كتاب An Introduction to Mechanical Engineering
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب An Introduction to Mechanical Engineering

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 19001
التقييم : 35505
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب An Introduction to Mechanical Engineering  Empty
مُساهمةموضوع: كتاب An Introduction to Mechanical Engineering    كتاب An Introduction to Mechanical Engineering  Emptyالسبت 14 أغسطس 2021 - 1:43

أخواني في الله
أحضرت لكم كتاب
An Introduction to Mechanical Engineering
Michael Clifford (Editor)
Richard Brooks, Kwing-So Choi, Donald Giddings, Alan Howe, Thomas Hyde, Arthur Jones, Edward Williams
University of Nottingham

كتاب An Introduction to Mechanical Engineering  A_i_t_18
و المحتوى كما يلي :


Contents
Introduction vii
Unit 1 – Fluid dynamics 1
1.1 Introduction 1
1.2 Basic concept in fluid dynamics 2
1.3 Boundary layers 8
1.4 Drag on immersed bodies 19
1.5 Flow through pipes and ducts 25
1.6 Dimensional analysis in fluid dynamics 34
Unit 2 – Thermodynamics 46
2.1 Introduction 46
2.2 Air conditioning 57
2.3 Gas mixtures 69
2.4 Combustion 74
2.5 Reciprocating compressors 90
2.6 Heat transfer 96
2.7 Heat exchangers 109
2.8 Vapour power cycle 119
2.9 Reciprocating internal combustion engines 131
Unit 3 – Solid mechanics 138
3.1 Introduction 138
3.2 Combined loading 139
3.3 Yield criteria 144
3.4 Deflection of beams 149
3.5 Elastic–plastic deformations 159
3.6 Elastic instability 168
3.7 Shear stresses in beams 184
3.8 Thick cylinders 195
3.9 Asymmetrical bending 207
3.10 Strain energy 217vi
An Introduction to Mechanical Engineering: Part 2
3.11 Fatigue 227
3.12 Fracture mechanics 231
3.13 Thermal stresses 239
Unit 4 – Electromechanical drive systems 247
4.1 Introduction 247
4.2 Characteristics of loads 248
4.3 Linear and rotary inertia 248
4.4 Geared systems 250
4.5 Tangentially driven loads 256
4.6 Steady-state characteristics of loads 259
4.7 Modifying steady-state characteristics of a load using a transmission 265
4.8 Sources of mechanical power and their characteristics 266
4.9 Direct current motors and their characteristics 268
4.10 Rectified supplies for dc motors 285
4.11 Inverter-fed induction motors and their characteristics 292
4.12 Other sources of power: pneumatics and hydraulics 305
4.13 Steady-state operating points and matching of loads to power sources 311
Unit 5 – Feedback and control theory 317
5.1 Introduction 317
5.2 Feedback and the concept of control engineering 318
5.3 Illustrations of modelling and block diagram concepts 321
5.4 The s domain: a notation borrowed from mathematics 326
5.5 Block diagrams and the s notation: the heater controller and tensioning system 331
5.6 Working with transfer functions and the s domain 334
5.7 Building a block diagram: part 1 337
5.8 Building a block diagram: part 2 344
5.9 Conversion of the block diagram to the transfer function of the system 348
5.10 Handling block diagrams with overlapping control loops 350
5.11 The control algorithm and proportional-integral-derivative (PID) control 352
5.12 Response and stability of control systems 354
5.13 A framework for mapping the response of control systems: the root locus method 365
Unit 6 – Structural vibration 376
6.1 Introduction 376
6.2 Natural frequencies and mode shapes 377
6.3 Response of damped single-degree-of-freedom systems 405
6.4 Response of damped multi-degree-of-freedom systems 424
6.5 Experimental modal analysis 431
6.6 Approximate methods 437
6.7 Vibration control techniques 446
Questions 457
Index
An Introduction to Mechanical Engineering: Part 2
472
absolute humidity 59–60
ac induction motors See induction
motors
adiabatic process 51, 96
AFR 76–77, 78–79, 133
air conditioning 46, 57–68
principles of operation 63
air–fuel ratio (AFR) 76–77, 78–79,
133
air gap flux 297
air rich combustion 77
air standard Diesel cycle 132
air standard Otto cycle 131, 132
aircraft 313, 392–394
wings 395, 404
Amagat’s law of partial volumes 71
amplifiers 341
amplitude of response 413
angle of arrival 369
angle of departure 369
angle valve 30
angular velocity, Laplace transform
340
antenna, high-speed rotating 263
antenna system See radar antenna
apparent gas constant 73
apparent molar mass 70, 73
Argand diagram 361
armature 268–269
emf induced in winding 270–272
asymmetric channel section, shear
stress distribution in 190–191
asymmetrical bending 207–217
See also second moments of
area beams with asymmetric
sections 213–217
atmospheric air 59
automatic valves 91
automotive applications, dc motors
284
autopilot 317
Avogadro number 59
axisymmetric conduction 101
back pressure turbine 129
‘bank run’ 321
base speed 299
baseball 21, 23
battery-operated appliances 284
BDC (bottom dead centre) 91
beam, with added masses 442–443
See also uniform beams
beam bending, rectangular section
with EPP 161–163
beam bending equation 150, 207
beam–columns 178–183
beam deflection 223
bending moment 395–396
bending stiffness 382
bends, flow around 28–29
benzene 79–80
best-efficiency point (BEP) 45
bifurcation point 170
black body 105
black body heat transfer 106
black body view factor 106
Blasius profile 10
block on cantilever beam
torsional vibration 382–383
vertical vibration 382
block diagrams 322
building 337–347
components 337–343
systems 344–347
conversion to transfer function
348–350
fibre tensioning system 325,
332–334
heater controller 322–323,
331–332, 348
with overlapping control loops
350–351
radar antenna 346, 349–350
and s domain 331–334
blowers 263, 282, 314, 342–343
bluff bodies, drag 20–22
Bode plot 360–361
bottling plant 306
bottom dead centre (BDC) 91
bounce, and pitch 389–392
bounce mode 388
boundary conditions, basic types of
support 397
boundary layer 1, 8–18
formulae for development 15
Reynolds number 8–9
tripping 18, 21
velocity profile 10–12
boundary-layer equations 16–17
brake horsepower 42, 44
brake mean effective pressure 267
brake power (bp) 134
brake specific fuel consumption 135
brake thermal efficiency 135
brakes 264
breakin points 368
breakout points 368
brittle materials, failure 145–146
brushless dc motors 285
Buckingham’s theorem 37–39
buckling 168–176
compressively loaded rod 180
buildings, tall 395
calorific values 85
cameras 318
camshaft 133
cantilever beams 225–226
See also block on cantilever beam
clamped–free 400–402
forced response 444–446
with mass at free end 402–404
mode shape estimation 441–442
capacity coefficient 44
capacity rate 115
caravan, single-axle 385–389,
407–408
carbon brushes 268, 269
carburettors 136
Carnot cycle 53, 121–122
IndexIndex
473
combustion reactions 46
commutator 269
compatibility, principle of 402, 403
complementary energy 221
complementary function 412
complete intercooling 95
compound drive trains 252
compound motors 273, 282–283
cumulative 283
differential 283
compression
double-acting 90, 95
heat transfer to jacket 93
multistage 90, 94–95
single-acting 90, 95
single-stage 90
work done during 92–93
compression ignition (CI) 132
compression ignition engine 132,
133
compression stroke 133, 134
compressors 54, 263
double-acting two-stage 95
efficiency 93–94
reciprocating 417–418
single-acting two-stage 95
condensing boilers 78
condensing hot reservoir 66
conduction 97–98
axisymmetric 101
conservation of energy 49
law of 47, 251
constant life diagrams 230
constant pressure heat addition 132
constant of proportionality 341
constant volume heat removal 132
constant volume heating 132
continuity equation 5–6
control algorithm 320, 352
control systems
dynamic response 356–360
frequency response 360–361
root locus method applied to
366–372
stability 362–364
control volume 47–48
controller, transfer function 343
convection 99–102
mechanism 102
convective heat transfer coefficient
99
correction factor 113
correlation 102
Coulomb friction 259
counter flow 109, 112
coupled equations 387
crack extension force 233
crack initiation 227
crack propagation 227
crack tip driving force 233
crippling load 171, 177, 178
critical (buckling) load 170, 179
critical crack extension force
(toughness) 233, 234
critical Reynolds number 7
critical speeds 395
critical strain energy release rate 233,
234
critical stress intensity factor
233–234
critically damped system 357, 358
cross-flow 113–115
cruise control 317, 319–320, 343
cup and cone failure 144
curvature 150
cycle efficiency 53
cycles 48
cylinders
See also thick cylinders
circular, flow around 19–20
thin 195
damage tolerant approach 228
damped multi-degree-of-freedom
systems 424–431
forced response 429–431
frequency response function
(FRF) 430–431
modal scaling 425–426
orthogonality of modes 424–425
damped natural frequency 410, 417
damped single-degree-of-freedom
systems 405–423
equations of motion 405–408
estimating damping 412
free vibration 408–411
critical damping 410
high damping 409
light damping 410
zero damping 409
frequency response function
(FRF) 415–418,
420–421, 423
harmonic excitation 412–415
periodic excitation 418–423
damped vibration absorber 455
damper 339
damping 405
critical 410
estimating 412
Carnot efficiency 55, 121
Castigliano, Carlo Alberto 217, 221
Castigliano’s theorem 217,
220–222
cause, and effect 378
cavitation number 34
centrally loaded beam 159
centrifugal blower 252
centrifugal governor 318–319
centrifugal pumps 42–45, 263
cetane 132
cetane number 132
char 82
characteristic equation 357, 359,
366–367
characteristic function 359
characteristic length 104
characteristic polynomial 357
Chernobyl nuclear disaster 321
choke 318
circular cylinder, flow around 19–20
circular shafts, torsion 163–167, 219
clamped–clamped beam 157–159
clearance volume 91
closed feed heaters 126, 128–129
closed-loop feedback control, cruise
control example 319–320
closed-loop speed control 300
closed systems 49
clutches 264, 316
coefficient of drag 262
coefficient of performance 68
coefficient of thermal expansion 239
coil spring isolators 447–448
combined heat and power 129–130
combined loading 139–143
bending and axial load 140
bending and torsion 141
methodology 142
pressure, axial and torsional
loading 141–142
combined mode heat transfer 101,
108
combustible gases 131
combustion 74–90
closed system 82–83, 85–87
complete 76
incomplete 76
non-standard beginning and end
conditions 85–87
non-stoichiometric 75–76
open system 83–84, 87
stoichiometric 75–76
combustion energy 82
combustion gases 46An Introduction to Mechanical Engineering: Part 2
474
disk valve 29–30
displacement 407
displacement thickness 14
displacement transmissibility 450
door, sprung 358
drag, on immersed bodies 19–25
drag coefficient 15, 19, 34, 36–37
three-dimensional bodies 22
two-dimensional bodies 22
drag force 260
drive ratio 251
drive shaft, aero engine 392–394
dry air 59
dry bulb thermometer 61
dry products 78
ductile materials
failure 144–145
yielding 146
dummy load 222, 224–225
Dunkerley, Stanley 437
Dunkerley’s method 437–439
dynamic friction 259–260
dynamic response 356–360
dynamic similarity 40
dynamically equivalent systems 443
earthquakes 395
eccentrically loaded struts 176–178,
181
effect, cause and 378
effective length 178
effective radius 252
effectiveness-number of transfer
units (-NTU) 110, 115–118
efficiency, of pump 44
eigenvalue problems 387–388
elastic crack tip stress fields 234–235
elastic instability 168–184
elastic line 149
differential equation of 150
elastic modulus SeeYoung’s
Modulus
elastic–perfectly plastic (EPP)
159–160
elastic–plastic deformations 144–146,
159–168
elastic–plastic material behaviour
models 159–161
elastic unloading 164
elastomeric isolators 447
electric mixers 282
elliptical hole, in large plate 231–232
emission, heat 105
emissivity 105
endurance limit 229
high 409
identifying experimentally 431
light 410
proportional 430
damping coefficient 405
damping ratio 358, 410
Darcy friction factor 26
Darcy–Weisbach equation 26
dashpot 339
dc motors 268–285
armature equivalent circuit 272
construction 268–269
emf induced in armature winding
270–272
operation 269–270
rectified supplies for 285–292
torque 272, 340–341
transfer function 340
types 273–285
dc output voltage 285–290
dc series motor 273, 278–282
dc servomotors 284
dc shunt motor 273, 274–278
speed control 276–278
torque–speed characteristics
275–276
decibels 364
deflection curve 149
deflector 25
degrees of freedom 377
density 83–84, 137, 216
derivative time constant 352
deviatoric planes 148
devolatilization 81
dew point 60
diagonal matrices 426
diesel 132
Diesel cycle 132
Diesel engines 134, 267
performance assessment 134–137
Diesel knock 135
differencing junctions 322, 325,
343
differential equation of elastic line
150
dimensionless numbers, in
convective heat transfer
103–104
dimensions, of physical variables 38
diode bridge rectifier 286–287
three-phase 288–289
direct current motors See dc motors
discontinuities 150
discrete Fourier transform (DFT)
419
energy audit 48
energy balance 110
energy budget 48
energy conservation See
conservation of energy
energy inventory 48
engines 266
enthalpy 50, 69
enthalpy of combustion 83–84
enthalpy of formation 84
entropy 55, 70
equation of state 50
equilibrium 48
of forces 402
of moments 403
states 168
error 319, 352
Euler buckling load 171, 177, 178
Euler number 34
evaporating cold reservoir 66
evaporative cooling 58
excess air ratio 77
excitation function 408
exhaust stroke 134
experimental modal analysis 431–436
extensive properties 50
factor of safety 231, 376
Fanning friction factor 26
fans 263
fatigue 227–231
life analysis 228
fatigue crack growth 237–238
fatigue life 229
fatigue limit 229
fatigue notch factor 230
fatigue strength 229
feed heaters 126, 128–129
feedback 318
fibre tensioning system, modelling
323–326, 332–334
field current 269
final-value theorem 337
finite element method 404
fireworks 75
first law of thermodynamics 49–50
five-degrees-of-freedom system
423
fixed–fixed strut 173
fixed–free strut 172–173
fixed–hinged strut 173–174
flange
horizontal shear in 189
transverse shear in 188–189
flash chambers 128Index
475
flat belt systems 251–252
flexural rigidity 150
flow restrictions 342–343
flow reversal 17
flow separation 17
flow separation point 17
flow work 50
fluids, in motion 167–185
flux linkage 271, 298
flywheel 339–340
food processors 282
force excitation 415
force transmissibility 449
forced convection 99
fouling factors 118
four-pole induction motor 294
four-stroke cycle engine 132
Fourier series 295, 419
Fourier’s law 97
fracture 227
fracture mechanics 231–238
energy approach to 232–237
fatigue crack growth 237–238
fracture toughness 233–234, 235
free-body diagram 379
free convection 99
free–fixed strut 172–173
free–free beam, impact test 434–435
frequency, units 381
frequency equations 388, 397, 399
numerical values of roots 398
for particular end conditions 398
frequency response 360–361
frequency response function (FRF)
415–418, 420–421, 423,
430–431
frequency response function testing
432–435
friction, positive aspects 264
friction-based drive systems 251–252
friction drag 19
friction factor 25–27
friction rollers 251–252
friction velocity 12
frictional effects, summary 262
frictional head loss 28
frictional losses 259–262
Froude number 5, 34
fuel injection systems 136, 267
fuel oils 132
fuel rich combustion 77
fuelling systems 136
fundamental 295
gain 322, 341, 352
humidity 58, 59
absolute 59–60
relative 60
hydraulic cylinders 309
hydraulic diameter 31
power supplies 310
hydraulic jack 308
hydraulic motors 309–310
hydraulic systems 308–311
pneumatic systems vs. 308
hydraulic variable-ratio drives
310–311
hydraulically smooth 12
hydrocarbons 75
naming 76
hydrostatic line 147
hydrostatic stress 147
hygrometry 61
I-section, shear stress distribution in
187–189
ideal gas See perfect gases
ideal intermediate pressure 96
ideal struts 170–176
ideal work done 92
imaginary boundary 48
imaginary unit 360
impact test 434–435
impedance 296
impedance matching 311
indicated mean effective pressure
(imep) 134
indicated power (ip) 134
indicator diagram 91
induction motors 292–305
See also torque
approximate characteristics
301–304
torque 299, 302–303
torque–speed characteristics
299–300, 302–303
induction stroke 91, 133, 134
inductive reactance 296
inertia 248
scaling 254
inertia base 452
initial-value theorem 335–336
instability 321
insulating heat 46
integral time constant 352
intensive properties 50
intercooling 95
internal combustion engines 267,
312
reciprocating 131–137
gain margin 364
gas constant, for mixture 69
gas mixtures 69–74
gas turbine engine 392–394
gas and vapour compressors 46
gate valve 29–30
gear ratio 250, 253
geared systems 250–256
efficiency 253
influence on apparent inertia 255
inertia 254
general equation 397
generalized Hooke’s law 197, 239
geometric similarity 40
Gerber parabola 229
Gibbs–Dalton law 58–61, 69
globe valve 29–30
golf ball 21
Goodman diagrams 230
Grashof number 34, 36, 104
gravimetric analysis 69–71
gravitational load 263
gross (higher) CV at constant
pressure 85
gross (higher) CV at constant
volume 85
ground source heat pumps 68
harmonic excitation 412–415
harmonics 295
head 342
head coefficient 44
heat engines 53
heat exchangers 109–119
rating 111
sizing 111
heat pumps 66–68
heat removal 132
heat transfer 96–108
calculation 110
gas mixture 74
maximum possible 115
steady-state 97
heat transfer coefficient 98, 103
heater controller 321–323, 331–332,
348, 355
Heaviside step function 329, 335
helicopters 392, 395
45° helix failure 145–146
hinged–hinged strut 170–172
with initial curvature 175–176
hoists 264
Hooke’s law 144, 338
generalized 197, 239
‘howling’ 362An Introduction to Mechanical Engineering: Part 2
476
modal matrix 425
modal parameters 431
modal scaling 425–426
modal space 426
modal stiffness 425
modal stiffness matrix 425, 426
mode shape 385, 388, 398, 431
estimation 440
model testing 40–41
modes of vibration 378
modified Goodman line 229
Mohr’s circle 139–140, 209, 212
molar analysis 71–74
molar fraction, and volume fraction
73
molar reaction equations 75
molecular mass 59
moles 58, 72
Mollier diagram 126, 127
moment of inertia 248–250, 382
concentrated mass 249
solid cylinder 249
thin-walled tube 249
momentum integral equation 13–16
momentum thickness 13
Moody chart 12, 26
motor field characteristic 274
motors 266, 268
multipass 113
multipoint systems 136
multistaging 94–95
nameplate data 302
natural convection 99
natural frequency 358, 379, 381–
382, 431
damped 410, 417
estimating lowest 437–442
undamped 409, 417
Navier–Stokes equations 2–5
negative feedback 320, 343
net (lower) CV at constant pressure
85
net (lower) CV at constant volume
85
net pump head 42
neutral equilibrium 168
Newtonian flow 2, 4
Newtonian fluids 260
Newton’s law of cooling 99
Newton’s second law of motion
248, 337, 378
rotational version 249, 378
no-slip condition 1
nodal lines 431
linear inertia 248
linear systems 381
linearization 342–343
LMTD 110–115
load characteristics 248
See also steady-state characteristics
of loads
local Nusselt number 103
locomotives 313
logarithmic mean temperature
difference (LMTD) 110–115
logarithmic velocity profile 11
long-shunt motor 273, 282
lumped mass–spring systems
384–392, 443–444
Macaulay, W.H. 151
Macaulay brackets 152
Macaulay’s convention 152
Macaulay’s method 151–153
summary 156
Mach number 34, 36
machine cycle 91
magnetic flux density 297
magnetomotive force (mmf) 282–
283, 297
mass, transfer function 337–338
mass balance 5
mass fraction, and volume fraction
72, 73–74
mass–spring–damper systems 357–
359, 365–366, 406, 448–451
mass–spring systems 379–382
lumped 384–392, 443–444
maximum sheer strain energy (von
Mises) yield criterion 146
maximum sheer stress (Tresca) yield
criterion 146
maximum static deflection 453
Mead, Thomas 318
mean stress, effect on fatigue life 229
mechanical efficiency 135
mechanical power, sources 266–268
metal deformation 73–74
Millennium Bridge 377, 429, 454
minimum advance for best torque
(MBT) timing 136
minimum static deflection 453
minor losses 28
mitre bend 28–29
mixed stream 115
modal coordinates 426
modal damping matrix 430, 455
modal mass 425–426
modal mass matrix 425
internal energy 49
of combustion 82–83, 84
inverters 294–295
three-phase 297
ironless motors 284
irreversible processes 49
isentropic compression 132
isentropic efficiency 55, 126
isentropic expansion 132
isentropic process 51
isentropic work 55
isobaric process 51
isochoric process 51
isolation efficiency 451
isolation region 451
isolators
coil spring 447–448
elastomeric 447
pneumatic vibration 447
selection 451–453
isothermal compression 93
isothermal efficiency 93
isothermal flows 2
isothermal process 51, 96
isotropic hardening 160
K-factor 28–29
Kármán’s momentum integral
equation 14
kinematic hardening 160–161
kinematic viscosity 4, 103
kinetic energy, maximum 439
knock 135
Lame’s constants 198
laminar boundary layer 10
formulae for development 15
laminar flow 7–8
Laplace transforms 326–330
of commonly encountered
functions 327–328
definition 327
linearity 328
rules obeyed 328–329
in solving differential equations 329
laser instruments 446
lathe 316
laws of thermodynamics
first 49–50
second 49, 53–54
corollaries 53
length scale 4, 16
lift coefficient 34, 36–37
linear elastic fracture mechanics
(LEFM) 231–232Index
477
product moment of area 207–208
product parallel axis theorem 208
production tolerances 135
products, combustion 83
proof stress 149
propane 78–79
propeller shaft 392
properties, of systems
extensive 50
intensive 50
proportional damping 430
proportional–integral–derivative
(PID) control 352–354
psychrometric chart 61–62
pulse width modulation (PWM)
295
pump factor 117
pumps 42–45, 54, 263, 341
quality governed engines 133
quantity governed engines 133
radar antenna 345–347, 348–350,
355–356, 359–360, 373–375
radiant heat transfer 105
ramp input 355
Rankine cycle 123–124
with superheat 124–125
Rayleigh, Lord 439
Rayleigh’s method 439–442
for shafts and beams 440–441
reactants 83
real boundaries 48
reciprocating compressors 90–96
reciprocating internal combustion
engines 131–137
rectifiers 285–292
recuperator 109
referred inertia 255
refrigerants 46, 66
refrigeration 66–68
regenerative heating 126
regenerator 109
reheaters 125–129
relative humidity 60
representative velocity 104
residual stress 163
residues 433, 436
resistance 296
resistors 341
resonance 376, 379
resonance-induced fatigue 376
resonant frequency 379, 417
response/unit applied force 415
restoring force 380
physical space 426
p theorem 37–39
PID control 352–354
pipes, flow around bends in 28–29
piston-engined aircraft 313
pistons 309
pitch, bounce and 389–392
plane strain 233
plane stress 233
plastic collapse 180
pneumatic cylinders 306
pneumatic systems 306–307
efficiency and energy utilisation
issues 307
hydraulic systems vs. 308
pneumatic vibration isolators 447
pneumatic wrenches 306
pneumatics 305–308
point bending moment 154–155
poles 366, 369
polytropic compression 93
polytropic process 51
positioning system 344–345,
352–354, 372–373
positive displacement pumps 90, 263
positive feedback 321
potential energy
concave function 169
convex function 169
power coefficient 44
power sources, matching of loads to
313–316
power stations 47, 392
power stroke 133, 134
power tools 282
Prandtl number 34, 103
Prandtl’s boundary-layer equations
16–17
pre-ignition 135
pressure coefficient 19, 34
pressure drag 19
pressure drop, calculation 117
pressure gradient, effect 17
prime movers 266
principal axes 209
principal second moments of area
209–212
‘printed armature’ motors 285
probe assembly 257–258
process diagrams (state diagrams) 49,
52
processes 48, 51
irreversible 49
reversible 49
product gas mixtures 46
non-dimensional numbers 34–37
non-slip condition 8, 14
non-stoichiometric combustion
75–76
normalization 426
notches 230
NTU 115
number of heat transfer units (NTU)
115
Nusselt number 103, 104
Nyquist plot 361, 363–364
Nyquist stability criterion 363–364
octane 131
octane number 131
Ohm’s law 285
one-seventh law 10
open feed heaters 126, 128
operator D method 329
order of magnitude analysis 17
orifice plate 342
orthogonality of modes 424–425
Otto cycle 131–132
overall heat transfer coefficient 101,
112
overdamped system 357, 358
overhead power lines 455–456
oxidizers 74–75
p–h diagram 67
pancake motors 285
parachute 24
paracyclic machines 48
parallel axis theorem 207
parallel flow 109, 112
Paris equation 238
partial pressures
law of 58–61, 69
and partial volumes 71
partial volumes
law of 71
and partial pressures 71
particular integral 412
pass-out turbine 129–130
per unit slip 293
perfect gases 51
periodic excitation 418–423
permanent magnet motors 273,
284–285
perpendicular axis theorem 209
petrol 131
phase angle 414
phase diagrams 414
phase margin 364
phase relative to excitation 413An Introduction to Mechanical Engineering: Part 2
478
specific speed 45
specific steam consumption (SSC)
121
spontaneous ignition 135
spring, transfer function 338
spring back 163
spring–damper system 329–330,
335–336, 337
square wave 295
stability 362–364
Nyquist criterion 363–364
Routh–Hurwitz criterion
362–363
stable equilibrium 168–169
stalling 267
standard conditions 83
starting characteristics, matching
315–316
state diagrams (process diagrams) 49,
52
static deflection shape 440
static friction (‘stiction’) 259–260
statically determinate problems 195
statically indeterminate beams
157–159
statically indeterminate problems
196
stationary field 268
stator 292
steady flow energy equation (SFEE)
48, 49
steady-state characteristics of loads
259–265
matching 313–315
modifying using transmission
265–266
steady-state error 352, 354–356
steady-state heat transfer 97
steady-state operating points 311–312
steady-state response 413
steam engine 318
steam plant 129
steam power plant 47
steam railway locomotives 313
steam turbine 46, 129–130
shaft 438–439
Stefan–Boltzmann law 105–106
step input 354
stiffness matrix 404
stoichiometric combustion 75–76
strain, thermal 239
strain energy 217–226
in bar under tension 218–219
beam under bending 220
combined 225–226
shaft with added masses 438–439,
442–443
shaft whirl 394–395, 438–439
shape factor 14–15
shear centre 184, 191, 193–194
shear stress 185–194
See also transverse shear stress
distribution
complementary 185
shell-and-tube heat exchangers 109,
113
ship engine 446
shock absorbers 405
short-shunt motor 273, 282–283
shrink/interference fit 202–205
shunt motor See dc shunt motor
similarity principle 40
simple harmonic motion 381
simply supported beams 398–400
single-axle caravan 385–389,
407–408
single degree of freedom structures
378–384
See also damped single-degree-offreedom systems
single-degree-of-freedom dynamic
models of complex systems
443–446
single-phase bridge inverter 294–295
single-point systems 136
singular points 368
singularity functions 152, 155
method of See Macaulay’s
method
skin–friction coefficient 14
sliding friction 259–260
slip 293
small perturbations 342
small-scale yielding 234
Soderberg line 229
soft starter 303
solid/fluid boundary 107
solids, burning 81–82
spark ignition engines 132, 133–134
performance assessment 134–137
spark ignition (SI) 131
spark timing 135–136
specific fuel consumption (SFC) 267
specific heat at constant pressure 50,
69
specific heat at constant volume 50,
69
specific humidity See absolute
humidity
specific measures 50
reversible (ideal) work done 92
reversible processes 49
Reynolds number 4, 34, 103–104
boundary layer 8–9
critical 7
living things 10
rigid bar, axially loaded 169–170
rigid body mode 394
rocker system 383–384, 406–407
rods, compressive loading 180–183
root locus method 365–375
applications 372–375
mass–spring–damper system
365–366
rotating discs 199–206
rotation of axes 208–209
rotational inertia 248
rotational load, with viscous
characteristics 340
rotor 292
rotor resistance 301
rotor standstill reactance 301
roughness ratio 34
Routh array 362–363
Routh–Hurwitz criterion 362–363
s domain 326
block diagrams and 331–334
S–N design procedure 230–231
satellite isolation system 446
saturation pressure 59
saturation temperature 59
screw drives 258
second law of thermodynamics 49,
53–54
corollaries 53
second moments of area 207–212
about parallel axes 207
second-order ordinary differential
equation with constant
coefficients 408
second-order systems
critically damped 357, 358
overdamped 357, 358
underdamped 357, 358
secondary flows 32
self-acting valves 90
semi-perfect gases 50–51
sensors 341
separately excited motor 273,
283–284
series motors
connected to ac supplies 273, 282
dc 273, 278–282
SFEE See steady flow energy equationIndex
479
asymmetric channel section
190–191
circular section 186–187
I-section 187–189
rectangular section 186
T-section 191–192
Tresca yield criterion 146
tuned vibration absorbers 377, 429,
453–456
turbine–alternator sets 392
turbine rotor disc 205–206
turbines 42, 46, 54, 129–130
shaft 438–439
turbocharger 136
turbomachinery 42–43
turbulent boundary layer 10–12
formulae for development 15
turbulent flow 7–8
turbulent-shear stresses 32
two-degrees-of-freedom system
lowest natural frequency
estimation 437–438
mode shape estimation 440
steady-state response 427–429
two-dimensional stress systems 147
two-pole induction motor 292–294
two-stroke cycle engine 132–133
ultimate products 76
undamped multi-degree-of-freedom
structure, forced response
426–429
undamped natural frequency 409,
417
underdamped system 357, 358
uniform beams, flexural vibration
395–404
uniformly distributed load (UDL)
153–154
unit modal mass 426
‘universal motor’ 273
unmixed stream 115
unstable equilibrium 168–169
V2500 engine 392–394
vacuum cleaners 282
valve geometries 29–30
vane motor 305–306
vapour power cycles 54, 119–130
variable-ratio drives 252, 316
vee belt/pulley systems 251–252
vehicle model, 2D 389–390
vehicles 258
velocity boundary layer 102
velocity profile 10–12
thermal radiation 105
thermal resistance 98–99
thermal runaway 321
thermal strain 239
thermal stress 239–246
initially straight uniform beam
239–242
thin cylinders 245–246
thin disc of uniform thickness
243–245
thermometers 61
thick cylinders 195–206
with body forces 199–206
compatibility 197, 200
equilibrium 196, 199–200
with pistons 201–202
stress–strain relationships 197–199,
200–201
thin cylinders 195
three-dimensional stress systems
147–148
three-term control 352–354
threshold stress intensity factor range
238
throttles 54, 267
thyristor 286
thyristor bridge rectifier 286–287
three-phase 289–290
top dead centre (TDC) 91
torque, inflence of inefficiency on
transmission 255
torque–slip characteristics 301
torque–speed curves 265–266,
299–300, 302
torque–speed–SFC map 267
torsional load 191
torsional stiffness 382
torsional systems 392–394
total life approach 228–231
toughness 233, 234
train, ground-borne vibration 446
transfer functions 323, 334–337
closed-loop 335, 357, 366
conversion of block diagrams to
348–350
open-loop 334–335, 359,
363–364, 366
of simple components 337–343
transferring heat 46
transient response 408, 412–413
transmissibility analysis 448–451
transmission ratio 265–266, 313
transverse failure 145
transverse shear stress distribution
184–186
maximum 439
per unit volume 219
in shaft under torsion 219
strain energy release rate 233
streamlining strategy 24–25
stress
See also plane stress; shear stress;
thermal stress
residual 163
three-dimensional 147–148
two-dimensional 147
stress concentration, effect 230
stress concentration factor (SCF) 230
stress intensity factor 233, 235
effects of finite boundaries
235–236
stress–strain curves 144
uniaxial 159–160
stress tensor 2
stroke 91
Strouhal number 34
struts 168
eccentrically loaded 176–178,
181
ideal 170–176
summing junctions 343
supercharging 136
superheated steam 124
superposition, principle of 140
surface roughness 20–22
pipes and ducts 27
suspension bridges 395
swamp cooler 58
swashplate 309
swept–sine test 433
swept volume 91
swing-check valve 30
symmetric sections 208
system, defining 47
T-section, shear stress distribution in
191–192
tachogenerator 341
Tacoma Narrows Bridge 376, 384
tangential drives 256
tangentially driven loads 256–259
tanks 341–342
TDC (top dead centre) 91
televisions 318
thermal boundary layer 102
thermal capacity 103
thermal capacity rate 110
thermal conductivity 97
thermal diffusivity 103
thermal efficiency 120, 135An Introduction to Mechanical Engineering: Part 2
480
windage 261–262
woodworking tools 282
work 51–52
work ratio 120
work transfer, gas mixture 74
working fluid 46
worm gears 264
yield criteria 144–149
Young’s Modulus 144
z domain 326
zeros 366, 369
von Mises yield criterion 146
vortex shedding 34–35, 455
wall roughness 12–13
water, state diagram 56
water horsepower 42
Watt, James 318
wavenumber 396
web, transverse shear in 187–188
Weber number 34, 36
wet bulb thermometer 61
wet products 78
wheel-hop mode 389
wide open throttle (WOT) 133, 267
velocity scale 4, 16
venturi 136
vibration control techniques
446–456
viscosity 260
viscous damping 405
viscous friction 260–261
volatiles 81
voltage 285
volume fraction
and mass fraction 72, 73–74
and molar fraction 73
volumetric analysis 71–74
volumetric efficiency 93–94, 135


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب An Introduction to Mechanical Engineering
رابط مباشر لتنزيل كتاب An Introduction to Mechanical Engineering
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب An Introduction to Mechanical Engineering
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب An Introduction to Mechanical Engineering
» كتاب An Introduction to Mechanical Engineering
» كتاب Introduction to Mechanical Engineering Science
» كتاب An Introduction to Mechanical Engineering - Fourth Edition
» كتاب An Introduction to Mechanical Engineering SI Edition - Enhanced Fourth Edition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: