كتاب Fundamentals of Materials Science and Engineering
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Fundamentals of Materials Science and Engineering

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 19001
التقييم : 35505
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Materials Science and Engineering  Empty
مُساهمةموضوع: كتاب Fundamentals of Materials Science and Engineering    كتاب Fundamentals of Materials Science and Engineering  Emptyالسبت 10 يوليو 2021, 11:36 am

أخوانى فى الله
أحضرت لكم كتاب
Fundamentals of Materials Science and Engineering
4th Edition
AN INTEGRATED APPROACH
William D. Callister, Jr.
Department of Metallurgical Engineering
The University of Utah
David G. Rethwisch
Department of Chemical and Biochemical Engineering
The University of Iowa

كتاب Fundamentals of Materials Science and Engineering  F_o_m_19
و المحتوى كما يلي :


Contents
• xv
LIST OF SYMBOLS xxiii
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 2
1.3 Why Study Materials Science and
Engineering? 4
1.4 Classification of Materials 5
Materials of Importance—Carbonated
Beverage Containers 9
1.5 Advanced Materials 10
1.6 Modern Materials Needs 12
1.7 Processing/Structure/Properties/
Performance Correlations 13
Summary 15
References 16
Question 16
2. Atomic Structure and Interatomic
Bonding 17
Learning Objectives 18
2.1 Introduction 18
ATOMIC STRUCTURE 18
2.2 Fundamental Concepts 18
2.3 Electrons in Atoms 19
2.4 The Periodic Table 25
ATOMIC BONDING IN SOLIDS 26
2.5 Bonding Forces and Energies 26
2.6 Primary Interatomic Bonds 28
2.7 Secondary Bonding or van der Waals
Bonding 32
Materials of Importance—Water (Its
Volume Expansion Upon Freezing) 34
2.8 Molecules 35
Summary 35
Equation Summary 36
Processing/Structure/Properties/Performance
Summary 36
Important Terms and Concepts 37
References 37
Questions and Problems 37
Fundamentals of Engineering Questions and
Problems 39
3. Structures of Metals and Ceramics 40
Learning Objectives 41
3.1 Introduction 41
CRYSTAL STRUCTURES 42
3.2 Fundamental Concepts 42
3.3 Unit Cells 42
3.4 Metallic Crystal Structures 43
3.5 Density Computations—Metals 47
3.6 Ceramic Crystal Structures 48
3.7 Density Computations—Ceramics 54
3.8 Silicate Ceramics 55
3.9 Carbon 59
Materials of Importance—Carbon
Nanotubes 60
3.10 Polymorphism and Allotropy 61
3.11 Crystal Systems 61
Material of Importance—Tin (Its Allotropic
Transformation) 63
CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND
PLANES 64
3.12 Point Coordinates 64
3.13 Crystallographic Directions 66
3.14 Crystallographic Planes 72
3.15 Linear and Planar Densities 76
3.16 Close-Packed Crystal Structures 77
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 81
3.17 Single Crystals 81
3.18 Polycrystalline Materials 81
3.19 Anisotropy 81
3.20 X-Ray Diffraction: Determination of
Crystal Structures 83
3.21 Noncrystalline Solids 87
Summary 89
Equation Summary 91
Processing/Structure/Properties/Performance
Summary 92Important Terms and Concepts 93
References 94
Questions and Problems 94
Fundamentals of Engineering Questions and
Problems 101
4. Polymer Structures 102
Learning Objectives 103
4.1 Introduction 103
4.2 Hydrocarbon Molecules 103
4.3 Polymer Molecules 105
4.4 The Chemistry of Polymer Molecules 106
4.5 Molecular Weight 111
4.6 Molecular Shape 113
4.7 Molecular Structure 115
4.8 Molecular Configurations 116
4.9 Thermoplastic and Thermosetting
Polymers 120
4.10 Copolymers 121
4.11 Polymer Crystallinity 122
4.12 Polymer Crystals 125
Summary 128
Equation Summary 129
Processing/Structure/Properties/Performance
Summary 130
Important Terms and Concepts 130
References 131
Questions and Problems 131
Fundamentals of Engineering Questions and
Problems 133
5. Imperfections in Solids 134
Learning Objectives 135
5.1 Introduction 135
POINT DEFECTS 136
5.2 Point Defects in Metals 136
5.3 Point Defects in Ceramics 137
5.4 Impurities in Solids 140
5.5 Point Defects in Polymers 143
5.6 Specification of Composition 143
MISCELLANEOUS IMPERFECTIONS 147
5.7 Dislocations—Linear Defects 147
5.8 Interfacial Defects 150
5.9 Bulk or Volume Defects 153
5.10 Atomic Vibrations 153
MICROSCOPIC EXAMINATION 153
5.11 Basic Concepts of Microscopy 153
Materials of Importance—Catalysts (and
Surface Defects) 154
5.12 Microscopic Techniques 155
5.13 Grain Size Determination 159
Summary 161
Equation Summary 163
Processing/Structure/Properties/Performance
Summary 164
Important Terms and Concepts 165
References 165
Questions and Problems 165
Design Problems 169
Fundamentals of Engineering Questions and
Problems 169
6. Diffusion 170
Learning Objectives 171
6.1 Introduction 171
6.2 Diffusion Mechanisms 172
6.3 Steady-State Diffusion 173
6.4 Nonsteady-State Diffusion 175
6.5 Factors That Influence Diffusion 179
6.6 Diffusion in Semiconducting Materials 184
Material of Importance—Aluminum for
Integrated Circuit Interconnects 187
6.7 Other Diffusion Paths 188
6.8 Diffusion in Ionic and Polymeric
Materials 188
Summary 191
Equation Summary 192
Processing/Structure/Properties/Performance
Summary 193
Important Terms and Concepts 194
References 195
Questions and Problems 195
Design Problems 198
Fundamentals of Engineering Questions and
Problems 199
7. Mechanical Properties 200
Learning Objectives 201
7.1 Introduction 201
7.2 Concepts of Stress and Strain 202
ELASTIC DEFORMATION 205
7.3 Stress–Strain Behavior 205
7.4 Anelasticity 209
7.5 Elastic Properties of Materials 209
MECHANICAL BEHAVIOR—METALS 211
7.6 Tensile Properties 212
7.7 True Stress and Strain 219
7.8 Elastic Recovery After Plastic
Deformation 222
7.9 Compressive, Shear, and Torsional
Deformation 222
xvi • ContentsMECHANICAL BEHAVIOR—CERAMICS 223
7.10 Flexural Strength 223
7.11 Elastic Behavior 224
7.12 Influence of Porosity on the Mechanical
Properties of Ceramics 224
MECHANICAL BEHAVIOR—POLYMERS 226
7.13 Stress–Strain Behavior 226
7.14 Macroscopic Deformation 228
7.15 Viscoelastic Deformation 229
HARDNESS AND OTHER MECHANICAL PROPERTY
CONSIDERATIONS 233
7.16 Hardness 233
7.17 Hardness of Ceramic Materials 238
7.18 Tear Strength and Hardness of
Polymers 239
PROPERTY VARIABILITY AND DESIGN/SAFETY
FACTORS 239
7.19 Variability of Material Properties 239
7.20 Design/Safety Factors 242
Summary 243
Equation Summary 246
Processing/Structure/Properties/Performance
Summary 248
Important Terms and Concepts 249
References 250
Questions and Problems 250
Design Problems 258
Fundamentals of Engineering Questions and
Problems 259
8. Deformation and Strengthening
Mechanisms 260
Learning Objectives 261
8.1 Introduction 261
DEFORMATION MECHANISMS FOR
METALS 261
8.2 Historical 262
8.3 Basic Concepts of Dislocations 262
8.4 Characteristics of Dislocations 264
8.5 Slip Systems 265
8.6 Slip in Single Crystals 267
8.7 Plastic Deformation of Polycrystalline
Metals 270
8.8 Deformation by Twinning 272
MECHANISMS OF STRENGTHENING IN
METALS 273
8.9 Strengthening by Grain Size Reduction 273
8.10 Solid-Solution Strengthening 275
8.11 Strain Hardening 276
RECOVERY, RECRYSTALLIZATION, AND GRAIN
GROWTH 279
8.12 Recovery 279
8.13 Recrystallization 280
8.14 Grain Growth 284
DEFORMATION MECHANISMS FOR CERAMIC
MATERIALS 285
8.15 Crystalline Ceramics 285
8.16 Noncrystalline Ceramics 286
MECHANISMS OF DEFORMATION AND FOR
STRENGTHENING OF POLYMERS 287
8.17 Deformation of Semicrystalline Polymers 287
8.18 Factors That Influence the Mechanical
Properties of Semicrystalline
Polymers 290
Materials of Importance—Shrink-Wrap
Polymer Films 292
8.19 Deformation of Elastomers 293
Summary 295
Equation Summary 298
Processing/Structure/Properties/Performance
Summary 299
Important Terms and Concepts 302
References 302
Questions and Problems 302
Design Problems 307
Fundamentals of Engineering Questions and
Problems 307
9. Failure 308
Learning Objectives 309
9.1 Introduction 309
FRACTURE 310
9.2 Fundamentals of Fracture 310
9.3 Ductile Fracture 310
9.4 Brittle Fracture 312
9.5 Principles of Fracture Mechanics 314
9.6 Brittle Fracture of Ceramics 322
9.7 Fracture of Polymers 326
9.8 Fracture Toughness Testing 328
FATIGUE 332
9.9 Cyclic Stresses 333
9.10 The S-N Curve 334
9.11 Fatigue in Polymeric Materials 337
9.12 Crack Initiation and Propagation 337
9.13 Factors That Affect Fatigue Life 339
9.14 Environmental Effects 341
CREEP 342
9.15 Generalized Creep Behavior 343
Contents • xvii9.16 Stress and Temperature Effects 344
9.17 Data Extrapolation Methods 346
9.18 Alloys for High-Temperature Use 347
9.19 Creep in Ceramic and Polymeric
Materials 347
Summary 348
Equation Summary 351
Important Terms and Concepts 352
References 352
Questions and Problems 352
Design Problems 357
Fundamentals of Engineering Questions and
Problems 357
10. Phase Diagrams 359
Learning Objectives 360
10.1 Introduction 360
DEFINITIONS AND BASIC CONCEPTS 360
10.2 Solubility Limit 361
10.3 Phases 362
10.4 Microstructure 362
10.5 Phase Equilibria 362
10.6 One-Component (or Unary) Phase
Diagrams 363
BINARY PHASE DIAGRAMS 365
10.7 Binary Isomorphous Systems 365
10.8 Interpretation of Phase Diagrams 367
10.9 Development of Microstructure in
Isomorphous Alloys 371
10.10 Mechanical Properties of Isomorphous
Alloys 374
10.11 Binary Eutectic Systems 374
10.12 Development of Microstructure in
Eutectic Alloys 380
Materials of Importance—Lead-Free
Solders 381
10.13 Equilibrium Diagrams Having Intermediate
Phases or Compounds 387
10.14 Eutectoid and Peritectic Reactions 390
10.15 Congruent Phase Transformations 391
10.16 Ceramic Phase Diagrams 391
10.17 Ternary Phase Diagrams 395
10.18 The Gibbs Phase Rule 396
THE IRON–CARBON SYSTEM 398
10.19 The Iron–Iron Carbide (Fe–Fe3C) Phase
Diagram 398
10.20 Development of Microstructure in
Iron–Carbon Alloys 401
10.21 The Influence of Other Alloying
Elements 408
Summary 409
Equation Summary 411
Processing/Structure/Properties/Performance
Summary 412
Important Terms and Concepts 412
References 414
Questions and Problems 414
Fundamentals of Engineering Questions and
Problems 420
11. Phase Transformations 421
Learning Objectives 422
11.1 Introduction 422
PHASE TRANSFORMATIONS IN METALS 422
11.2 Basic Concepts 423
11.3 The Kinetics of Phase Transformations 423
11.4 Metastable Versus Equilibrium
States 433
MICROSTRUCTURAL AND PROPERTY CHANGES IN
IRON–CARBON ALLOYS 434
11.5 Isothermal Transformation Diagrams 434
11.6 Continuous-Cooling Transformation
Diagrams 445
11.7 Mechanical Behavior of Iron–Carbon
Alloys 448
11.8 Tempered Martensite 452
11.9 Review of Phase Transformations and
Mechanical Properties for Iron–Carbon
Alloys 455
Materials of Importance—Shape-Memory
Alloys 456
PRECIPITATION HARDENING 459
11.10 Heat Treatments 459
11.11 Mechanism of Hardening 461
11.12 Miscellaneous Considerations 464
CRYSTALLIZATION, MELTING, AND GLASS
TRANSITION PHENOMENA IN POLYMERS 464
11.13 Crystallization 464
11.14 Melting 465
11.15 The Glass Transition 466
11.16 Melting and Glass Transition
Temperatures 466
11.17 Factors That Influence Melting and Glass
Transition Temperatures 467
Summary 469
Equation Summary 472
Processing/Structure/Properties/Performance
Summary 473
Important Terms and Concepts 475
References 475
Questions and Problems 476
xviii • ContentsDesign Problems 480
Fundamentals of Engineering Questions and
Problems 481
12. Electrical Properties 483
Learning Objectives 484
12.1 Introduction 484
ELECTRICAL CONDUCTION 484
12.2 Ohm’s Law 484
12.3 Electrical Conductivity 485
12.4 Electronic and Ionic Conduction 486
12.5 Energy Band Structures in Solids 486
12.6 Conduction in Terms of Band and Atomic
Bonding Models 488
12.7 Electron Mobility 490
12.8 Electrical Resistivity of Metals 491
12.9 Electrical Characteristics of Commercial
Alloys 494
Materials of Importance—Aluminum
Electrical Wires 494
SEMICONDUCTIVITY 496
12.10 Intrinsic Semiconduction 496
12.11 Extrinsic Semiconduction 499
12.12 The Temperature Dependence of Carrier
Concentration 502
12.13 Factors That Affect Carrier Mobility 503
12.14 The Hall Effect 507
12.15 Semiconductor Devices 509
ELECTRICAL CONDUCTION IN IONIC CERAMICS
AND IN POLYMERS 515
12.16 Conduction in Ionic Materials 516
12.17 Electrical Properties of Polymers 516
DIELECTRIC BEHAVIOR 517
12.18 Capacitance 517
12.19 Field Vectors and Polarization 519
12.20 Types of Polarization 522
12.21 Frequency Dependence of the Dielectric
Constant 524
12.22 Dielectric Strength 525
12.23 Dielectric Materials 525
OTHER ELECTRICAL CHARACTERISTICS OF
MATERIALS 525
12.24 Ferroelectricity 525
12.25 Piezoelectricity 526
Summary 527
Equation Summary 530
Processing/Structure/Properties/Performance
Summary 531
Important Terms and Concepts 535
References 535
Questions and Problems 535
Design Problems 539
Fundamentals of Engineering Questions and
Problems 540
13. Types and Applications of
Materials 542
Learning Objectives 543
13.1 Introduction 543
TYPES OF METAL ALLOYS 543
13.2 Ferrous Alloys 543
13.3 Nonferrous Alloys 556
Materials of Importance—Metal Alloys
Used for Euro Coins 565
TYPES OF CERAMICS 566
13.4 Glasses 567
13.5 Glass-Ceramics 567
13.6 Clay Products 569
13.7 Refractories 569
13.8 Abrasives 571
13.9 Cements 571
13.10 Advanced Ceramics 573
Materials of Importance—Piezoelectric
Ceramics 575
13.11 Diamond and Graphite 576
TYPES OF POLYMERS 577
13.12 Plastics 577
Materials of Importance—Phenolic Billiard
Balls 580
13.13 Elastomers 580
13.14 Fibers 582
13.15 Miscellaneous Applications 583
13.16 Advanced Polymeric Materials 584
Summary 588
Processing/Structure/Properties/Performance
Summary 590
Important Terms and Concepts 592
References 592
Questions and Problems 592
Design Questions 593
Fundamentals of Engineering Questions and
Problems 594
14. Synthesis, Fabrication, and Processing
of Materials 595
Learning Objectives 596
14.1 Introduction 596
FABRICATION OF METALS 596
Contents • xix14.2 Forming Operations 597
14.3 Casting 598
14.4 Miscellaneous Techniques 600
THERMAL PROCESSING OF METALS 601
14.5 Annealing Processes 601
14.6 Heat Treatment of Steels 604
FABRICATION OF CERAMIC MATERIALS 613
14.7 Fabrication and Processing of Glasses and
Glass-Ceramics 615
14.8 Fabrication and Processing of Clay
Products 620
14.9 Powder Pressing 624
14.10 Tape Casting 626
SYNTHESIS AND FABRICATION OF
POLYMERS 627
14.11 Polymerization 627
14.12 Polymer Additives 630
14.13 Forming Techniques for Plastics 631
14.14 Fabrication of Elastomers 634
14.15 Fabrication of Fibers and Films 634
Summary 635
Processing/Structure/Properties/Performance
Summary 637
Important Terms and Concepts 641
References 642
Questions and Problems 642
Design Problems 644
Fundamentals of Engineering Questions and
Problems 645
15. Composites 646
Learning Objectives 647
15.1 Introduction 647
PARTICLE-REINFORCED COMPOSITES 649
15.2 Large-Particle Composites 649
15.3 Dispersion-Strengthened
Composites 653
FIBER-REINFORCED COMPOSITES 653
15.4 Influence of Fiber Length 654
15.5 Influence of Fiber Orientation and
Concentration 655
15.6 The Fiber Phase 663
15.7 The Matrix Phase 665
15.8 Polymer-Matrix Composites 665
15.9 Metal-Matrix Composites 671
15.10 Ceramic-Matrix Composites 672
15.11 Carbon–Carbon Composites 674
15.12 Hybrid Composites 674
15.13 Processing of Fiber-Reinforced
Composites 675
STRUCTURAL COMPOSITES 677
15.14 Laminar Composites 677
15.15 Sandwich Panels 678
Materials of Importance—Nanocomposite
Barrier Coatings 679
Summary 681
Equation Summary 683
Important Terms and Concepts 684
References 684
Questions and Problems 684
Design Problems 687
Fundamentals of Engineering Questions and
Problems 688
16. Corrosion and Degradation of
Materials 689
Learning Objectives 690
16.1 Introduction 690
CORROSION OF METALS 691
16.2 Electrochemical Considerations 691
16.3 Corrosion Rates 697
16.4 Prediction of Corrosion Rates 699
16.5 Passivity 705
16.6 Environmental Effects 706
16.7 Forms of Corrosion 707
16.8 Corrosion Environments 714
16.9 Corrosion Prevention 715
16.10 Oxidation 717
CORROSION OF CERAMIC MATERIALS 720
DEGRADATION OF POLYMERS 720
16.11 Swelling and Dissolution 720
16.12 Bond Rupture 722
16.13 Weathering 724
Summary 724
Equation Summary 726
Important Terms and Concepts 728
References 728
Questions and Problems 728
Design Problems 731
Fundamentals of Engineering Questions and
Problems 732
17. Thermal Properties 733
Learning Objectives 734
17.1 Introduction 734
17.2 Heat Capacity 734
17.3 Thermal Expansion 738
xx • ContentsMaterials of Importance—Invar and Other
Low-Expansion Alloys 740
17.4 Thermal Conductivity 741
17.5 Thermal Stresses 744
Summary 746
Equation Summary 747
Important Terms and Concepts 748
References 748
Questions and Problems 748
Design Problems 750
Fundamentals of Engineering Questions and
Problems 750
18. Magnetic Properties 751
Learning Objectives 752
18.1 Introduction 752
18.2 Basic Concepts 752
18.3 Diamagnetism and Paramagnetism 756
18.4 Ferromagnetism 758
18.5 Antiferromagnetism and Ferrimagnetism 759
18.6 The Influence of Temperature on Magnetic
Behavior 763
18.7 Domains and Hysteresis 764
18.8 Magnetic Anisotropy 767
18.9 Soft Magnetic Materials 768
Materials of Importance—An Iron–Silicon
Alloy That Is Used in Transformer
Cores 769
18.10 Hard Magnetic Materials 770
18.11 Magnetic Storage 773
18.12 Superconductivity 776
Summary 779
Equation Summary 781
Important Terms and Concepts 782
References 782
Questions and Problems 782
Design Problems 785
Fundamentals of Engineering Questions and
Problems 785
19. Optical Properties 786
Learning Objectives 787
19.1 Introduction 787
BASIC CONCEPTS 787
19.2 Electromagnetic Radiation 787
19.3 Light Interactions With Solids 789
19.4 Atomic and Electronic Interactions 790
OPTICAL PROPERTIES OF METALS 791
OPTICAL PROPERTIES OF NONMETALS 792
19.5 Refraction 792
19.6 Reflection 794
19.7 Absorption 794
19.8 Transmission 798
19.9 Color 798
19.10 Opacity and Translucency in
Insulators 800
APPLICATIONS OF OPTICAL PHENOMENA 801
19.11 Luminescence 801
19.12 Photoconductivity 801
Materials of Importance—Light-Emitting
Diodes 802
19.13 Lasers 804
19.14 Optical Fibers in Communications 808
Summary 810
Equation Summary 812
Important Terms and Concepts 813
References 813
Questions and Problems 814
Design Problem 815
Fundamentals of Engineering Questions and
Problems 815
20. Economic, Environmental, and
Societal Issues in Materials Science
and Engineering 816
Learning Objectives 817
20.1 Introduction 817
ECONOMIC CONSIDERATIONS 817
20.2 Component Design 818
20.3 Materials 818
20.4 Manufacturing Techniques 818
ENVIRONMENTAL AND SOCIETAL
CONSIDERATIONS 819
20.5 Recycling Issues in Materials Science and
Engineering 821
Materials of Importance—Biodegradable
and Biorenewable Polymers/Plastics 824
Summary 826
References 827
Design Questions 827
Appendix A The International System of
Units (SI) 828
Appendix B Properties of Selected
Engineering Materials 830
B.1 Density 830
B.2 Modulus of Elasticity 833
B.3 Poisson’s Ratio 837
B.4 Strength and Ductility 838
Contents • xxiB.5 Plane Strain Fracture Toughness 843
B.6 Linear Coefficient of Thermal Expansion 845
B.7 Thermal Conductivity 848
B.8 Specific Heat 851
B.9 Electrical Resistivity 854
B.10 Metal Alloy Compositions 857
Appendix C Costs and Relative Costs for
Selected Engineering Materials 859
Appendix D Repeat Unit Structures for
Common Polymers 864
xxii • Contents
Appendix E Glass Transition and Melting
Temperatures for Common Polymeric
Materials 868
Mechanical Engineering Online
Support Module
Library of Case Studies
Glossary 869
Answers to Selected Problems 882
Index 886• xxiii
The number of the section in which a symbol is introduced or explained is given in
parentheses.
List of Symbols
A area
Å angstrom unit
Ai atomic weight of element i (2.2)
APF atomic packing factor (3.4)
a lattice parameter: unit cell x-axial
length (3.4)
a crack length of a surface crack (9.5)
at% atom percent (5.6)
B magnetic flux density (induction) (18.2)
B
r magnetic remanence (18.7)
BCC body-centered cubic crystal structure (3.4)
b lattice parameter: unit cell y-axial
length (3.11)
b Burgers vector (5.7)
C capacitance (12.18)
Ci concentration (composition) of
component i in wt% (5.6)
Ci concentration (composition) of
component i in at% (5.6)
C , Cp heat capacity at constant volume,
pressure (17.2)
CPR corrosion penetration rate (16.3)
CVN Charpy V-notch (9.8)
%CW percent cold work (8.11)
c lattice parameter: unit cell z-axial
length (3.11)
c , cp specific heat at constant volume,
pressure (17.2)
D diffusion coefficient (6.3)
D dielectric displacement (12.19)
DP degree of polymerization (4.5)
d diameter
d average grain diameter (8.9)
dhkl interplanar spacing for planes of Miller
indices h, k, and l (3.20)
E energy (2.5)
E modulus of elasticity or Young’s
modulus (7.3)
y
y
e electric field intensity (12.3)
Ef
Fermi energy (12.5)
Eg
band gap energy (12.6)
E
r(t) relaxation modulus (7.15)
%EL ductility, in percent
elongation (7.6)
e electric charge per
electron (12.7)
e electron (16.2)
erf Gaussian error function (6.4)
exp e, the base for natural
logarithms
F force, interatomic or mechanical
(2.5, 7.2)
f Faraday constant (16.2)
FCC face-centered cubic crystal
structure (3.4)
G shear modulus (7.3)
H magnetic field strength (18.2)
Hc
magnetic coercivity (18.7)
HB Brinell hardness (7.16)
HCP hexagonal close-packed crystal
structure (3.4)
HK Knoop hardness (7.16)
HRB, HRF Rockwell hardness: B and F
scales (7.16)
HR15N, HR45W superficial Rockwell hardness:
15N and 45W scales (7.16)
HV Vickers hardness (7.16)
h Planck’s constant (19.2)
(hkl) Miller indices for a
crystallographic plane (3.14)
I electric current (12.2)
I intensity of electromagnetic
radiation (19.3)
i current density (16.3)
iC corrosion current
density (16.4)J diffusion flux (6.3)
J electric current density (12.3)
Kc
fracture toughness (9.5)
KIc plane strain fracture toughness for
mode I crack surface displacement (9.5)
k Boltzmann’s constant (5.2)
k thermal conductivity (17.4)
l length
l
c critical fiber length (15.4)
ln natural logarithm
log logarithm taken to base 10
M magnetization (18.2)
polymer number-average molecular
weight (4.5)
polymer weight-average molecular
weight (4.5)
mol% mole percent
N number of fatigue cycles (9.10)
NA Avogadro’s number (3.5)
Nf
fatigue life (9.10)
n principal quantum number (2.3)
n number of atoms per unit cell (3.5)
n strain-hardening exponent (7.7)
n number of electrons in an
electrochemical reaction (16.2)
n number of conducting electrons per
cubic meter (12.7)
n index of refraction (19.5)
n for ceramics, the number of formula
units per unit cell (3.7)
ni intrinsic carrier (electron and hole)
concentration (12.10)
P dielectric polarization (12.19)
P–B ratio Pilling–Bedworth ratio (16.10)
p number of holes per cubic meter (12.10)
Q activation energy
Q magnitude of charge stored (12.18)
R atomic radius (3.4)
R gas constant
%RA ductility, in percent reduction in
area (7.6)
r interatomic distance (2.5)
r reaction rate (16.3)
rA, rC anion and cation ionic radii (3.6)
S fatigue stress amplitude (9.10)
SEM scanning electron microscopy
or microscope
T temperature
Tc
Curie temperature (18.6)
TC superconducting critical temperature
(18.12)
Tg
glass transition temperature (11.15)
Tm
melting temperature
TEM transmission electron microscopy
or microscope
M
w
Mn

TS tensile strength (7.6)
t time
t
r rupture lifetime (9.15)
Ur
modulus of resilience (7.6)
[uw] indices for a crystallographic
direction (3.13)
V electrical potential difference
(voltage) (12.2)
VC unit cell volume (3.4)
VC corrosion potential (16.4)
VH Hall voltage (12.14)
Vi volume fraction of phase i (10.8)
velocity
vol% volume percent
Wi mass fraction of phase i (10.8)
wt% weight percent (5.6)
x length
x space coordinate
Y dimensionless parameter or function in
fracture toughness expres​sion(9.5)
y space coordinate
z space coordinate
lattice parameter: unit cell y–z interaxial
angle (3.11)
, ,  phase designations
l linear coefficient of thermal
expansion (17.3)
 lattice parameter: unit cell x–z interaxial
angle (3.11)
 lattice parameter: unit cell x–y interaxial
angle (3.11)
 shear strain (7.2)
 precedes the symbol of a parameter to
denote finite change
 engineering strain (7.2)
 dielectric permittivity (12.18)

r dielectric constant or relative
permittivity (12.18)
.s
steady-state creep rate (9.16)
T true strain (7.7)
 viscosity (8.16)
 overvoltage (16.4)
 Bragg diffraction angle (3.20)
D Debye temperature (17.2)
 wavelength of electromagnetic radiation
(3.20)
magnetic permeability (18.2)
B Bohr magneton (18.2)
r relative magnetic permeability (18.2)
e electron mobility (12.7)
h hole mobility (12.10)
 Poisson’s ratio (7.5)
 frequency of electromagnetic
radiation (19.2)
density (3.5)
y
xxiv • List of Symbols electrical resistivity (12.2)
t radius of curvature at the tip of a crack (9.5)
engineering stress, tensile or compressive (7.2)
electrical conductivity (12.3)
* longitudinal strength (composite) (15.5)
c
critical stress for crack propagation (9.5)
fs flexural strength (7.10)
m
maximum stress (9.5)
m
mean stress (9.9)

m stress in matrix at composite failure (15.5)
T true stress (7.7)

w safe or working stress (7.20)
y
yield strength (7.6)
shear stress (7.2)
c fiber–matrix bond strength/matrix shear
yield strength (15.4)
crss critical resolved shear stress (8.6)
m magnetic susceptibility (18.2)
Subscripts
c composite
cd discontinuous fibrous composite
cl longitudinal direction (aligned fibrous
composite)
ct transverse direction (aligned fibrous
composite)
f final
f at fracture
f fiber
i instantaneous
m matrix
m, max maximum
min minimum
0 original
0 at equilibrium
0 in a vacuum
886 •
Index
A
Abrasive ceramics, 566, 571
Abrasives, 869
Absorption coefficient, 797
Absorption of light:
in metals, 791–792
in nonmetals, 792–800
Absorptivity, 790
ABS polymer, 578
A
mBnXp crystal structures, 57
Acceptors, 500, 869
Acetic acid, 106
Acetylene, 104
Acid rain, as corrosion
environment, 714
Acids (organic), 106
Acid slags, 570
Acrylics, see Poly(methyl
methacrylate)
Acrylonitrile, see Polyacrylonitrile
(PAN)
Acrylonitrile-butadiene rubber,
581
Acrylonitrile-butadiene-styrene
(ABS), 578
Activation energy, 869
for creep, 345
for diffusion, 180, 426
free, 425, 429
for viscous flow, 643
Activation polarization,
699–701, 869
Actuator, 11, 573
Addition polymerization,
627–628, 869
Additives, polymer, 630–631
Adhesives, 583–584, 869
Adhesive tape, 17
Adipic acid (structure), 630
Adsorption, 154
Advanced ceramics, 566, 573–576
Advanced materials, 10–12
Advanced polymers, 584–588
Age hardening, see Precipitation
hardening
Air, as quenching medium, 609
AISI/SAE steel designation
scheme, 547
Akermanite, 61
Alcohols, 106
Aldehydes, 106
Alkali metals, 25
Alkaline earth metals, 25
Allotropic transformation (tin), 67
Allotropy, 65, 869
Alloys, 5, 869. See also Solid
solutions; specific alloys
atomic weight equations, 145
cast, 556
composition specification,
143–144
compositions for various,
857–858
costs, 859–861
defined, 140
density equations, 145
density values, 830–832
ductility values, 838–841
electrical resistivity values,
854–855
fracture toughness values, 319,
843–844
heat treatable, 556
high-temperature, 347
linear coefficient of thermal
expansion values, 845–846
low expansion, 740
modulus of elasticity values,
833–835
Poisson’s ratio values, 837
specific heat values, 851–852
strengthening, see Strengthening
of metals
tensile strength values, 838–841
thermal conductivity values,
848–849
wrought, 556
yield strength values, 838–841
Alloy steels, 442, 544, 869
See also Steels
Alnico, 771
-Iron, see Ferrite ()
Alternating copolymers, 121,
122, 869
Alumina, see Aluminum oxide
Aluminosilicates, 620
Aluminum:
atomic radius and crystal
structure, 47
bonding energy and melting
temperature, 30
elastic and shear moduli, 206
electrical conductivity, 491
electrical wires, 494–496
for integrated circuit
interconnects, 187–188
Poisson’s ratio, 206
recrystallization temperature, 283
slip systems, 266
superconducting critical
temperature, 778
thermal properties, 737
yield and tensile strengths,
ductility, 217
Aluminum alloys, 558–559
fatigue behavior, 355
plane strain fracture toughness,
319, 843
precipitation hardening, 461–463
properties and applications, 559
Aluminum-copper alloys, phase
diagram, 462
Aluminum-lithium alloys, 558, 559
Aluminum oxide:
electrical conductivity, 515
flexural strength, 217, 841
Page numbers in italics refer to the glossary.Aluminum oxide (Continued)
hardness, 239
index of refraction, 793
modulus of elasticity, 206, 835
plane strain fracture toughness,
319, 844
Poisson’s ratio, 206, 838
sintered microstructure, 626
stress-strain behavior, 225
thermal properties, 737
translucency, 4, 800
as whiskers and fibers, 664
Aluminum oxide-chromium oxide
phase diagram, 392
Ammonia, bonding energy and
melting temperature, 30
Amorphous materials, 46,
91–92, 869
Anelasticity, 209, 869
Angle computation between two
crystallographic directions,
269
Anions, 53, 869
Anisotropy, 85–86, 869
of elastic modulus, 86, 210
magnetic, 767–769
Annealing, 601, 602–604, 869
ferrous alloys, 602–604
glass, 618
Annealing point, glass, 618, 869
Annealing twins, 152
Anodes, 691, 869
area effect, galvanic corrosion, 707
sacrificial, 716, 878
Antiferromagnetism, 759, 869
temperature dependence, 763
Aramid:
cost as a fiber, 863
fiber-reinforced polymer-matrix
composites, 667–668
melting and glass transition
temperatures, 868
properties as fiber, 664
repeat unit structure, 667, 866
Argon, bonding energy and melting temperature, 30
Aromatic hydrocarbons (chain
groups), 106, 467
Arrhenius equation, 431
Artificial aging, 464, 869
Asphaltic concrete, 651
ASTM standards, 202
Atactic configuration, 118, 869
Athermal transformation, 441, 869
Atomic bonding, see Bonding
Atomic mass, 18
Atomic mass unit (amu), 19, 869
Atomic models:
Bohr, 19–20, 21, 870
wave-mechanical, 20, 21, 880
Atomic number, 18, 869
Atomic packing factor, 48, 869
Atomic point defects, 135–136,
137–139
Atomic radii, of selected metals, 47
Atomic structure, 18–26
Atomic vibrations, 153, 735, 869
Atomic weight, 19, 869
metal alloys, equations for, 145
Atom percent, 144, 869
Austenite, 398, 869
shape-memory phase
transformations, 457–458
transformations, 434–448
summary, 455–456
Austenitic stainless steels, 548, 549
Austenitizing, 603, 869
Automobiles, rusted and stainless
steel, 689
Automobile transmission, 170
Auxetic materials, 210
Average value, 240
Avogadro’s number, 19
Avrami equation, 433, 465
AX crystal structures, 56–57
A
mXp crystal structures, 57
B
Bainite, 438–439, 446, 456, 869
mechanical properties, 451
Bakelite, see Phenol-formaldehyde
(Bakelite)
Ball bearings, ceramic, 574, 576
Band gap, 488–490
Band gap energy, 869
determination of, 537
selected semiconductors, 497
Bands, see Energy bands
Barcol hardness, 239
Barium ferrite (as magnetic
storage medium), 775
Barium titanate:
crystal structure, 57, 525–526
as dielectric, 525
as ferroelectric, 525–526
as piezoelectric, 527, 575
Base (transistor), 511–512
Basic refractories, 570
Basic slags, 570
Beachmarks (fatigue), 338
Bend strength, 224. See also
Flexural strength
Beryllia, 571
Beryllium-copper alloys, 556–557
Beverage containers, 1, 816
corrosion of, 816
diffusion rate of CO2 through,
190–191
stages of production, 595
Bifunctional repeat units, 109, 870
Billiard balls, 542, 580
Bimetallic strips, 733
Binary eutectic alloys, 374–387
Binary isomorphous alloys, 365–374
mechanical properties, 374
microstructure development,
equilibrium cooling, 371–372
microstructure development,
nonequilibrium cooling,
372–374
Biodegradable beverage can, 816
Biodegradable polymers/plastics,
824–825
Biomass, 825
Biomaterials, 11
Biorenewable polymers/plastics,
824–825
Block copolymers, 121, 122, 870
Blowing, of glass, 617
Blow molding, plastics, 634
Body-centered cubic structure,
48–49, 870
Burgers vector for, 267
slip systems, 266
twinning in, 272
Bohr atomic model, 19–20, 21, 870
Bohr magneton, 756, 870
Boltzmann’s constant, 136, 870
Bonding:
carbon-carbon, 108
cementitious, 572
covalent, 30–31, 52, 871
hybrid sp, 23
hydrogen, 32, 33, 874
ionic, 28–29, 52–53, 874
metallic, 31–32, 875
van der Waals, see van der Waals
bonding
Bonding energy, 28, 870
and melting temperature for
selected materials, 30
Bonding forces, 26–27
Bond rupture, in polymers,
722–724
Index • 887Bone, as composite, 648
Boron carbide:
hardness, 239
Boron:
boron-doped silicon
semiconductors, 501
fiber-reinforced composites,
668, 671
properties as a fiber, 664
Borosilicate glass:
composition, 567
electrical conductivity, 515
viscosity, 616
Borsic fiber-reinforced composites,
672
Bottom-up science, 12
Bragg’s law, 87–89, 870
Branched polymers, 115, 116, 870
Brass, 556, 557, 870
annealing behavior, 282
elastic and shear moduli, 206
electrical conductivity, 491
fatigue behavior, 355
phase diagram, 388, 389
Poisson’s ratio, 206
recrystallization temperature, 283
stress corrosion, 713
stress-strain behavior, 214
thermal properties, 737
yield and tensile strengths,
ductility, 217
Brazing, 600, 870
Breakdown, dielectric, 511, 525
Bridge, suspension, 200
Brinell hardness tests, 234,
235–236
Brittle fracture, 215–216, 308, 310,
312–315, 870
ceramics, 322–326
Brittle materials, thermal shock,
745–746
Bronze, 556, 557, 870
Bronze age, 2
Bronze, photomicrograph, coring,
374
Buckminsterfullerene, 65
Burgers vector, 148, 870
for FCC, BCC, and HCP, 267
magnitude computation, 303
Butadiene:
degradation resistance, 722
melting and glass transition
temperatures, 868
repeat unit structure, 122, 865
Butane, 104–105
C
Cadmium sulfide:
color, 799
electrical characteristics, 497
Calcination, 572, 870
Calendering, 676
Capacitance, 517–518, 870
Capacitors, 517–522
Carbon:
vs. graphite, 664, 667
polymorphism, 65
Carbon black, as reinforcement in
rubbers, 581, 651
Carbon-carbon composites,
674, 870
Carbon diffusion, in steels, 402, 453
Carbon dioxide emissions, 154
Carbon dioxide (pressuretemperature phase diagram),
421
Carbon fiber-reinforced polymermatrix composites, 666–667,
668
Carbon fibers, 666–667
properties as fiber, 664
Carbon nanotubes, 12, 64
Carburizing, 175, 177, 870
Case-hardened gear, 170
Case hardening, 170, 341, 342, 870
Cast alloys, 556
Casting techniques:
metals, 598–599
plastics, 634
slip, 621–622
tape, 626–627
Cast irons, 400, 544, 549–555, 870
annealing, 604
compositions, mechanical
properties, and applications,
552
graphite formation in, 550
heat treatment effect on
microstructure, 554
phase diagram, 550, 554
stress-strain behavior (gray), 251
Catalysts, 154
Catalytic converters
(automobiles), 134, 154
Cathodes, 692, 870
Cathodic protection, 708,
715–716, 870
Cations, 53, 870
Cemented carbide, 650–651
Cementite, 398–400, 870
decomposition, 550, 554
proeutectoid, 405–406
in white iron, 551, 553
Cementitious bond, 572
Cements, 566, 571–573, 870
Ceramic ball bearings, 574, 576
Ceramic-matrix composites,
672–674, 870
Ceramics, 6–7, 870. See also Glass
advanced, 573–576
application-classification scheme,
566
brittle fracture, 322–326
coefficient of thermal expansion
values, 737, 846–847
color, 799
corrosion, 720
costs, 861–862
crystal structures, 52–58
summary, 58
defects, 137–140
defined, 6–7
density computation, 58–59
density values, 832
elastic modulus values, 206,
835–836
electrical conductivity values for
selected, 515
electrical resistivity values,
855–856
fabrication techniques
classification, 615
flexural strength values, 217,
841–842
fractography of, 324–326
fracture toughness values,
319, 844
impurities in, 142
indices of refraction, 793
as electrical insulators, 516, 525
magnetic, 759–763
mechanical properties of,
223–226
in MEMS, 574
phase diagrams, 391–395
piezoelectric, 11, 575
plastic deformation, 285–286
Poisson’s ratio values, 206, 838
porosity, 224–226, 625–626
porosity, influence on properties,
224–226
silicates, 59–62
specific heat values, 737, 853
as superconductors, 778
thermal conductivity values,
737, 850
888 • IndexCeramics (Continued)
thermal properties, 737, 739,
742–743, 745
traditional, 573
traditional vs. new, 573
translucency and opacity, 800
Cercor (glass-ceramic), 568
Cermets, 650, 870
Cesium chloride structure, 56
Chain-folded model, 125–126, 870
Chain-reaction polymerization, see
Addition polymerization
Chain stiffening/stiffness, 115,
467, 468
Charge carriers:
majority vs. minority, 500
temperature dependence,
502–503
Charpy impact test, 328–329, 870
Chevron markings, 312
Chips, semiconductor, 514
Chlorine, bonding energy and
melting temperature, 30
Chloroprene, repeat unit structure,
122, 865
Chloroprene rubber:
characteristics and applications,
581
melting and glass transition
temperatures, 868
Cis, 119, 870
Clay, characteristics, 620
Clay products, 566, 569
drying and firing, 569, 622–624
fabrication, 620–622
Cleavage (brittle fracture), 313
Clinker, 572
Close-packed ceramic crystal
structures, 83–84
Close-packed metal crystal
structures, 81–83
Coarse pearlite, 436–437, 446, 870
Coatings (polymer), 583
Cobalt:
atomic radius and crystal
structure, 47
Curie temperature, 763
as ferromagnetic material, 758
magnetization curves (single
crystal), 768
Coercivity (coercive force), 765, 870
Cold work, percent, 276
Cold working, 870. See also Strain
hardening
Collector, 511–512
Color, 870
metals, 791–792
nonmetals, 798–799
Colorants, 631, 870
Compacted graphite iron,
544, 551, 555
Compliance, creep, 232
Component, 360, 396, 870
Composites:
aramid fiber-reinforced polymer,
667–668
carbon-carbon, 674, 870
carbon fiber-reinforced polymer,
666–667
ceramic-matrix, 672–674
classification scheme, 649
costs, 863
definition, 10, 648
dispersion-strengthened, 653
elastic behavior:
longitudinal, 657–658
transverse, 659–660
fiber-reinforced, see Fiberreinforced composites
glass fiber-reinforced polymer,
665–666
hybrid, 674–675, 874
laminar, 649, 663, 677–678, 874
large-particle, 649–653
metal-matrix, 671–672
particle-reinforced, 649–653
production processes, 675–677
properties, glass-, carbon-,
aramid-fiber reinforced, 668
rule of mixtures expressions, 650,
657, 660, 661, 662, 670
strength:
longitudinal, 661
transverse, 662
stress-strain behavior, 655–656
structural, 677–679
Composition, 870
conversion equations,
144–145, 167
specification of, 143–144
Compression molding, plastics, 632
Compression tests, 204
Compressive deformation, 203, 222
Computers:
semiconductors in, 513–515
magnetic drives in, 773–775
Concentration, 143, 870. See also
Composition
Concentration cells, 709
Concentration gradient, 174, 870
Concentration polarization,
701–702, 870
Concentration profile, 174, 870
Concrete, 651–653, 870
electrical conductivity, 515
plane strain fracture toughness,
319, 844
Condensation polymerization,
629, 870
Conducting polymers, 516–517
Conduction:
electronic, 486
ionic, 486, 516
Conduction band, 488, 871
Conductivity, see Electrical
conductivity; Thermal
conductivity
Configuration, molecular, 116–119
Conformation, molecular, 114
Congruent phase transformations,
391–392, 871
Constitutional diagrams, see Phase
diagrams
Continuous casting, 599
Continuous-cooling transformation
diagrams, 445–448, 871
4340 steel, 448
1.13 wt% C steel, 478
0.76 wt% C steel, 445
for glass-ceramic, 568
Continuous fibers, 654
Conventional hard magnetic
materials, 771
Conversion factors, magnetic units,
755
Cooling rate, of cylindrical rounds,
609
Coordinates, point, 68–70
Coordination numbers, 48, 50,
53–54, 871
Copolymers, 108, 121–122, 871
styrenic block, 587–588
Copper:
atomic radius and crystal
structure, 47
diffraction pattern, 105
elastic and shear moduli, 206
electrical conductivity, 491
OFHC, 494
Poisson’s ratio, 206
recrystallization, 283, 433
slip systems, 266
thermal properties, 737
yield and tensile strengths,
ductility, 217
Index • 889Copper alloys, 556–557
properties and applications of,
557
Copper-aluminum phase diagram,
462
Copper-beryllium alloys, 494,
556–557
phase diagram, 481
Copper-nickel alloys:
ductility vs. composition, 275, 375
electrical conductivity, 492
phase diagram, 365–366
tensile strength vs. composition,
275, 375
yield strength vs. composition, 275
Copper-silver phase diagram,
375, 397
Coring, 374
CorningWare (glass-ceramic), 568
Corrosion, 871
of beverage cans, 816
ceramic materials, 720
electrochemistry of, 691–696
environmental effects, 706
environments, 714–715
forms of, 707–714
galvanic series, 697, 698
overview of, 690
passivity, 705–706, 876
rates, 697–699
prediction of, 699–705
Corrosion fatigue, 342, 871
Corrosion inhibitors, 715
Corrosion penetration rate,
698–699, 871
Corrosion prevention, 715–716
Corundum, 571. See also
Aluminum oxide
crystal structure, 104
Cost of various materials, 859–863
Coulombic force, 29, 871
Covalency, degree of, 31
Covalent bonding, 30–31,
52–53, 104, 871
Crack configurations in ceramics,
324
Crack critical velocity, 324
Crack formation, 310
in ceramics, 324
fatigue and, 337
glass, 619
Crack propagation, 310. See also
Fracture mechanics
in brittle fracture, 312–313
in ceramics, 322–326
in ductile fracture, 310–311
fatigue and, 337–339
Cracks:
stable vs. unstable, 310
Crack surface displacement modes,
318
Crazing, 327
Creep, 342–346, 871
ceramics, 347
influence of temperature and
stress on, 344–345
mechanisms, 345
in polymers, 232, 347
stages of, 343–344
steady-state rate, 343
viscoelastic, 232
Creep compliance, 232
Creep modulus, 232
Creep rupture tests, 343
data extrapolation, 346–347
Crevice corrosion, 708–709, 871
Cristobalite, 60–61, 395
Critical cooling rate:
ferrous alloys, 446–448
glass-ceramics, 568
Critical fiber length, 654–655
Critical resolved shear stress,
268, 871
as related to dislocation density,
304
Critical stress (fracture), 316
Critical temperature, superconductivity, 776, 778
Critical velocity (crack), 324, 325
Crosslinking, 115, 116, 871
elastomers, 293–294
influence on viscoelastic
behavior, 232
thermosetting polymers, 120
Crystalline materials, 46, 85, 871
defects, 136–153
single crystals, 85, 878
Crystallinity, polymers,
122–124, 871
influence on mechanical
properties, 290–291
Crystallites, 125, 871
Crystallization, polymers, 464–465
Crystallographic directions, 70–76
easy and hard magnetization, 767
families, 72
hexagonal crystals, 72–76
Crystallographic planes, 76–80
atomic arrangements, 79
close-packed, ceramics, 83–84
close-packed, metals, 81–83
diffraction by, 87–89
families, 79
hexagonal crystals, 79–80
Crystallographic point coordinates,
68–70
Crystal structures, 46–50, 871. See
also Body-centered cubic
structure; Close-packed
crystal structures; Facecentered cubic structure;
Hexagonal close-packed
structure
ceramics, 52–58
close-packed, ceramics, 83–84
close-packed, metals, 81–83
determination by x-ray
diffraction, 87–91
selected metals, 47
types, ceramics, 52–58, 83–84
types, metals, 47–51, 81–83
Crystallization (ceramics), 567,
620, 871
Crystal systems, 65–66, 871
Cubic crystal system, 65, 66
Cubic ferrites, 759–762
Cunife, 771, 772
Cup-and-cone fracture, 311
Curie temperature, 763, 871
ferroelectric, 526
ferromagnetic, 737
Curing, plastics, 632
Current density, 485
Cyclic stresses, 333–334
D
Damping capacity, steel vs. cast
iron, 553
Data scatter, 239–241
Debye temperature, 736
Decarburization, 175
Defects, see also Dislocations
atomic vibrations and, 153
dependence of properties on, 135
in ceramics, 137–140, 142
interfacial, 150–153
point, 136–140, 877
in polymers, 143
surface, 153
volume, 153
Defect structure, 137, 871
Deformation:
elastic, see Elastic deformation
elastomers, 293–294
plastic, see Plastic deformation
890 • IndexDeformation mechanism maps
(creep), 345
Deformation mechanisms
(semicrystalline polymers),
elastic deformation, 287, 288
plastic deformation, 287, 289
Degradation of polymers,
720–724, 871
Degree of polymerization, 112, 871
Degrees of freedom, 396
Delayed fracture, 323
Density:
computation for ceramics, 58–59
computation for metal alloys, 145
computation for metals, 51–52
computation for polymers,
124–125
of dislocations, 264
linear atomic, 80–81
planar atomic, 81
polymers (values for), 832–833
ranges for material types
(bar chart), 5
relation to percent crystallinity
for polymers, 123
values for various materials,
830–833
Design, component, 818
Design examples:
cold work and recrystallization,
283–284
conductivity of a p-type
semiconductor, 506–507
cubic mixed-ferrite magnet,
762–763
creep rupture lifetime for an
S-590 steel, 346–347
nonsteady-state diffusion, 183–184
spherical pressure vessel, failure
of, 320–322
steel shaft, alloy/heat treatment
of, 612–613
tensile-testing apparatus, 243
tubular composite shaft,
669–671
Design factor, 242
Design stress, 242, 871
Dezincification, of brass, 711
Diamagnetism, 756–757, 871
Diamond, 63, 576–577
as abrasive, 571
bonding energy and melting
temperature, 30
cost, 861
films, 576–577
hardness, 239
thermal conductivity value, 850
Diamond cubic structure, 63
Die casting, 599
Dielectric breakdown, 511, 525
Dielectric constant, 518, 871
frequency dependence, 524–525
relationship to refractive index,
793
selected ceramics and polymers,
519
Dielectric displacement, 520, 871
Dielectric loss, 525
Dielectric materials, 516–517,
525, 871
Dielectric strength, 525, 871
selected ceramics and polymers,
519
Diffraction (x-ray), 87, 871
Diffraction angle, 90
Diffractometers, 90
Diffusion, 171–172, 871
drive-in, 184–185
grain growth and, 284, 285
in ionic materials, 188
in integrated circuit
interconnects, 187–188
in Si of Cu, Au, Ag, and Al, 188
interstitial, 173, 874
mechanisms, 172–173
and microstructure development,
372–374, 384
nonsteady-state, 175–179, 876
in polymers, 189–191
predeposition, semiconductors,
184–185
in semiconductors, 184–187
short-circuit, 188
steady-state, 173–175, 879
vacancy, 172–173, 188, 880
Diffusion coefficient, 174, 871
relation to ionic mobility, 516
temperature dependence,
179–184
values for various metal systems,
179
Diffusion couples, 171, 196
Diffusion flux, 173, 871
for polymers, 189
Digitization of information/signals,
774, 808
Dimethyl ether, 106
Dimethylsiloxane, 122, 581, 582,
865. See also Silicones;
Silicone rubber
melting and glass transition
temperatures, 868
Diode, 509, 871
Dipole moment, 519
Dipoles:
electric, 32, 871
induced, 32
magnetic, 752–753
permanent, 33
Directional solidification, 347
Directions, see Crystallographic
directions
Discontinuous fibers, 654
Dislocation density, 264, 302,
304, 871
Dislocation etch pits, 260
Dislocation line, 147, 148, 149, 871
Dislocation motion, 262–263
caterpillar locomotion analogy, 263
in ceramics, 285–286
at grain boundaries, 273–274
influence on strength, 274
recovery and, 280
Dislocations, 147–150, 871
in ceramics, 150, 264, 285–286
characteristics of, 264–265
interactions, 265
multiplication, 265
at phase boundaries, 450, 453
pile-ups, 274
plastic deformation and, 211–212,
261–271, 272
in polymers, 143, 150
strain fields, 264–265
Dispersed phase, 648, 871
definition, 648
geometry, 648
Dispersion (optical), 792
Dispersion-strengthened
composites, 653, 871
Disposal of materials, 820–821
Domain growth, 764–765
iron single crystal, 765
Domains, 758, 764, 768, 872
Domain walls, 764
Donors, 500, 872
Doping, 501, 504, 872
Double bonds, 104
Drain casting, 621
Drawing:
glass, 617
influence on polymer properties,
291
metals, 598, 872
polymer fibers, 634, 872
Index • 891Drift velocity, electron, 490
Drive-in diffusion, 184–185
Driving force, 174, 872
electrochemical reactions, 694
grain growth, 284
recrystallization, 280
sintering, 626
steady-state diffusion, 174
Dry corrosion, 717
Dry ice, 421
Drying, clay products, 622–623
Ductile fracture, 215–216,
310–312, 872
Ductile iron, 551, 553, 872
compositions, mechanical
properties, and applications,
552
Ductile-to-brittle transition,
330–332, 872
polymers, 326
and temper embrittlement, 455
Ductility, 215–216, 872
fine and coarse pearlite, 450
precipitation hardened
aluminum alloy, 463
selected materials, 217, 838–843
spheroidite, 450
tempered martensite, 454
Durometer hardness, 236, 239
E
Economics, materials selection:
considerations in materials
engineering, 817–818
tubular composite shaft, 669–671
Eddy currents, 770
Edge dislocations, 147, 262–263,
872. See also Dislocations
interactions, 264–265
E-glass, 664, 666
Elastic deformation, 205–211, 872
Elastic modulus, see Modulus of
elasticity
Elastic (strain) recovery, 222, 872
Elastomers, 227, 293–295, 580–582,
634, 872
in composites, 651
deformation, 293–294
thermoplastic, 587–588
trade names, properties, and
applications, 581
Electrical conduction:
in insulators and semiconductors,
489–490
in metals, 489
Electrical conductivity, 485, 491, 872
ranges for material types
(bar chart), 7
selected ceramics and polymers,
515
selected metals, 491
selected semiconductors, 497
temperature variation (Ge), 537
values for electrical wires, 495
Electrical resistivity, 485, 878. See
also Electrical conductivity
metals
influence of impurities, 493
influence of plastic deformation,
492, 493
influence of temperature,
492–493
values for various materials,
854–857
Electrical wires, aluminum and
copper, 494–496
Electric dipole moment, 519
Electric dipoles, see Dipoles
Electric field, 485, 490, 872
Electrochemical cells, 693–694
Electrochemical reactions, 691–696
Electrodeposition, 693
Electrode potentials, 693–694
values of, 695
Electroluminescence, 803, 872
Electrolytes, 693, 872
Electromagnetic radiation,
787–789
interactions with atoms/electrons,
790–791
Electromagnetic spectrum, 787–788
Electron band structure, see
Energy bands
Electron cloud, 31
Electron configurations, 22–25, 872
elements, 24
periodic table and, 25–26
stable, 23
Electronegativity, 25, 31, 872
influence on solid solubility, 141
values for the elements, 26
Electroneutrality, 137, 872
Electron gas, 489
Electronic conduction, 486, 516
Electronic polarization, 523, 575,
790, 794, 877
Electron microscopy, 157–158
Electron mobility, 490
influence of dopant content on,
504
influence of temperature on,
504–505
selected semiconductors, 497
Electron orbitals, 19
Electron probability distribution,
20, 21
Electrons, 18
conduction process, 498, 511–512
role, diffusion in ionic materials,
188
energy bands, see Energy bands
energy levels, 20–22
free, see Free electrons
scattering, 490–491, 735
in semiconductors, 496–502
temperature variation of
concentration, 502–503
spin, 22, 755–756
valence, 22
Electron states, 872
Electron transitions, 790–791
metals, 791–792
nonmetals, 792–794
Electron volt, 29, 872
Electropositivity, 25, 872
Electrorheological fluids, 11
Elongation, percent, 215
selected materials, 217, 838–843
selected metals, 217
selected polymers, 217
Embrittlement:
hydrogen, 713–714
temper, 455
Embryo, phase particle, 424–426
Emf series, 694–695, 872
Emitter, 511
Endurance limit, 335. See also
Fatigue limit
Energy:
activation, see Activation energy
bonding, 28–30, 870
current concerns about, 12,
820–821
free, 362, 363, 424–426, 873
grain boundary, 151
photon, 789
surface, 150
vacancy formation, 136
Energy band gap, see Band gap
Energy bands, 486–488
structures for metals, insulators,
and semiconductors, 488
Energy levels (states), 19–22,
486–487
Energy and materials, 820
892 • IndexEnergy product, magnetic, 770–771
Engineering stress/strain, 203–204,
879
Entropy, 293, 362, 424
Environmental considerations and
materials, 819–826
Epoxies:
degradation resistance, 721
polymer-matrix composites, 668
repeat unit structure, 864
trade names, characteristics, and
applications, 579
Equilibrium:
definition of, 362
phase, 362–363, 872
Equilibrium diagrams, see Phase
diagrams
Erosion-corrosion, 711–712, 872
Error bars, 241
Error function, Gaussian, 176
Etching, 156
Etch pits, 260
Ethane, 104
Ethers, 106
Ethylene, 104
polymerization, 106–107
Ethylene glycol (structure), 629
Euro coins, alloys used for, 565
Eutectic isotherm, 376
Eutectic phase, 385, 872
Eutectic reactions, 376, 383, 872
iron-iron carbide system, 400
Eutectic structure, 383, 872
Eutectic systems:
binary, 374–387
microstructure development,
380–387
Eutectoid, shift of position, 408
Eutectoid ferrite, 404
Eutectoid reactions, 390, 872
iron-iron carbide system, 400
kinetics, 434–436
Eutectoid steel, microstructure
changes/development,
401–403
Exchange current density, 700
Excited states, 791, 872
Exhaustion, in extrinsic
semiconductors, 502
Expansion, thermal, see
Thermal expansion
Extrinsic semiconductors,
499–502, 872
electron concentration vs.
temperature, 503
exhaustion, 502
saturation, 502
Extrusion, 872
clay products, 621
metals, 598
polymers, 633
F
Fabrication:
ceramics, 615–627
clay products, 620–624
fiber-reinforced composites,
675–677
metals, 597–601
Face-centered cubic structure,
47–48, 872
anion stacking (ceramics), 83–84
Burgers vector for, 267
close packed planes (metals), 81–83
slip systems, 265–266
Factor of safety, 242, 321
Failure, mechanical, see Creep;
Fatigue; Fracture
Faraday constant, 696
Fatigue, 332–342, 872
corrosion, 342
crack initiation and propagation,
337–339
cyclic stresses, 333–334
environmental effects, 341–342
low- and high-cycle, 336
polymers, 337
probability curves, 336
thermal, 341–342
Fatigue damage, commercial
aircraft, 308
Fatigue life, 336, 872
factors that affect, 339–341
Fatigue limit, 335, 872
Fatigue strength, 335, 336, 872
Fatigue testing, 334–335
S-N curves, 334–337, 355
Feldspar, 620
Fermi energy, 488, 501, 736, 872
Ferrimagnetism, 759–763, 872
temperature dependence, 763
Ferrite (), 398–400, 872
eutectoid/proeutectoid,
404–405, 877
from decomposition of
cementite, 550
Ferrites (magnetic ceramics),
759–761, 872
Curie temperature, 763
as magnetic storage, 775
Ferritic stainless steels, 548, 529
Ferroelectricity, 525–526, 873
Ferroelectric materials, 525–526
Ferromagnetic domain walls, 153
Ferromagnetism, 758–759, 873
temperature dependence, 763
Ferrous alloys, 873. See also Cast
irons; Iron; Steels
annealing, 601–604
classification, 401, 544
continuous-cooling
transformation diagrams,
445–448
costs, 859–860
hypereutectoid, 405–408, 874
hypoeutectoid, 403–405, 874
isothermal transformation
diagrams, 434–444
microstructures, 401–408
mechanical properties of,
448–452, 838–839
Fiber efficiency parameter,
663, 685
Fiberglass, 567
Fiberglass-reinforced composites,
665–666
Fiber-reinforced composites,
653–677, 873
continuous and aligned, 655–661
discontinuous and aligned, 662
discontinuous and randomly
oriented, 662–663
fiber length effect, 654–655
fiber orientation/concentration
effect, 655–663
fiber phase, 663–665
longitudinal loading, 655–659,
660–661
matrix phase, 665
processing, 675–677
reinforcement efficiency, 663
transverse loading, 659–660, 661
Fibers, 582–583, 873
coefficient of thermal expansion
values, 847
in composites, 649
continuous vs. discontinuous,
654–655
fiber phase, 663–665
length effect, 654–655
orientation and concentration,
655–663
costs, 863
density values, 833
elastic modulus values, 664, 836
Index • 893Fibers (Continued)
electrical resistivity values, 857
optical, 808–810
polymer, 582–583
properties of selected, 664
specific heat values, 853
spinning of, 634
tensile strength values, 664, 842
thermal conductivity values, 851
Fick’s first law, 174, 741, 873
for polymers, 189
Fick’s second law, 175–176, 749, 873
Fictive temperature, 615
Filament winding, 676–677
Fillers, 630, 873
Films:
diamond, 576, 577
polymer, 584
shrink-wrap (polymer), 292
Fine pearlite, 436, 437, 448–449,
450, 452, 873
Fireclay refractories, 570
Firing, 570, 623–624, 873
Flame retardants, 631, 873
Flash memory, 483, 513
Flash memory cards, 483
Flexural deflection, equation for, 256
Flexural strength, 223–224, 873
influence of porosity on,
ceramics, 224–226
values for selected ceramics,
217, 841–842
Float process (sheet glass), 618
Fluorescence, 801, 873
Fluorite structure, 57
Fluorocarbons, 108
trade names, characteristics, and
applications, 578
Flux (clay products), 620, 623
Foams, 584, 873
Forces:
bonding, 26–28
coulombic, 29, 871
Forging, 597, 598, 873
Formaldehyde, 106
Forming operations (metals),
597–598
Forsterite, 61
Forward bias, 510, 511, 873
Fractographic investigations:
ceramics, 324–326
metals, 312
Fractographs:
cup-and-cone fracture surfaces,
312
fatigue striations, 338
glass rod, 326
intergranular fracture, 315
transgranular fracture, 314
Fracture, see also Brittle fracture;
Ductile fracture; Impact
fracture testing
delayed, 323
fundamentals of, 310
polymers, 326–327
types, 215–216, 310–314
Fracture mechanics, 314, 873
applied to ceramics, 322–323
polymers, 328
use in design, 320–322
Fracture profiles, 311
Fracture strength, 214. See also
Flexural strength
ceramics, 223–224
distribution of, 323
influence of porosity, 224–226
influence of specimen size,
323, 663–664
Fracture surface, ceramics, 325–326
Fracture toughness, 218,
317–319, 873
ceramic-matrix composites,
673–674
ranges for material types
(bar chart), 7
testing, 319
values for selected materials,
319, 843–844
Free electrons, 489, 873
contributions to heat capacity,
736
role in heat conduction, 741
Free energy, 362, 424–426, 873
activation, 425, 430
volume, 424
Freeze-out region, 502–503
Frenkel defects, 137, 138, 873
equilibrium number, 139
Full annealing, 446, 603, 873
Fullerenes, 63, 65
Functionality (polymers), 109
Furnace heating elements, 494
Fused silica, 92
characteristics, 567, 616
dielectric properties, 519
electrical conductivity, 515
flexural strength, 217
index of refraction, 793
modulus of elasticity, 206
thermal properties, 737
G
Gadolinium, 758, 761
Gallium arsenide:
cost, 861
electrical characteristics, 497, 498
for lasers, 807
for light-emitting diodes, 802, 815
Gallium phosphide:
electrical characteristics, 497
for light-emitting diodes, 815
Galvanic corrosion, 707–708, 873
Galvanic couples, 693
Galvanic series, 697, 698, 873
Galvanized steel, 566, 716
Garnets, 761
Garnet single crystal, 85
Gas constant, 136, 873
Gating system, 599
Gauge length, 202
Gaussian error function, 176
Gears (transmission), 170
Gecko lizard, 17
Geometrical isomerism, 118–119
Germanium:
crystal structure, 63
electrical characteristics,
497, 503, 537
Gibbs phase rule, 396–397, 873
Gilding metal, 556
Glass:
as amorphous material, 92–93
annealing, 604, 618, 869
blowing, 617
classification, 567
color, 799
commercial, compositions and
characteristics, 567
corrosion resistance, 720
cost, 861–862
dielectric properties, 519
electrical conductivity, 515
flexural strength, 206, 841
forming techniques, 617–618
fracture surface
(photomicrograph), 326
hardness, 239
heat treatment, 618–619
melting point, 616
modulus of elasticity, 206, 835
optical flint, 567
plane strain fracture toughness,
319, 844
refractive index, 793
sheet forming (float process), 618
soda-lime, composition, 567
894 • IndexGlass (Continued)
softening point, 616
strain point, 616
stress-strain behavior, 225
structure, 93
surface crack propagation, 323
tempering, 618–619, 643
thermal properties, 737
viscous properties, 616
working point, 616, 881
Glass-ceramics, 567–568, 873
composition (Pyroceram), 567
continuous-cooling
transformation diagram, 568
fabricating and heat treating,
619–620
flexural strength, 217, 841
modulus of elasticity, 206, 835
optical transparency, conditions
for, 800
properties and applications, 568
Glass fibers, 666
fiberglass-reinforced composites,
665–666, 668
forming, 618
properties as fiber, 664
Glass transition, polymers, 466
Glass transition temperature,
466, 615, 873
factors that affect, polymers,
468–469
values for selected polymers,
467, 868
Gold, 562
atomic radius and crystal
structure, 47
electrical conductivity, 491
slip systems, 266
thermal properties, 737
Graft copolymers, 121, 122, 873
Grain boundaries, 85, 150–151, 873
Grain boundary energy, 151
Grain growth, 284–285, 873
Grains, 873
definition, 85
distortion during plastic
deformation, 270–271
Grain size, 873
dependence on time, 284–285
determination of, 159–160
mechanical properties and, 285
reduction, and strengthening of
metals, 273–274
refinement by annealing, 603
Grain size number (ASTM), 160
Graphite, 63
in cast irons, 550
compared to carbon, 664,
666–667
cost, 862
from decomposition of
cementite, 550
electrical conductivity, 515
properties/applications, 576–577
properties as whisker, 664
as a refractory, 571
structure of, 63
Gray cast iron, 550–553, 873
compositions, mechanical
properties, and applications,
552
Green ceramic bodies, 622, 873
Green design, 821
Ground state, 22, 791, 873
Growth, phase particle, 423,
430–432, 873
rate, 431
temperature dependence of rate,
432
Gutta percha, 119
H
Hackle region, 325–326
Half-cells, standard, 694
Half-reactions, 692
Hall coefficient, 508
Hall effect, 507–509, 873
Hall-Petch equation, 274
Hall voltage, 507
Halogens, 25
Hard disk drives, 773–775
Hardenability, 604–608, 873
Hardenability band, 607, 608
Hardenability curves, 605–608
Hard magnetic materials,
770–773, 873
properties, 772
Hardness, 873
bainite, pearlite vs.
transformation temperature,
451
ceramics, 238–239
comparison of scales, 237
conversion diagram, 237
correlation with tensile strength,
238
fine and coarse pearlite,
spheroidite, 450
pearlite, martensite, tempered
martensite, 452
polymers, 239
tempered martensite, 452, 454
Hardness tests, 233–237
summary of tests, 234
Hard sphere model, 46
Head-to-head configuration, 117
Head-to-tail configuration, 117
Heat affected zone, 600
Heat capacity, 734–737, 873
temperature dependence, 736
vibrational contribution,


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Materials Science and Engineering
رابط مباشر لتنزيل كتاب Fundamentals of Materials Science and Engineering
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Fundamentals of Materials Science and Engineering
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Fundamentals of Materials Science and Engineering
» كتاب Fundamentals of Materials Science and Engineering 5th Edition
» كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach
» كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
» حل كتاب Fundamentals of Materials Science and Engineering - Instructor's Solution Manual

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: