Admin مدير المنتدى
عدد المساهمات : 18962 التقييم : 35392 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Dynamic Models for Structural Plasticity الجمعة 28 مايو 2021, 1:55 am | |
|
أخوانى فى الله أحضرت لكم كتاب Dynamic Models for Structural Plasticity W.J. Stronge and T.X. Yu With 175 Figures
و المحتوى كما يلي :
Contents List of Symbols xvii 1 Elastoplastic and Viscoplastic Constitutive Relations . 1 1.1 Stress Resultants and Generalized Stress - Deformations and Generalized Strain . 1 1.2 Pure Bending of Rate-Independent Bar . 2 1.2.1 Kinematics of Deformation 2 1.2.2 Elastic Constitutive Equation . 4 1.2.3 Stress Resultants (Axial Force and Bending Moment) 4 1.2.4 Elastic-Plastic Constitutive Equations . 5 1.2.5 Elastic-Power Law Hardening Constitutive Equations. ' . 9 1.3 Pure Bending of Rate-Dependent Bar 9 1.3.1 Strain-Rate Dependent Constitutive Equations 9 1.4 Interaction Yield Functions and Associated Plastic Flow 12 1.4.1 Elastic Limit for Bending and Tension . 12 1.4.2 Fully Plastic Limit Surface for Bending and Tension in Elastic-Perfectly Plastic Bar 12 1.4.3 Yield and Fully Plastic Stress Condition . 15 1.4.4 Associated Flow Rule for Plastic Deformations. 16 1.4.5 Separated Yield Functions and Separated Plastic Flow . . . . 18 1.5 Interaction Yield Surfaces Including Shear 19 l.5.1 Tension, Shear and Bending in Rectangular Cross-Section 19 1.5.2 Tension, Torsion and Bending in Circular Cross-Section 20 1.6 Elastic Springback . 23 1.6.1 Pure Bending 23 1.6.2 Bending and Tension 25 References . 27xii Contents 2 Principles of Mechanics . 29 2.1 Kinematics . 29 2.1.1 Inertia Properties of Cross-Section 31 2.2 Balance of Forces . 31 2.2.1 Stress Resultants and Generalized Stresses . 31 2.2.2 Equations of Motion ., 32 2.3 Principle of Virtual Velocity 34 2.3.1 Rate of Change for Kinetic Energy of System 35 2.3.2 Rate of Change for Kinetic Energy of Kinematically Admissible Velocity Field W;C . 35 2.3.3 Extremal Principles for Complete Solution . 36 2.4 Bounds For Rigid-Perfectly Plastic Solids and Structures . 37 2.4.1 Upper and Lower Bounds on Static Collapse Force . . . 37 2.4.2 Lower Bound on Dynamic Response Period 38 2.4.3 Upper Bound on Dynamic Response Period 39 2.4.4 Lower Bound on Final Displacement 40 2.4.5 Upper Bound on Final Displacement 41 2.5 Dynamic Modes Of Deformation . 44 2.5.1 Modal Solutions 44 2.5.2 Properties of Modes . 44 2.5.3 Mode Approximations for Structural Response to Impulsive Loading 47 References . 48 3 Static Deflection 51 3.1 Small Elastic-Plastic Deflections 51 3.1.1 Elastic Deflections 52 3.1.2 Deflection of Elastic-Perfectly Plastic Cantilever . 54 3.1.3 Deflection of Elastic-Linear Strain Hardening Cantilever . 55 3.1.4 Residual Deflection After Elastic Unloading 58 3.1.5 Elastoplastic Beam-Columns . 61 3.2 Large Elastic-Plastic Deflections 63 3.2.1 Elastica: Large Elastic Deflection . 63 3.2.2 Plastica: Large Plastic Deflection . 67 References . 72 4 Dynamic Rigid-Plastic Response . 73 4.1 Step Loading 73 4.1.1 Static and Dynamic Loadings . 73 4.1.2 Moderate Dynamic Load (~ < F < 3Fc) . 75 4.1.3 Intense Dynamic Load (F> 3Fc) . 78 4.2 Rectangular Pulse Loading 80 4.2.1 Three Phases in Response of Cantilever 80 4.2.2 Deformed Shape 84 4.2.3 Energy Dissipation 85 4.2.4 Synopsis 87Contents xiii 4.3 Features of Travelling Hinges . 88 4.4 General Pulse Loading . 90 4.4.1 General Considerations 90 4.4.2 Example: Linearly Decaying Pulse 93 4.4.3 Equivalent Replacement of Arbitrary Pulse . 94 4.5 Impact on Cantilever . 96 4.5.1 Problem and Assumptions . 97 4.5.2 Changing Pattern of Deformation . 98 4.5.3 Acceleration, Force and Bending Moment 101 4.5.4 Deformed Shape 103 4.5.5 Energy Dissipation 105 4.5.6 Modal Approximation . 106 References . - 110 5 Second-Order Effects on Dynamic Response . 111 5.1 Strain-Rate Effect . 111 5.1.1 Impulsive Load on Viscoplastic Cantilever . III 5.1.2 Elementary Estimates of the Effect of Strain-Rate on Final Deformation . 117 5.2 Strain Hardening (Strain Softening) Effect 120 5.2.1 Introduction . 120 5.2.2 Elementary Effect of Strain Hardening on Final Deformation . 121 5.2.3 Dynamic Analysis of Strain Hardening and Strain Softening Cantilevers 123 5.3 Effects of Transverse Shear and Rotary Inertia . . . 132 5.3.1 Interface Conditions for Concentrated Mass 132 5.3.2 Shear Deformation Adjacent to Colliding Particle 134 5.3.3 Shear and Rotary Inertia of Finite Size Colliding Missile . 139 5.3.4 Shear Rupture due to Impact . 144 5.3.5 Measurements of Energy for Shear Rupture 146 5.4 Effect of Large Deflection 149 5.4.1 General Considerations 149 5.4.2 Large Deflection of Impulsively Loaded Cantilever . 150 5.4.3 Methods of Approximating Large Deflection Effects 153 5.4.4 Effect of Centripetal Acceleration on Bending Moment Distribution 155 5.5 Effect of Elastic Deformation . 157 5.5.1 General Considerations . . 157 5.5.2 Mass-Spring Finite Difference Structural Model (MS-FD) 158 5.5.3 Timoshenko Beam Finite Element Structural Model (TB-FE) . , . 163 5.5.4 Dynamic Deformation of Elastic-Plastic Cantilever from Impact 164xiy Contents 5.5.5 Effect of Elastic Deformation at Root of Cantilever . 173 5.5.6 Remarks . 181 5.6 Accuracy of Rigid-Plastic Analyses 182 5.6.1 Accuracy of Rigid-Plastic Analysis Estimated by Single DoF System . 182 5.6.2 Convergence to Dynamic Plastic Mode Studied by Two DoF System 184 5.6.3 Remarks . 187 References . 188 6 More Complex Configurations . 191 6.1 General Considerations . 192 6.1.1 Extremal Properties of Yield Function at Plastic Hinge . 192 6.1.2 Differentiability of Arbitrary Functions at Plastic Hinge . 193 6.1.3 Differentiability of Kinematic Variables at Plastic Hinge . 194 6.1.4 Differentiability of Generalized Stresses at Plastic Hinge . 196 6.1.5 Differentiability of Yield Function at Plastic Hinge . . . 197 6.2 Straight Cantilevers with Smoothly Varying Cross-Sections 199 6.2.1 Yield Function and Conditions at Plastic Hinge . . . 199 6.2.2 Suddenly Applied Steady Force at Tip of Tapered Cantilever: An Example 200 6.3 Oblique Impact on Straight Cantilever 204 6.3.1 Problem and Assumptions . 204 6.3.2 Formulation Based on Single Hinge Mechanism 205 6.3.3 Solution Based on Single-Hinge Mechanism 212 6.4 Circular Arc Cantilever Subjected to In-plane Step Force 215 6.4.1 Engineering Background and Assumptions . 215 6.4.2 Radial Force at Tip . 217 6.4.3 Tangential Force at Tip 221 6.4.4 Discussion . 223 6.5 Circular Arc Cantilever Subjected to In-plane Impact . 224 6.5.1 Rigid-Plastic Formulation . 225 6.5.2 Discussion of Solution 228 6.5.3 Modal Approximation . 231 6.6 Circular Arc Cantilever Subjected to Out-of-Plane Step Force 232 6.6.1 Equations of Motion 233 6.6.2 Solution . 235 6.6.3 Discussion . 240 6.7 Stepped or Bent Cantilever Subjected to Step Force 241Contents 6.7.1 General Considerations . 6.7.2 Stepped Cantilever . 6.7.3 Bent Cantilever . 6.704 Discussion . 6.8 Cantilever with an Initial Crack . 6.8.1 General Considerations 6.8.2 Impact on Cantilever with an Initial Crack . 6.8.3 Crack Stability After Impact 6.804 Numerical Example and Discussion References 7 Impact Experiments . 7.1 Methods of Applying Dynamic Loads 7.1.1 Missile Impact 7.1.2 Explosive Loading . 7.1.3 Magnetomotive Loading 7.2 Travelling Hinges - Fiction or Fact? 7.3 Elastic Effects on Plastic Deformation 7A Strain Hardening and Strain-Rate Effects 704.1 Mode Approximations 704.2 Transient Analysis Including Rate Effects 7.5 Dynamic Rupture . 7.5.1 Location and Mechanism of Rupture 7.5.2 Measurements of Generalized Strain at Rupture . References Index . x Amplification factor for yield stress 269 Associated flow rule 17 Axial force 4, 12, 25, 204 Ballistic pendulum 261 Beam Euler-Bernoulli 159 ideal sandwich 8, 15, 159 Timoshenko 163 Bending moment 4 at yield 5 fully plastic 7 Blast pulse 261 Body force 32 Bounds 37 dynamic response period 38, 39 final displacement 40, 41 static collapse force 37 Cantilever 51, 73, 260, 262 bent 241, 246 circular arc 215, 224, 232 imperfect 250 stepped 241 subjected to impact 96 sUbjected to general pulse 90 subjected to rectangular pulse 80 subjected to step force 73 tapered 201 with initial crack 251 Centripetal acceleration 156 Characteristic load 56 Circular arc cantilever 215, 224, 232 subjected to in-plane force 215 subjected to in-plane impact 225 subjected to out-of-plane force 232 subjected to radial force 217 subjected to tangential force 221 Circular cross-section solid 7, 15, 234 thin-walled 15, 234 Compatibility 30 Complete solution 33 Complex configuration 191 Constitutive relation 1 Contact force 32 Convergence theorem 45 Convergence to dynamic mode 184 Correction factor 122 Cowper-Symonds relation 10, 112 Crack stability 254 Curvature 2, 84, 90, 103 Deflection 51, 84 elastic 52 elastic-perfectly plastic 54 large 149 large elastic 63 large elastic-plastic 67 residual 58 Deformed shape 84, 104, 229 Differentiability 193, 198 Double hinge mechanism 241 Drucker's postulate 17 Dynamically admissible stress 33 Dynamic rupture 144, 270 location 270 mechanism 271 pure shear 144 shl~ar 144, 271 shear-flexure 146 transition of mechanism 272 Effective load 95 Elastica 64 Elastic deformation 157,265 at root of cantilever 173 Elastic springback 23, 265 E1astoplastic beam-column 61 Elliptic integral 65 Energy 35 kinetic 35, 104 she'ar rupture 148 Energy ratio 149, 158, 266 Equation of equilibrium 33 Equation of motion 33 Equivalent replacement of arbitrary pulse 94 Euler-Bernoulli beam 159 Extremal principle 36 Final configuration 104, 264 Finite sized colliding missile 139 Free - free beam 266 Hooke's law 4 Ideal sandwich beam 8, 15, 159 Impact 96, 259278 oblique 204 Impulse 81, 91 effective total 95 total 81, 92 Impulsive loading 42 Initial crack 251 J-integral 254 Kinematic variables 194 Kinematically admissible velocity field (KAVF) 19, 30 Kink 266 Lagrangian reference frame 29 Lee's functional 45 Limit function 13 elastic 13 fully plastic 13 Loading 29 impact 96, 134, 139, 204, 259 impulsive 42, 111, 182 general pulse 90, 261 quasi-static 29, 51 rectangular pulse 80 step force 73, 200, 215, 232, 241 Martin's principle 37 Mass ratio 98 Mass-spring finite difference (MS-FD) model 158 Material 1 elastic 4 elastic-perfectly plastic 5 rigid-perfectly plastic 16 strain-hardening 5 power-law hardening 9 visco-plastic 9 Moment-curvature relation 6 Modal shape 44, 47, 99 Modal solution 44, 106 initial velocity of 48 Mode 44 best 47 convergence 45 configuration 44 dynamic 44, 186 elastic 186 fundamental 45 primary 45 Neutral axis 3, 13 Neutral surface 3 Normality condition 17 Phase transition 82, 99 Plastic collapse force 37, 52, 56 Plastic hinge 52, 75 combined bending-torsion 235 double 241 effective length of 119, 121, 262-3,267 general features of 88 pure torsion 236 stationary 79, 81, 89, 236 travelling 82, 89, 99, 205, 225, 262 Plastica 68 Power law hardening 9 Principle maximum plastic dissipation 17 virtual velocity 34 virtual work 34 Pulse duration 80, 91 Pulse loading 80, 90 blast 261 general 90 half-sine 184 linear decaying 93, 184 rectangular 80 Pure bending 2 Quasi-static loading 29 Rate dependency 9 Rate of dissipation of energy 35 Ratio of fully plastic torque to fully plastic moment 234, 241 Rectangular cross-section 6, 14, 234 Reverse plastic flow 59 Rotary inertia 132, 139 Shape factor 7 for bending 7 for shearing 8 for tension 7 for torsion 8 Shear phase 134 Shear sliding 134, 274 Single DoF system 182 Single hinge mechanism 75, 205 Springback 23, 265 Static admissible stress field 34 Static collapse force 37 Step loading 73 Strain 2 at rupture 272 flexural 272 generalized 2 stretching 272 Strain-hardening 5, 55 effect of 120, 266 Strain-rate 9 effect of 111, 266 Strain-softening 121 Stress 1 generalized 2 resultants 1, 32 safe state of 35 ultimate 264 Tamuzh's principle 37 Tearing modulus 254 Tensile tearing 271 IndexIndex Timoshenko beam 163 Timoshenko beam finite element (TB-FE) model 164 Traction 32 Transient phase 98 Transverse shear 132 Two DoF system 184 Virtual velocity 34 Virtual work 34 Virtual work rate 34 Yield condition 5, 15 interactive 12 separated 18 Yield criterion 15 Tresca 15 Von Mises 16 Yield function 15, 192 differentiability of 197 extremal properties of 192
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Dynamic Models for Structural Plasticity رابط مباشر لتنزيل كتاب Dynamic Models for Structural Plasticity
|
|