4.18 Spin Tensor . 176 4.19 On Relation between Incremental Strain and Strain Rate Tensors . 177 4.20 Compatibility Conditions 178 Exercises 180 5. Incremental and Rate Type of Elastic–Plastic Constitutive Relations for Isotropic Materials, Objective Incremental Stress and Stress Rate Measures . 187 5.1 Introduction . 187 5.2 Elastic Stress–Strain Relations for Small Deformation . 188 5.2.1 One-Dimensional Experimental Observations . 188 5.2.2 Generalized (i.e. Three-Dimensional) Stress–Strain Relations 190 5.2.3 Stress–Strain Relations for Isotropic Materials . 191 5.3 Experimental Observations on Elastic–Plastic Behavior 194 5.3.1 1-D Experimental Observations on Plasticity 195 5.3.1.1 Elastic Region 197 5.3.1.2 Yield Stress 197 5.3.1.3 Plastic Region 197 5.3.1.4 Strain Hardening 198 5.3.1.5 Temperature Softening 200 5.3.1.6 Viscoplasticity .200 5.3.1.7 Isochoric Deformation .200 5.3.1.8 Large Deformation .200 5.3.1.9 Hysteresis 202 5.3.1.10 Bauschinger Effect . 202 5.3.1.11 Effect of Hydrostatic Stress on Yielding .203 5.3.1.12 Anisotropy 203 5.4 Criteria for Initial Yielding of Isotropic Materials .204 5.4.1 von Mises Yield Criterion .204 5.4.2 Tresca Yield Criterion 209 5.4.3 Geometric Representation of Yield Criteria . 211 5.4.4 Convexity of Yield Surfaces 214 5.4.5 Experimental Validation . 214 5.5 Modeling of Isotropic Hardening or Criterion for Subsequent Isotropic Yielding 215 5.5.1 Strain-Hardening Hypothesis for Mises Material 217 5.5.2 Work-Hardening Hypothesis for Mises Material . 219x Contents 5.5.3 Criterion for Subsequent Yielding for Mises Material Based on Strain-Hardening Hypothesis 219 5.5.4 Experimental Validation of Isotropic Hardening .223 5.6 Elastic–Plastic Stress–Strain and Stress–Strain Rate Relations for Isotropic Materials .223 5.6.1 Drucker’s Postulate for Stable Plastic Material 224 5.6.2 Associated Flow Rule 228 5.6.3 Elastic–Plastic Incremental Stress–Strain Relation for the Mises Material .233 5.6.4 Elastic–Plastic Stress–Strain Rate Relation for the Mises Material 234 5.6.5 Viscoplasticity and Temperature Softening . 237 5.7 Objective Incremental Stress and Objective Stress Rate Tensors .238 5.7.1 Relation between Cauchy Stress Tensors When the Increment Is Pure Rotation . 240 5.7.2 Piola–Kirchoff Stress Tensors . 242 5.7.3 Increment of Second Piola–Kirchoff Stress Tensor (Objective Incremental Stress Tensor) .244 5.7.4 Relation between Finite and Infinitesimal Incremental Rotation Tensors for Small Increment 246 5.7.5 Jaumann Stress Tensor (Objective Stress Rate Tensor) . 247 5.8 Unloading Criterion 248 Exercises 250 6. Eulerian and Updated Lagrangian Formulations 253 6.1 Introduction .253 6.2 Equation of Motion in Terms of Velocity Derivatives 254 6.3 Incremental Equation of Motion .255 6.4 Eulerian Formulation .256 6.4.1 Governing Equations (Elasto-Plastic Material) . 257 6.4.2 Governing Equations (Rigid-Plastic Material) 258 6.4.3 Boundary Conditions 260 6.4.4 Initial Conditions . 261 6.5 Example of Eulerian Formulation: A Wire Drawing Problem . 261 6.5.1 Inlet and Exit Boundaries AB and EF . 262 6.5.2 Stress-Free Boundaries BC and DE .263 6.5.3 Plane of Symmetry AF 263 6.5.4 Die Interface CD .263 6.5.5 Location of Plastic Boundaries .265 6.6 Updated Lagrangian Formulation 266 6.6.1 Governing Equations 266 6.6.2 Boundary Conditions 268 6.6.2.1 Initial Conditions . 269 6.6.2.2 Updating Scheme . 269Contents xi 6.7 Example on Updated Lagrangian Formulation: Forging of a Cylindrical Block . 269 6.7.1 Stress-Free Boundary BC 270 6.7.2 Plane of Symmetry DC . 271 6.7.3 Plane of Symmetry AD . 271 6.7.4 Platen Interface AB 271 Exercises 272 7. Calculus of Variations and Extremum Principles 275 7.1 Introduction . 275 7.2 Functional 278 7.3 Extremization of a Functional .283 7.3.1 Functional Containing the Form F(x,y,y′) .283 7.3.2 Alternate Form of Euler–Lagrange Equation 289 7.3.3 Functional Containing the Form F x = ( , , y y y 1 1, , , 2 2 y y ., n n , ) y . 291 7.3.4 Functional Containing the Function of n Independent Variables 293 7.3.5 Functional Dependent on the Functions and Its Derivatives up to Order n . 296 7.4 Solution of Extremization Problems Using δ Operator .299 7.4.1 Variational Operator 299 7.4.2 Properties of Variational Operator 300 7.4.3 Converting Variational Form to Differential Equation 302 7.5 Obtaining Variational Form from a Differential Equation .305 7.6 Principle of Virtual Work . 312 7.7 Principle of Minimum Potential Energy . 314 7.8 Solution of Variational Problems by Ritz Method 315 Exercises 317 8. Two-Dimensional and Axisymmetric Elasto-Plastic Problems 323 8.1 Introduction . 323 8.2 Symmetric Beam Bending of a Perfectly Plastic Material (1-D Problem) . 323 8.2.1 Pure Bending 324 8.2.1.1 Elastic Analysis . 324 8.2.1.2 Plastic Analysis . 327 8.2.2 Bending in the Presence of Shear Force 331 8.3 Hole Expansion in an Infinite Plate (Plane Stress and Axisymmetric Problem) .336 8.3.1 Initial Yielding 337 8.3.2 Elasto-Plastic Analysis for a Perfectly Plastic Material .339 8.3.2.1 Stresses in the Elastic Region .339 8.3.2.2 Stresses in the Plastic Region .339 8.3.3 Elasto-Plastic Analysis for a Hardening Material .343 8.4 Analysis of Plastic Deformation in the Flange of Circular Cup during Deep Drawing Process (Plane Stress and Axisymmetric Problem) . 351 8.4.1 Determination of Stresses .353 8.4.2 Determination of Strains 355 8.4.2.1 Determination of Logarithmic Hoop Strain .356 8.4.2.2 Determination of Logarithmic Thickness Strain 359 8.5 Necking of a Cylindrical Rod 361 8.5.1 Analysis in the Plane of Symmetry (z = 0) .363 8.5.1.1 Simplification of Differential Equation .365 8.5.1.2 Solution of the Modified Differential Equation . 369 Exercises 371 Appendix A 380 Appendix B . 382 9. Contact Mechanics .385 9.1 Introduction .385 9.2 Hertz Theory 386 9.2.1 Geometry of Unstressed Surface in the Region of Contact . 387 9.2.2 Boussinesq Solution . 392 9.2.3 Pressure and Deflections in the Contact Region . 395 9.2.4 Two Spheres in Contact . 397 9.2.5 Two Cylinders in Contact along a Line Parallel to Their Axes .400 9.2.6 Alternate Derivation for the Contact between Two Cylinders .402 9.2.7 Stresses in Contact Problem .405 9.3 Elastic–Plastic Indentation .407 9.3.1 Solution of Flat Plate Indentation Problem by Upper Bound Method .409 9.3.1.1 Power Dissipation along AB . 411 9.3.1.2 Power Dissipation along BC . 411 9.3.1.3 Power Dissipation along BD . 412 9.3.1.4 Power Dissipation along CD . 412 9.3.1.5 Power Dissipation along DE . 412 9.3.2 Solution of Flat Plate Indentation by Slip Line Field Method . 413 9.3.3 Solution of Flat Plate Indentation by Numerical Methods . 416 9.4 Cavity Model . 418 9.4.1 Determination of Elastic–Plastic Boundary Radius .422 9.4.2 Determination of Plastic Strain 424 9.4.3 Typical Results 425 9.5 Sliding of Elastic–Plastic Solids 427 9.6 Rolling Contact 428 9.7 Principle of Virtual Work and Discretization of Contact Problems 431 Exercises 433 10. Dynamic Elasto-Plastic Problems . 437 10.1 Introduction . 437 10.2 Longitudinal Stress Wave Propagation in a Rod (1-D Problem) 437 10.2.1 Method of Characteristics 439 10.2.2 Conditions at the Surfaces of Discontinuity in Wave Propagation 441 10.2.3 Elastic Solution of 1-D Wave Equation 442 10.2.4 1-D Wave Equation for Unloading 444 10.2.5 Plastic Solution of 1-D Wave Equation in Rod Impacted against Rigid Support 445 10.3 Taylor Rod Problem (Impact of Cylindrical Rod against Flat Rigid Surface, 1-D Problem) .450 10.3.1 Governing Equations 452 10.3.1.1 Kinematic Relations . 452 10.3.1.2 Equation of Motion 452 10.3.1.3 Volume Constancy Condition 453 10.3.2 Determination of x as a Function of e .453 10.3.3 Determination of h as a Function of e .456 10.3.4 Determination of t as a Function of e 457 10.3.5 Energy Method .459 Exercises 459 11. Continuum Damage Mechanics and Ductile Fracture . 461 11.1 Introduction . 461 11.2 Motivation 462 11.2.1 Failure of the Titanic 462 11.2.2 Failure of Liberty Ships . 462 11.2.3 Failure of Comet Passenger Aircraft . 462 11.2.4 Failure of the Space Shuttle Challenger 463 11.3 Objective and Plan of the Chapter 463 11.4 Classification of Fracture .464 11.5 Global and Local Approaches to Fracture .465 11.5.1 Limitations of Global and Local Approaches to Fracture .466 11.6 Ductile Fracture . 467 11.6.1 Void Nucleation or Initiation 468 11.6.2 Void Growth . 470 11.6.2.1 Analytical Models for Void Growth 470 11.6.3 Void Coalescence 472 11.7 Models of Fracture Initiation . 474 11.7.1 Porous Plasticity Model (Gurson and GTN Model) 475 11.7.2 CDM-Based Model: Review of Literature 477 11.7.3 Other Models of Fracture Initiation 478 11.8 Thermodynamics of Continuum 481 11.8.1 Thermodynamic Process with Internal Variables .482 11.8.2 Thermo-Elastic–Plastic Process .483 11.9 Continuum Damage Mechanics .485 11.9.1 Length Scales of Damage 485 11.9.2 Representative Volume Element 487 11.9.3 Requirements of Damage Modeling .488 11.9.4 Definition of a Scalar Damage Variable 488 11.9.5 Effective Stress Concept 490 11.9.6 Crack Initiation Criterion 491 11.9.7 Strain Equivalence Principle 491 11.9.8 Elastic Strain Energy Equivalence Principle 492 11.9.9 Thermodynamic Force Corresponding to Damage 493 11.9.10 Constitutive Equations for Thermo-Elasto–Plastic Process in a Damaged Material . 497 11.9.11 Damage Growth Laws 499 11.9.12 Microcrack Closure Effect 502 11.10 Techniques for Damage Measurement 504 11.11 Application of a CDM Model 506 11.11.1 Procedure for Determining Damage Law Coefficients in Equation 11.122 .507 11.11.2 Tensile Testing and Ductile Fracture of Cylindrical Specimen 508 11.12 Closure and Further Reading 513 Exercises 513 12. Plastic Anisotropy 515 12.1 Introduction . 515 12.2 Normal and Planar Anisotropy 515 12.3 Hill’s Anisotropic Yield Criteria . 519 12.4 Plane Stress Anisotropic Yield Criterion of Barlat and Lian 529 12.5 Three-Dimensional Anisotropic Yield Criteria of Barlat and Coworkers .533 12.6 Plane Strain Anisotropic Yield Criterion . 537 12.7 Constitutive Relations for Anisotropic Materials 539 12.8 Kinematic Hardening .542 Exercises 545 References
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Plasticity Fundamentals and Applications رابط مباشر لتنزيل كتاب Plasticity Fundamentals and Applications
|
|