Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Materials Science and Engineering - An Introduction الأربعاء 07 أبريل 2021, 1:50 am | |
|
أخوانى فى الله أحضرت لكم كتاب Materials Science and Engineering - An Introduction William D. Callister, Jr. Department of Metallurgical Engineering The University of Utah David G. Rethwisch Department of Chemical and Biochemical Engineering The University of Iowa
و المحتوى كما يلي :
Contents List of Symbols Xix 1. Introduction 1 Learning Objectives 2 1.1 Historical Perspective 2 1.2 Materials Science and Engineering 3 1.3 Why Study Materials Science and Engineering? 5 Case Study—Liberty Ship Failures 6 1.4 Classification of Materials 7 Case Study—Carbonated Beverage Containers 12 1.5 Advanced Materials 14 1.6 Modern Materials’ Needs 16 Summary 17 References 18 2. Atomic Structure and Interatomic Bonding 19 Learning Objectives 20 2.1 Introduction 20 ATOMIC STRUCTURE 20 2.2 Fundamental Concepts 20 2.3 Electrons in Atoms 22 2.4 The Periodic Table 28 ATOMIC BONDING IN SOLIDS 30 2.5 Bonding Forces and Energies 30 2.6 Primary Interatomic Bonds 32 2.7 Secondary Bonding or van der Waals Bonding 39 Materials of Importance—Water (Its Volume Expansion Upon Freezing) 42 2.8 Mixed Bonding 43 2.9 Molecules 44 2.10 Bonding Type-Material Classification Correlations 44 Summary 45 Equation Summary 46 List of Symbols 46 Important Terms and Concepts 46 References 47 3. The Structure of Crystalline Solids 48 Learning Objectives 49 3.1 Introduction 49 CRYSTAL STRUCTURES 49 3.2 Fundamental Concepts 49 3.3 Unit Cells 50 3.4 Metallic Crystal Structures 51 3.5 Density Computations 57 3.6 Polymorphism and Allotropy 57 Material of Importance—Tin (Its Allotropic Transformation) 58 3.7 Crystal Systems 59 CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND PLANES 61 3.8 Point Coordinates 61 3.9 Crystallographic Directions 64 3.10 Crystallographic Planes 70 3.11 Linear and Planar Densities 76 3.12 Close-Packed Crystal Structures 77 CRYSTALLINE AND NONCRYSTALLINE MATERIALS 79 3.13 Single Crystals 79 3.14 Polycrystalline Materials 79 3.15 Anisotropy 81 3.16 X-Ray Diffraction: Determination of Crystal Structures 82 3.17 Noncrystalline Solids 87 Summary 88 Equation Summary 90 List of Symbols 90 Important Terms and Concepts 91 References 91 4. Imperfections in Solids 92 Learning Objectives 93 4.1 Introduction 93 • xixii • Contents POINT DEFECTS 93 4.2 Vacancies and Self-Interstitials 93 4.3 Impurities in Solids 95 4.4 Specification of Composition 98 MISCELLANEOUS IMPERFECTIONS 102 4.5 Dislocations—Linear Defects 102 4.6 Interfacial Defects 105 Materials of Importance—Catalysts (and Surface Defects) 108 4.7 Bulk or Volume Defects 109 4.8 Atomic Vibrations 109 MICROSCOPIC EXAMINATION 110 4.9 Basic Concepts of Microscopy 110 4.10 Microscopic Techniques 111 4.11 Grain-Size Determination 115 Summary 118 Equation Summary 119 List of Symbols 120 Important Terms and Concepts 120 References 120 5. Diffusion 121 Learning Objectives 122 5.1 Introduction 122 5.2 Diffusion Mechanisms 123 5.3 Fick’s First Law 124 5.4 Fick’s Second Law—Nonsteady-State Diffusion 126 5.5 Factors That Influence Diffusion 130 5.6 Diffusion in Semiconducting Materials 135 Materials of Importance—Aluminum for Integrated Circuit Interconnects 138 5.7 Other Diffusion Paths 139 Summary 139 Equation Summary 140 List of Symbols 141 Important Terms and Concepts 141 References 141 6. Mechanical Properties of Metals 142 Learning Objectives 143 6.1 Introduction 143 6.2 Concepts of Stress and Strain 144 ELASTIC DEFORMATION 148 6.3 Stress–Strain Behavior 148 6.4 Anelasticity 151 6.5 Elastic Properties of Materials 151 PLASTIC DEFORMATION 154 6.6 Tensile Properties 154 6.7 True Stress and Strain 161 6.8 Elastic Recovery After Plastic Deformation 164 6.9 Compressive, Shear, and Torsional Deformations 165 6.10 Hardness 165 PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS 171 6.11 Variability of Material Properties 171 6.12 Design/Safety Factors 173 Summary 177 Important Terms and Concepts 178 References 178 7. Dislocations and Strengthening Mechanisms 180 Learning Objectives 181 7.1 Introduction 181 DISLOCATIONS AND PLASTIC DEFORMATION 181 7.2 Basic Concepts 182 7.3 Characteristics of Dislocations 184 7.4 Slip Systems 185 7.5 Slip in Single Crystals 187 7.6 Plastic Deformation of Polycrystalline Materials 190 7.7 Deformation by Twinning 192 MECHANISMS OF STRENGTHENING IN METALS 193 7.8 Strengthening by Grain Size Reduction 193 7.9 Solid-Solution Strengthening 195 7.10 Strain Hardening 196 RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH 199 7.11 Recovery 199 7.12 Recrystallization 200 7.13 Grain Growth 204 Summary 206 Equation Summary 208 List of Symbols 208 Important Terms and Concepts 208 References 208 8. Failure 209 Learning Objectives 210 8.1 Introduction 210 FRACTURE 211 8.2 Fundamentals of Fracture 211Contents • xiii 8.3 Ductile Fracture 211 8.4 Brittle Fracture 213 8.5 Principles of Fracture Mechanics 215 8.6 Fracture Toughness Testing 224 FATIGUE 229 8.7 Cyclic Stresses 229 8.8 The S–N Curve 231 8.9 Crack Initiation and Propagation 235 8.10 Factors That Affect Fatigue Life 237 8.11 Environmental Effects 239 CREEP 240 8.12 Generalized Creep Behavior 240 8.13 Stress and Temperature Effects 241 8.14 Data Extrapolation Methods 244 8.15 Alloys for High-Temperature Use 245 Summary 246 Equation Summary 248 List of Symbols 249 Important Terms and Concepts 249 References 249 9. Phase Diagrams 251 Learning Objectives 252 9.1 Introduction 252 DEFINITIONS AND BASIC CONCEPTS 252 9.2 Solubility Limit 253 9.3 Phases 254 9.4 Microstructure 254 9.5 Phase Equilibria 254 9.6 One-Component (or Unary) Phase Diagrams 255 BINARY PHASE DIAGRAMS 256 9.7 Binary Isomorphous Systems 257 9.8 Interpretation of Phase Diagrams 259 9.9 Development of Microstructure in Isomorphous Alloys 263 9.10 Mechanical Properties of Isomorphous Alloys 266 9.11 Binary Eutectic Systems 266 9.12 Development of Microstructure in Eutectic Alloys 272 Materials of Importance—Lead-Free Solders 273 9.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 279 9.14 Eutectoid and Peritectic Reactions 282 9.15 Congruent Phase Transformations 283 9.16 Ceramic and Ternary Phase Diagrams 284 9.17 The Gibbs Phase Rule 284 THE IRON–CARBON SYSTEM 287 9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 287 9.19 Development of Microstructure in Iron–Carbon Alloys 290 9.20 The Influence of Other Alloying Elements 298 Summary 298 Equation Summary 300 List of Symbols 301 Important Terms and Concepts 301 References 302 10. Phase Transformations: Development of Microstructure and Alteration of Mechanical Properties 303 Learning Objectives 304 10.1 Introduction 304 PHASE TRANSFORMATIONS 304 10.2 Basic Concepts 304 10.3 The Kinetics of Phase Transformations 305 10.4 Metastable Versus Equilibrium States 316 MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON–CARBON ALLOYS 317 10.5 Isothermal Transformation Diagrams 317 10.6 Continuous-Cooling Transformation Diagrams 328 10.7 Mechanical Behavior of Iron–Carbon Alloys 331 10.8 Tempered Martensite 335 10.9 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 338 Materials of Importance—Shape-Memory Alloys 341 Summary 344 Equation Summary 345 List of Symbols 346 Important Terms and Concepts 346 References 346 11. Applications and Processing of Metal Alloys 347 Learning Objectives 348 11.1 Introduction 348 TYPES OF METAL ALLOYS 349 11.2 Ferrous Alloys 349 11.3 Nonferrous Alloys 361 Materials of Importance—Metal Alloys Used for Euro Coins 372FABRICATION OF METALS 373 11.4 Forming Operations 373 11.5 Casting 375 11.6 Miscellaneous Techniques 376 11.7 3D Printing (Additive Manufacturing) 378 THERMAL PROCESSING OF METALS 382 11.8 Annealing Processes 382 11.9 Heat Treatment of Steels 384 11.10 Precipitation Hardening 394 Summary 401 Important Terms and Concepts 403 References 403 12. Structures and Properties of Ceramics 405 Learning Objectives 406 12.1 Introduction 406 CERAMIC STRUCTURES 406 12.2 Crystal Structures 407 12.3 Silicate Ceramics 415 12.4 Carbon 419 12.5 Imperfections in Ceramics 420 12.6 Diffusion in Ionic Materials 424 12.7 Ceramic Phase Diagrams 425 MECHANICAL PROPERTIES 428 12.8 Brittle Fracture of Ceramics 429 12.9 Stress–Strain Behavior 433 12.10 Mechanisms of Plastic Deformation 435 12.11 Miscellaneous Mechanical Considerations 437 Summary 439 Equation Summary 440 List of Symbols 441 Important Terms and Concepts 441 References 441 13. Applications and Processing of Ceramics 442 Learning Objectives 443 13.1 Introduction 443 TYPES AND APPLICATIONS OF CERAMICS 444 13.2 Glasses 444 13.3 Glass–Ceramics 444 13.4 Clay Products 446 13.5 Refractories 446 13.6 Abrasives 449 13.7 Cements 451 13.8 Ceramic Biomaterials 452 13.9 Carbons 453 13.10 Advanced Ceramics 456 FABRICATION AND PROCESSING OF CERAMICS 461 13.11 Fabrication and Processing of Glasses and Glass–Ceramics 462 13.12 Fabrication and Processing of Clay Products 466 13.13 Powder Pressing 471 13.14 Tape Casting 473 13.15 3D Printing of Ceramic Materials 474 Summary 476 Important Terms and Concepts 478 References 478 14. Polymer Structures 479 Learning Objectives 480 14.1 Introduction 480 14.2 Hydrocarbon Molecules 480 14.3 Polymer Molecules 483 14.4 The Chemistry of Polymer Molecules 483 14.5 Molecular Weight 487 14.6 Molecular Shape 490 14.7 Molecular Structure 492 14.8 Molecular Configurations 493 14.9 Thermoplastic and Thermosetting Polymers 496 14.10 Copolymers 497 14.11 Polymer Crystallinity 498 14.12 Polymer Crystals 502 14.13 Defects in Polymers 504 14.14 Diffusion in Polymeric Materials 505 Summary 507 Equation Summary 509 List of Symbols 509 Important Terms and Concepts 510 References 510 15. Characteristics, Applications, and Processing of Polymers 511 Learning Objectives 512 15.1 Introduction 512 MECHANICAL BEHAVIOR OF POLYMERS 512 15.2 Stress–Strain Behavior 512 15.3 Macroscopic Deformation 515 15.4 Viscoelastic Deformation 515 15.5 Fracture of Polymers 519 15.6 Miscellaneous Mechanical Characteristics 521 xiv • ContentsMECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 522 15.7 Deformation of Semicrystalline Polymers 522 15.8 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 524 Materials of Importance—Shrink-Wrap Polymer Films 528 15.9 Deformation of Elastomers 528 CRYSTALLIZATION, MELTING, AND GLASSTRANSITION PHENOMENA IN POLYMERS 530 15.10 Crystallization 531 15.11 Melting 532 15.12 The Glass Transition 532 15.13 Melting and Glass Transition Temperatures 532 15.14 Factors That Influence Melting and Glass Transition Temperatures 534 POLYMER TYPES 536 15.15 Plastics 536 Materials of Importance—Phenolic Billiard Balls 539 15.16 Elastomers 539 15.17 Fibers 541 15.18 Miscellaneous Applications 542 15.19 Polymeric Biomaterials 543 15.20 Advanced Polymeric Materials 545 POLYMER SYNTHESIS AND PROCESSING 549 15.21 Polymerization 549 15.22 Polymer Additives 551 15.23 Forming Techniques for Plastics 553 15.24 Fabrication of Elastomers 555 15.25 Fabrication of Fibers and Films 555 15.26 3D Printing of Polymers 557 Summary 560 Equation Summary 562 List of Symbols 562 Important Terms and Concepts 563 References 563 16. Composites 564 Learning Objectives 565 16.1 Introduction 565 PARTICLE-REINFORCED COMPOSITES 567 16.2 Large-Particle Composites 567 16.3 Dispersion-Strengthened Composites 571 FIBER-REINFORCED COMPOSITES 572 16.4 Influence of Fiber Length 572 16.5 Influence of Fiber Orientation and Concentration 573 16.6 The Fiber Phase 581 16.7 The Matrix Phase 583 16.8 Polymer-Matrix Composites 583 16.9 Metal-Matrix Composites 589 16.10 Ceramic-Matrix Composites 590 16.11 Carbon–Carbon Composites 592 16.12 Hybrid Composites 592 16.13 Processing of Fiber-Reinforced Composites 593 STRUCTURAL COMPOSITES 595 16.14 Laminar Composites 595 16.15 Sandwich Panels 597 Case Study—Use of Composites in the Boeing 787 Dreamliner 599 16.16 Nanocomposites 600 Summary 602 Equation Summary 605 List of Symbols 606 Important Terms and Concepts 606 References 606 17. Corrosion and Degradation of Materials 607 Learning Objectives 608 17.1 Introduction 608 CORROSION OF METALS 609 17.2 Electrochemical Considerations 609 17.3 Corrosion Rates 615 17.4 Prediction of Corrosion Rates 617 17.5 Passivity 624 17.6 Environmental Effects 625 17.7 Forms of Corrosion 625 17.8 Corrosion Environments 633 17.9 Corrosion Prevention 633 17.10 Oxidation 636 CORROSION OF CERAMIC MATERIALS 639 DEGRADATION OF POLYMERS 639 17.11 Swelling and Dissolution 640 17.12 Bond Rupture 642 17.13 Weathering 643 Summary 644 Equation Summary 646 List of Symbols 646 Important Terms and Concepts 647 References 647 18. Electrical Properties 648 Learning Objectives 649 18.1 Introduction 649 Contents • xvELECTRICAL CONDUCTION 649 18.2 Ohm’s Law 649 18.3 Electrical Conductivity 650 18.4 Electronic and Ionic Conduction 651 18.5 Energy Band Structures in Solids 651 18.6 Conduction in Terms of Band and Atomic Bonding Models 653 18.7 Electron Mobility 655 18.8 Electrical Resistivity of Metals 656 18.9 Electrical Characteristics of Commercial Alloys 659 SEMICONDUCTIVITY 659 18.10 Intrinsic Semiconduction 659 18.11 Extrinsic Semiconduction 662 18.12 The Temperature Dependence of Carrier Concentration 665 18.13 Factors That Affect Carrier Mobility 667 18.14 The Hall Effect 671 18.15 Semiconductor Devices 673 ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS 679 18.16 Conduction in Ionic Materials 680 18.17 Electrical Properties of Polymers 680 DIELECTRIC BEHAVIOR 681 18.18 Capacitance 681 18.19 Field Vectors and Polarization 683 18.20 Types of Polarization 686 18.21 Frequency Dependence of the Dielectric Constant 688 18.22 Dielectric Strength 689 18.23 Dielectric Materials 689 OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 689 18.24 Ferroelectricity 689 18.25 Piezoelectricity 690 Material of Importance—Piezoelectric Ceramic Ink-Jet Printer Heads 691 Summary 692 Equation Summary 695 List of Symbols 696 Important Terms and Concepts 696 References 697 19. Thermal Properties 698 Learning Objectives 699 19.1 Introduction 699 19.2 Heat Capacity 699 19.3 Thermal Expansion 703 Materials of Importance—Invar and Other Low-Expansion Alloys 705 19.4 Thermal Conductivity 706 19.5 Thermal Stresses 709 Summary 711 Equation Summary 712 List of Symbols 712 Important Terms and Concepts 713 References 713 20. Magnetic Properties 714 Learning Objectives 715 20.1 Introduction 715 20.2 Basic Concepts 715 20.3 Diamagnetism and Paramagnetism 719 20.4 Ferromagnetism 721 20.5 Antiferromagnetism and Ferrimagnetism 722 20.6 The Influence of Temperature on Magnetic Behavior 726 20.7 Domains and Hysteresis 727 20.8 Magnetic Anisotropy 730 20.9 Soft Magnetic Materials 731 Materials of Importance—An Iron–Silicon Alloy Used in Transformer Cores 732 20.10 Hard Magnetic Materials 733 20.11 Magnetic Storage 736 20.12 Superconductivity 739 Summary 742 Equation Summary 744 List of Symbols 744 Important Terms and Concepts 745 References 745 21. Optical Properties 746 Learning Objectives 747 21.1 Introduction 747 BASIC CONCEPTS 747 21.2 Electromagnetic Radiation 747 21.3 Light Interactions with Solids 749 21.4 Atomic and Electronic Interactions 750 OPTICAL PROPERTIES OF METALS 751 OPTICAL PROPERTIES OF NONMETALS 752 21.5 Refraction 752 21.6 Reflection 754 21.7 Absorption 754 21.8 Transmission 758 21.9 Color 758 21.10 Opacity and Translucency in Insulators 760 xvi • ContentsAPPLICATIONS OF OPTICAL PHENOMENA 761 21.11 Luminescence 761 21.12 Photoconductivity 761 Materials of Importance—Light-Emitting Diodes 762 21.13 Lasers 764 21.14 Optical Fibers in Communications 768 Summary 770 Equation Summary 772 List of Symbols 773 Important Terms and Concepts 773 References 774 22. Environmental, and Societal Issues in Materials Science and Engineering 775 Learning Objectives 776 22.1 Introduction 776 22.2 Environmental and Societal Considerations 776 22.3 Recycling Issues in Materials Science and Engineering 779 Materials of Importance—Biodegradable and Biorenewable Polymers/ Plastics 784 Summary 786 References 786 Appendix A The International System of Units (SI) A-1 Appendix B Properties of Selected Engineering Materials A-3 B.1 Density A-3 B.2 Modulus of Elasticity A-6 B.3 Poisson’s Ratio A-10 B.4 Strength and Ductility A-11 B.5 Plane Strain Fracture Toughness A-16 B.6 Linear Coefficient of Thermal Expansion A-18 B.7 Thermal Conductivity A-21 B.8 Specific Heat A-24 B.9 Electrical Resistivity A-27 B.10 Metal Alloy Compositions A-30 Appendix C Costs and Relative Costs for Selected Engineering Materials A-32 Appendix D Repeat Unit Structures for Common Polymers A-37 Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials A-41 Glossary G-1 Index I-1 A Abrasive ceramics, 443, 449, 476 manufactured, 449 naturally occurring, 449 Abrasives, G-1 Absorption coefficient, 757, 773 glass, 757 optical fibers, P-90 Absorption of light: in metals, 751–752 in nonmetals, 752–753 Absorptivity, 750 ABS polymer, 537 A mBnXp crystal structures, 411 Acceptors, 664, G-1 Acetic acid, 482 Acetylene, 481 Acid rain, as corrosion environment, 633 Acid refractories, 447 Acids (organic), 482 Acid slags, 447 Acrylics, see Poly(methyl methacrylate) Acrylonitrile, see Polyacrylonitrile (PAN) Acrylonitrile-butadiene rubber, 540 Acrylonitrile-butadiene-styrene (ABS), 537 Activation energy, G-1 for creep, 243, 249 for diffusion, 130, 141, 309 free, 307, 311, 345, 346 for viscous flow, P-59 Activation polarization, 617-619, 644, G-1 Actuator, 15, 456 Addition polymerization, 549–550, G-1 Additive manufacturing. See Three-dimensional printing. Additives, polymer, 551–553, 562 Adhesives, 542, 561, G-1 and secondary bonds, 41 Adhesive tape, 19 Adipic acid (structure), 551 Adsorption, 108 Advanced ceramics, 443, 456–461, 477 Advanced materials, 14–16 Advanced polymers, 545–549, 561 Age hardening, see Precipitation hardening Air, as quenching medium, 389 AISI/SAE steel designation scheme, 351–352 Akermanite, 417 Alcohols, 482 Aldehydes, 482 Alkali metals, 28, 45 Alkaline earth metals, 29 Allotropic transformation (tin), 58 Allotropy, 57, G-1 Alloys, 7, 349, G-1. See also Solid solutions; specific alloys atomic weight equations, 100 cast, 361 composition specification, 98–99 compositions for various, A-27–A-28 costs, A-32–A-34 defined, 95 density equations, 100 density values, A-3–A-5 ductility values, A-11–A-14 electrical resistivity values, A-27–A-28 fracture toughness values, 220, A-16–A-17 heat treatable, 361 high-temperature, 245–246 linear coeffi cient of thermal expansion values, A-18–A-19 low expansion, 705 modulus of elasticity values, A-6–A-8 Poisson’s ratio values, A-10 specifi c heat values, A-24–A-25 strengthening, see Strengthening of metals tensile strength values, A-11–A-14 thermal conductivity values, A-21–A-22 wrought, 361 yield strength values, A-11–A-14 Alloy steels, 325, 350, G-1. See also Steels Alnico, 734, 735 ???? Iron, see Ferrite (????) Alternating copolymers, 497, 498, G-1 Alumina, 9. See also Aluminum oxide Aluminosilicates, 467 Aluminum: atomic radius and crystal structure, 51 bonding energy and melting temperature, 34 elastic and shear moduli, 148 electrical conductivity, 656 for integrated circuit interconnects, 138–139 Poisson’s ratio, 148 recrystallization temperature, 203 slip systems, 186 superconducting critical temperature, 741 thermal properties, 702 yield and tensile strengths, ductility, 159 Aluminum alloys, 364–365, 366 plane strain fracture toughness, 220 precipitation hardening, 398–400 properties and applications, 366 temper designation scheme, 365 Aluminum antimonide, electrical characteristics, 660 Aluminum-copper alloys, phase diagram, 398 Aluminum-lithium alloys, 364, 366 Aluminum oxide: as biomaterial, 452 electrical conductivity, 679 fl exural strength, 434 hardness, 438 index of refraction, 753 modulus of elasticity, 434 plane strain fracture toughness, 220 Index Note: Some index numbers are preceded by a letter prefix—viz., an A, G, or P. These index entries appear near the back of the book and each prefix letter designates a specific section, as follows: A = Appendix G = Glossary P = Questions and Problems • I-1I-2 • Index corrosion of, 775 diffusion rate of CO2 through, plastic, 506–507 stages of production, 347 Bifunctional repeat units, 485, 507, G-2 Billiard balls, 511, 539 Bimetallic strips, 698, 705 Binary eutectic alloys, 266–279, 299 tensile strength, P-42 Binary isomorphous alloys, 257–266, 299 mechanical properties, 266, 267 microstructure development, equilibrium cooling, 263–264 microstructure development, nonequilibrium cooling, 264–266 Bioceramics. See Ceramic biomaterials Biocompatability, 15 Biodegradable beverage can, 775 Biodegradable polymers/plastics, 775, 781–782 Biomass, 785 Biomaterials, 15 applications, 15 ceramic, 443, 452–453 polymeric, 543–545 Bioprinting, 382 Biorenewable polymers/plastics, 784–785 Bioresorbability, 785 Block copolymers, 497, 498, G-2 Blowing, of glass, 463–464 Blow molding, plastics, 555 Body-centered cubic structure, 52–53, G-2 Burgers vector for, 186 interstitial sites, tetrahedral and octahedral, 96–97, 288 slip systems, 186 twinning in, 192 Boeing 787 (Dreamliner), case study, 599–600 Bohr atomic model, 22, 24, G-2 Bohr magneton, 719, G-2 Boltzmann’s constant, 94, G-2 Bonding: carbon-carbon, 483–484 cementitious, 451 covalent, 35–37, 406–407, G-3 hybrid sp, 27 hybrid sp2, 37–38 in graphite, 420 hybrid sp3, 36–37 in diamond, 419 hybridized in carbon, 36–38 hydrogen, 39–40, 41, 42, G-6 ionic, 31–32, 406, G-6 metallic, 38–39, G-7 van der Waals, see van der Waals bonding Atomic packing factor, 52, G-1 Atomic point defects, 93, 420–423 Atomic radii, of selected metals, 51 Atomic structure, 20–29 Atomic vibrations, 109, 700, G-1 Atomic weight, 21, G-1 metal alloys, equations for, 100 Atom percent, 99, G-1 Austenite, 287, 300, G-1 shape-memory phase transformations, 342 transformations, 317–331, 344 summary, 338 Austenitic stainless steels, 353–355 Austenitizing, 384, G-1 Automobiles, rusted and stainless steel, 607 Automobile transmission, 121 Auxetic materials, 152 Average value, 171–172 Avogadro’s number, 21 Avrami equation, 315, 346, 531 AX crystal structures, 410–411 A mXp crystal structures, 411 Azimuthal quantum number, 24 B Bainite, 321–322, 329, 338, 344, G-1 ductility vs. transformation temperature, 334 hardness vs. transformation temperature, 334 mechanical properties, 334 Bakelite, see Phenol-formaldehyde (Bakelite) Balsa wood, sandwich panels, 598 Band gap, 653 Band gap energy, G-1 determination, P-78 selected semiconductors, 660 Bands, see Energy bands Barcol hardness, 522 Barium ferrite (as magnetic storage medium), 738 Barium titanate: crystal structure, 411, 412, 689–690 as dielectric, 689 as ferroelectric, 689, 690 as piezoelectric, 691 Base (transistor), 675–676 Basic refractories, 448 Basic slags, 447 Bauxite ore, 447 Beachmarks (fatigue), 236 Bend strength, 433. See also Flexural strength Beryllium-copper alloys, 362, 363 Beverage containers, 1, 12, 180, 347, 775, 780 Poisson’s ratio, A-11 as a refractory, 447–448 sintered microstructure, 472 stress-strain behavior, 435 thermal properties, 702 translucency, 4, 760 as whiskers and fibers, 582 Aluminum oxide-chromium oxide phase diagram, 425 Aluminum phosphide, electrical characteristics, 660 Ammonia, bonding energy and melting temperature, 34 Amorphous materials, 50, 87, G-1 Anelasticity, 151, G-1 Angle computation between two crystallographic directions, 189 Angle-ply, laminar composite, 594, 596 Anions, 407, G-1 Anisotropy, 81, 89, G-1 of elastic modulus, 81, 152, P-22 magnetic, 81, 730, 732 Annealing, 329, 382–384, 402, G-1 ferrous alloys, 383–384, 402 glass, 465 Annealing point, glass, 462, G-1 Annealing twins, 109 Anodes, 609, 644, G-1 area effect, galvanic corrosion, 626 sacrifi cial, 634, G-10 Antiferromagnetism, 722, 742, G-1 temperature dependence, 726 Aramid: cost, as a fiber, A-36 fiber-reinforced polymer-matrix composites, 585–586 melting and glass transition temperatures, A-41 properties as fiber, 582 repeat unit structure, 585, A-39 Argon, bonding energy and melting temperature, 34 Argon-ion lasers, 767 Aromatic hydrocarbons (chain groups), 482, 535 Arrhenius equation, 313 Artifi cial aging, 401, G-1 Ashby chart. See Materials selection chart Asphaltic concrete, 570 ASTM standards, 144 Atactic confi guration, 494, G-1 Athermal transformation, 324, G-1 Atomic bonding, see Bonding Atomic mass, 20–21 Atomic mass unit (amu), 21, G-1 Atomic models: Bohr, 22, 24, G-2 wave-mechanical, 22, 24, G-13 Atomic number, 20, G-1Index • I-3 Cast irons, 290, 300, 349, 355–361 annealing, 384 compositions, mechanical properties, and applications, 358 graphite formation in, 355 heat treatment effect on microstructure, 360 phase diagram, 356, 360 stress-strain behavior (gray), P-22 Catalysts, 108 Catalytic converters (automobiles), 92, 108 Cathodes, 610, G-2 Cathodic protection, 626, 634–635, 645 Cations, 407, G-2 Cemented carbide, 568–569 Cementite, 288, G-2 decomposition, 355, 359 proeutectoid, 295–296 in white iron, 357, 359 Cementitious bond, 451–452 Cements, 443, 451–452, G-2 Ceramic biomaterials, 443, 452–453 Ceramic jet printing, 474 Ceramic-matrix composites, 590–592, G-2 Ceramics, 9–10, 406, G-2. See also Glass advanced, 443, 456–461, 477 application-classifi cation scheme, 443 brittle fracture, 429–433 coeffi cient of thermal expansion values, 702, A-19–A-20 color, 759 corrosion, 639 costs, A-34–A-35 crystal structures, 406–414 summary, 412 defects, 420–424 defined, 9–10 density computation, 414–415 density values, A-5 elastic modulus values, 434, A-8–A-9 electrical conductivity values for selected, 679 electrical resistivity values, A-28–A-29 fabrication techniques classification, 461 fl exural strength values, 434, A-14–A-15 fractography of, 430–433 fracture toughness values, 220, A-17 impurities in, 423–424 indices of refraction, 753 as electrical insulators, 679, 689 magnetic, 722–725 mechanical properties of, 428–436 in MEMS, 457 phase diagrams, 284, 425–428 piezoelectric, 15, 690–691 plastic deformation, 435–436 Butadiene: degradation resistance, 641 melting and glass transition temperatures, A-41 repeat unit structure, 499, A-38 Butane, 481, P-65 C Cadmium sulfide: color, 759 electrical characteristics, 660 Cadmium telluride, electrical characteristics, 660 Calcination, 451, G-2 Calcite, 449 Calcium fl uoride, bonding energy and melting temperature, 34 Calendering, 556, 594 Capacitance, 681–683, G-2 Capacitors, 681–686 Carbon: vs. graphite, 455, 582 graphitic, 455 nano, 457–461 polymorphism, 57, 419–420 pyrolytic, 455 turbostractic, 455–456 Carbon black, as reinforcement in rubbers, 539, 569 Carbon-carbon composites, 592, G-2 Carbon diffusion, in steels, 291, 292, 336 Carbon dioxide (pressure-temperature phase diagram), 303 Carbon dioxide lasers, 767 Carbon fiber-reinforced polymer-matrix composites, 584–585, 586 Carbon fibers: in composites, 564, 584 properties as fi ber, 453, 582 structure, 456 Carbon nanotubes, 16, 459–460 applications, 460 in nanocomposites, 601 properties, 459 Carborundum, 449. See also Silicon carbide Carburizing, 128, G-2 Case-hardened gear, 121 Case hardening, 121, 239, G-2 Case studies: carbonated beverage containers, 12 Liberty ship failures, 6–7 Cast alloys, 361 Casting techniques: metals, 375–376 plastics, 555 slip, 461, 468–469 tape, 473 Bonding energy, 31, G-2, P-2–P-3 and melting temperature for selected materials, 34 Bonding forces, 30–31 Bonding tetrahedron, 43 Bond rupture, in polymers, 642–643 Bone, as composite, 566 Borazon, 449 Boron carbide: hardness, 438 Boron: boron-doped silicon semiconductors, 664 fi ber-reinforced composites, 590 properties as a fiber, 582 Borosilicate glass: composition, 444 electrical conductivity, 679 viscosity, 463 Borsic fiber-reinforced composites, 590 Bosons, 20 Bottom-up science, 16 Bragg’s law, 83–84, G-2 Branched polymers, 492, G-2 Brass, 362, 363, G-2 annealing behavior, 202 elastic and shear moduli, 148 electrical conductivity, 656, P-77 phase diagram, 280, 281 Poisson’s ratio, 148 recrystallization temperature, 203 stress corrosion, 630 stress-strain behavior, 157 thermal properties, 702 yield and tensile strengths, ductility, 159 Brazing, 377, G-2 Breakdown, dielectric, 674, 675, 689 Bridge, suspension, 142 Brinell hardness tests, 166–168, 169, 170 Brittle fracture, 158–159, 209, 213–215, 246, G-2 ceramics, 429–433 vs. leak-before-break, 221–224 Brittle materials, thermal shock, 710–711, 712 Bronze, 362, 363, G-2 photomicrograph, coring, 266 Bronze age, 2, 428 Bubble chart. See Materials selection chart Buckminsterfullerene, 458 Buckyball, 458 Burgers vector, 102, 103, 105, 186 for FCC, BCC, and HCP, 186 magnitude computation, P-29I-4 • Index Concentration profi le, 125, G-2 Concrete, 569–571, G-2 electrical conductivity, 679 plane strain fracture toughness, 220 Condensation polymerization, 550–551, G-2 Conducting polymers, 680–681 Conduction: electronic, 651 ionic, 651, 680 Conduction band, 653, G-3 Conductivity. See Electrical conductivity; Thermal conductivity Confi guration, molecular, 493–495 Conformation, molecular, 491 Congruent phase transformations, 283, G-3 Constitutional diagrams. See Phase diagrams Continuous casting, 376 Continuous-cooling transformation diagrams, 328–331, G-3 4340 steel, 331 1.13 wt% C steel, P-48 0.76 wt% C steel, 328 for glass-ceramic, 445 Continuous fibers, 572 Continuous liquid interface production, 3D printing of polymers, 559 Conventional hard magnetic materials, 734 Conversion factors, magnetic units, 718 Cooling rate, of cylindrical rounds, 390 Coordinates, point, 61–63 Coordination numbers, 52, 55, 407–409, G-3 Copolymers, 485, 497–498, G-3 styrenic block, 547–548 Copper: atomic radius and crystal structure, 51 diffraction pattern, P-10 elastic and shear moduli, 148 electrical conductivity, 656 OFHC, 659 Poisson’s ratio, 148 recrystallization temperature, 203 recrystallization kinetics, 315 slip systems, 186 thermal properties, 702 yield and tensile strengths, ductility, 159 Copper alloys, 362–363 properties and applications of, 363 Copper-aluminum phase diagram, 397 Copper-beryllium alloys, 362, 363 phase diagram, P-54 Copper-nickel alloys: ductility vs. composition, 195, 267 electrical conductivity, 658 phase diagram, 257, 258 Cold working. See Strain hardening Collector, 675–676 Color, G-2 metals, 752 nonmetals, 758–759 Colorants, 552, G-2 Compacted graphite iron, 349, 357, 359–360 Compact fl uorescence lights, 761 Compliance, creep, 519 Component, 252, 285, G-2 Composites: aramid fiber-reinforced polymer, 585–586 carbon-carbon, 592 carbon fiber-reinforced polymer, 584–585 ceramic-matrix, 590–592 classifi cation scheme, 567 costs, A-36 defi nition, 12, 566 dispersion-strengthened, 567, 571 elastic behavior: longitudinal, 575–576 transverse, 577–578 fiber-reinforced. See Fiber-reinforced composites glass fiber-reinforced polymer, 583–584 hybrid, 592–593, G-6 laminar, 581, 595–597 large-particle, 567–571 metal-matrix, 589–590 particle-reinforced, 567–571 production processes, 593–595 properties, glass-, carbon-, aramidfi ber reinforced, 586 recycling of, 782–783 rule of mixtures expressions, 568, 578, 580, P-44 strength: longitudinal, 579 transverse, 579 stress-strain behavior, 573–574 structural, 567, 595–598 Composition, G-2 conversion equations, 99–100 specifi cation of, 98–99 Compressibility, 713 Compression molding, plastics, 553–554 Compression tests, 147 Compressive deformation, 145, 165 Computers, semiconductors in, 677 magnetic drives in, 714, 736–738 Concentration, 98, G-2. See also Composition Concentration cells, 627 Concentration gradient, 125, G-2 Concentration polarization, 619–620, G-2 Poisson’s ratio values, A-11 porosity, 437–438, 472 porosity, infl uence on properties, 437–438 silicates, 415–419 specifi c heat values, 702, A-26 as superconductors, 741 thermal conductivity values, 702, A-23 thermal properties, 702, 704, 707, 708, 710 three-dimensional printing, 474–476 traditional, 9 traditional vs. new, 406 translucency and opacity, 760 Cercor (glass-ceramic), 445 Cermets, 568, G-2 Cesium chloride structure, 410, 411, 412 Chain-folded model, 502, G-2 Chain-reaction polymerization. See Addition polymerization Chain stiffening/stiffness, 491, 535 Charge carriers: majority vs. minority, 663 temperature dependence, 665–666 Charpy impact test, 225, 226, G-2 Chevron markings, 213, 214 Chips, semiconductor, 678 Chlorine, bonding energy and melting temperature, 34 Chloroprene, repeat unit structure, 499, A-38 Chloroprene rubber: characteristics and applications, 540 melting and glass transition temperatures, A-41 cis, 495, G-2 Clay, characteristics, 467 Clay extrusion, 3D printing of ceramics, 476 Clay products, 443, 446 drying and fi ring, 446, 469–470 fabrication, 466–469 particles, 442 Cleavage (brittle fracture), 214 Clinker, 451 Close-packed ceramic crystal structures, 412–413 Close-packed metal crystal structures, 77–79 Coarse pearlite, 319, 320, 329, G-2 Coatings (polymer), 542 Cobalt: atomic radius and crystal structure, 51 Curie temperature, 726 as ferromagnetic material, 721 magnetization curves (single crystal), 730 Coercivity (coercive force), 728, G-2 Cold work, percent, 196Index • I-5 Crystal symmetry, 59 Crystal systems, 59–60, G-3 Cubic crystal system, 59, 60 Cubic ferrites, 722–725 Cunife, 734, 735 Cup-and-cone fracture, 212 Curie temperature, 726, G-3 ferroelectric, 690 ferromagnetic, 702, 726 Curing, plastics, 553 Current density, 650 Cyclic stresses, 229–230 D Damping capacity, steel vs. cast iron, 360 Data scatter, 171–172 Debye temperature, 701 Decarburization, P-17 Defects, see also Dislocations atomic vibrations and, 109 dependence of properties on, 93 in ceramics, 420–424 interfacial, 105–109 point, 93–102, 420–423, G-9 in polymers, 504 surface, 108 volume, 109 Defect structure, 420, G-3 Deformation: elastic, see Elastic deformation elastomers, 528–529 plastic, see Plastic deformation Deformation mechanism maps (creep), 244 Deformation mechanisms (semicrystalline polymers), elastic deformation, 523 plastic deformation, 523–524, 525 Degradation of polymers, 639–643, G-3 Degree of polymerization, 489, G-3 Degrees of freedom, 284–286 Delayed fracture, 429 Density: computation for ceramics, 414–415 computation for metal alloys, 100 computation for metals, 57 computation for polymers, 501 of dislocations, 183 linear atomic, 76 planar atomic, 77 polymers (values for), 514, A-5–A-6 ranges for material types (bar chart), 8 relation to percent crystallinity for polymers, 500 values for various materials, A-3–A-6 Creep rupture tests, 241 data extrapolation, 244–245 Crevice corrosion, 627–628, G-3 Cristobalite, 416, 417, 428 Critical cooling rate: ferrous alloys, 330 glass-ceramics, 445 Critical crack length (equation) leak-before-break, 223 Critical fi ber length, 572 Critical resolved shear stress, 188, G-3 as related to dislocation density, P-31 Critical stress (fracture), 218 Critical temperature, superconductivity, 739, 741 Critical velocity (crack), 431 Crosslinking, 492, 493, G-3 elastomers, 528–529 infl uence on viscoelastic behavior, 518 thermosetting polymers, 497 Cross-ply, laminar composite, 596 Crystalline materials, 49, 79, G-3 defects, 93–109 single crystals, 79, G-10 Crystallinity, polymers, 498–503, G-3 infl uence on mechanical properties, 526 Crystallites, 502, G-3 Crystallization, polymers, 531–532 Crystallographic directions, 64–69 easy and hard magnetization, 730 families, 66–67 hexagonal crystals, 67–69 Crystallographic planes, 70–75 atomic arrangements, 73–74 close-packed, ceramics, 412–413 close-packed, metals, 77–79 diffraction by, 83–84 families, 73–74 hexagonal crystals, 74–75 Crystallographic point coordinates, 61–63 Crystal structures, 49–57, G-3. See also Body-centered cubic structure; Close-packed crystal structures; Face-centered cubic structure; Hexagonal close-packed structure ceramics, 407–415 close-packed, ceramics, 412–413 close-packed, metals, 77–79 determination by x-ray diffraction, 82–86 selected metals, 51 types, ceramics, 410–412 types, metals, 51–56, 77–79 Crystallization (ceramics), 444, 466, G-3 tensile strength vs. composition, 195, 267 yield strength vs. composition, 195 Copper-silver phase diagram, 266–268 Copper-zinc alloys, 362 electrical resistivity vs. composition, P-77 Coring, 266 CorningWare (glass-ceramic), 445 Corrosion, G-3 of beverage cans, 775 ceramic materials, 639 electrochemistry of, 609–615 environmental effects, 625 environments, 633 forms of, 625–632 galvanic series, 615, 616 overview of, 608 passivity, 624–625 rates, 615, 616–617 prediction of, 617–623 Corrosion fatigue, 240, G-3 Corrosion inhibitors, 633–634 Corrosion penetration rate, 616, G-3 Corrosion prevention, 633–635 Corundum, 449. See also Aluminum oxide crystal structure, P-55 Cost of various materials, A-32–A-36 Coulombic force, 32, G-3 Covalency, degree of, 43 Covalent bonding, 35–37, 406, 480–481, G-3 Crack confi gurations, in ceramics, 431 Crack critical velocity, 431 Crack formation, 211 in ceramics, 431 fatigue and, 235–237 glass, 466 Crack propagation, 211. See also Fracture mechanics in brittle fracture, 213–215 in ceramics, 429–433 in ductile fracture, 211–212 fatigue and, 235–236 Cracks: stable vs. unstable, 211 Crack surface displacement modes, 219 Crazing, 520 Creep, 240–246, G-3 ceramics, 438 infl uence of temperature and stress on, 241–244 mechanisms, 244 in polymers, 519 stages of, 240–241 steady-state rate, 241 viscoelastic, 519 Creep compliance, 519 Creep modulus, 519I-6 • Index Dispersion (optical), 752–753 white light through a prism, 753 Dispersion-strengthened composites, 571, G-3 Disposal of materials, 777–778 Domain growth, 727–728 iron single crystal, 728 Domains (magnetic), 721, 727–729, G-4 photograph of, 728 Domain walls, 727 Donors, 662, G-4 Doping, 665, 667, 674, G-4 Double bonds, 481 Drain casting, 468 Drawing: glass, 463, 464 infl uence on polymer properties, 526–527 metals, 373–374, G-4 polymer fi bers, 556, G-4 Dreamliner (Boeing 787), case study, 599–600 Drift velocity, electron, 655 Drive-in diffusion, 136 Driving force, 126, G-4 electrochemical reactions, 612 grain growth, 204 recrystallization, 200 sintering, 472 steady-state diffusion, 126 Dry corrosion, 636 Dry ice, 303 Drying, clay products, 469 Ductile fracture, 159, 211–212, G-4 Ductile iron, 349, 357, 359, G-4 compositions, mechanical properties, and applications, 358 Ductile-to-brittle transition, 225–228, G-4 failure of Liberty ships, 6 polymers, 521 and temper embrittlement, 338 Ductility, 158–159, G-4 bainite, pearlite vs. transformation temperature, 334 fi ne and coarse pearlite, 333 precipitation hardened aluminum alloy (2014), 400 selected materials, A-11–A-16 selected metals, 159 spheroidite, 333 tempered martensite, 337 Durometer hardness, 169, 522 E Economics, materials selection: pressurized cylindrical tube, 175–176 tubular composite shaft, 587–58 9 Eddy currents, 733 nonsteady-state, 126–130, G-8 in polymers, 505–507 predeposition, semiconductors, 136 in semiconductors, 135–138 short-circuit, 139 steady-state, 125, G-11 vacancy, 123, 124, 424, G-12 Diffusion coeffi cient, 125, G-3 data (tabulation), various metal systems, 131 relation to ionic mobility, 680 temperature dependence, 130–135 Diffusion couples, 122, P-17 Diffusion fl ux, 124, G-3 for polymers, 505 Diffusivity, thermal, P-83 Digital camera, 648 Digitization of information/signals, 737, 768, 769 Dimethyl ether, 482 Dimethylsiloxane, 499. See also Silicones; Silicone rubber melting and glass transition temperatures, A-41 Dimethyl terephthalate (structure), 551 Diode, 673, G-3 Diode lasers, 767 Dipole moment, 683 Dipoles: electric, 39, G-3 induced, 40 magnetic, 715–716 permanent, 41 Direct energy deposition (3D printing of metals), 379–380 Directional solidification, 246 Directions, see Crystallographic directions Discontinuous fibers, 572–573 Dislocation density, 183, G-3, P-29, P-31 Dislocation line, 102, 103, 104, G-3 Dislocation motion, 181, 182–183 caterpillar locomotion analogy, 183 in ceramics, 435–436 at grain boundaries, 193–195 infl uence on strength, 193–194 recovery and, 199–200 Dislocations, 102–105, G-3 in ceramics, 105, 183 characteristics of, 184–185 interactions, 184 multiplication, 184 at phase boundaries, 333, 336 pile-ups, 194 plastic deformation and, 154, 181–191 in polymers, 105, 504 strain fi elds, 184, 185 Dispersed phase, 566, G-3 definition, 566 geometry, 566 Desiccants, 41 Design examples: cold work and recrystallization, 203–204 conductivity of a p-type semiconductor, 670–671 cubic mixed-ferrite magnet, 725 creep rupture lifetime for an S-590 steel, 245 nonsteady-state diffusion, 134–135 pressurized cylindrical tube, 175–176 pressurized cylindrical tank, leak-before-break, 221–224 steel shaft, alloy/heat treatment of, 393–394 tensile-testing apparatus, 174–175 tubular composite shaft, 587–589 Design factor, 173 Design stress, 173, G-3 Dezincifi cation, of brass, 629 Diamagnetism, 719, G-3 Diamond, 419, 420 as abrasive, 449 bonding energy and melting temperature, 34 cost, A-34 hardness, 438 polycrystalline, 454 properties and applications, 453–454 thermal conductivity value, 453, A-23 Diamond cubic structure, 419, 420 Die casting, 375 Dielectric breakdown, 674, 689 Dielectric constant, 682, G-3 frequency dependence, 688 relationship to refractive index, 753 selected ceramics and polymers, 683 Dielectric displacement, 684, G-3 Dielectric loss, 689 Dielectric materials, 681, 689, G-3 Dielectric strength, 689, G-3 selected ceramics and polymers, 683 Diffraction (x-ray), 48, 82–87, G-3 Diffraction angle, 85 Diffractometers, 85 Diffusion, 122–123, G-3 drive-in, 136 grain growth and, 204, 205 in ionic materials, 424–425 in integrated circuit interconnects, 138–139 in Si of Cu, Au, Ag, and Al, 139 interstitial, 123–124, G-6 mechanisms, 123–124 and microstructure development, 263–266, 275–276, 291–292Index • I-7 Energy band gap, see Band gap Energy bands, 651–653 structures for metals, insulators, and semiconductors, 653 Energy levels (states), 22–26, 652–653 Energy and materials, 777–779 Energy product, magnetic, 733–736 Engineering stress/strain, 146, G-11 Entropy, 254, 305, 528 Environmental considerations and materials, 776–785 Epoxies: degradation resistance, 641 polymer-matrix composites, 586 repeat unit structure, A-37 trade names, characteristics, applications, 538 Equilibrium: defi nition of, 254 phase, 254, G-4 Equilibrium diagrams, see Phase diagrams Erosion-corrosion, 630, G-4 Error bars, 172–173 Error function, Gaussian, 127 Etching, 111, 112 Ethane, 481 Ethers, 482 Ethylene, 481 polymerization, 483–484 Ethylene glycol (structure), 551 Euro coins, alloys used for, 372 Eutectic isotherm, 268 Eutectic phase, 277, G-4 Eutectic point, 268 Eutectic reactions, 268, 275, G-4 iron-iron carbide system, 289 Eutectic solders, 273 Eutectic structure, 275, G-4 Eutectic systems: binary, 266–272 microstructure development, 272–279 Eutectoid, shift of position, 298 Eutectoid ferrite, 293 Eutectoid reactions, 282, 289, G-4 iron-iron carbide system, 289 kinetics, 318–319 Eutectoid steel, microstructure changes/ development, 290–292 Evans diagrams, 621 Exchange current density, 618 Excimer lasers, 767 Excited states, 751, G-4 Exhaustion, in extrinsic semiconductors, 666 Expansion, thermal, see Thermal expansion Electroneutrality, 420–421, G-4 Electron gas, 654 Electronic waste, 273, 783 Electron orbital shapes, 24–25 Electronic conduction, 651, 680 Electronic polarization, 687, 688, 750, G-9 Electron microscopy, 112–113 Electron mobility, 655–656 infl uence of dopant content on, 667, 668 infl uence of temperature on, 667, 668 selected semiconductors, 660 Electron orbitals, 22 Electron probability distribution, 22–23, 24 Electrons, 20 conduction process, 661, 674 role, diffusion in ionic materials, 424, 425 energy bands, see Energy bands energy levels, 22–23 free, see Free electrons scattering, 655, 656, 700 in semiconductors, 661–665 temperature variation of concentration, 665–666 spin, 25, 718, 719 valence, 26 Electron states, G-4 Electron transitions, 750–751 metals, 751–752 nonmetals, 755–757 Electron volt, 33, G-4 Electronic waste, 273, 783 Electropositivity, 29, G-4 Electrorheological fluids, 15 Elongation, percent, 158 selected materials, A-11–A-16 selected metals, 159 selected polymers, 514 Embrittlement: hydrogen, 630–632 temper, 338 Embryo, phase particle, 307 Emery, 449 Emf series, 612–613 Emitter, 675–676 Emulsifiers, 41 Endurance limit, 231. See also Fatigue limit Energy: activation, see Activation energy bonding, 31, 32–34, G-2 current concerns about, 17, 777–779 free, 254, 305–310, G-5 grain boundary, 106 to magnetize ferromagnetic material, P-87 photon, 749 surface, 106 vacancy formation, 94 Edge dislocations, 102, 182–183, G-4. See also Dislocations interactions, 184–185 EEPROM memory, 677 E-glass, 582 Elastic deformation, 148–153, G-4 Elastic modulus, see Modulus of elasticity Elastic (strain) recovery, 164, G-4 Elastomers, 513, 528–530, 539–541, 555, G-4 in composites, 569 deformation, 528–530 thermoplastic, 547–549 trade names, properties, and applications, 540 Electrical conduction: in insulators and semiconductors, 654–655 in metals, 654 Electrical conductivity, 650–651, 655–656, G-4 ranges for material types (bar chart), 10 selected ceramics and polymers, 679 selected metals, 656 selected semiconductors, 660 temperature variation (Ge), P-79 Electrical resistivity, 650, G-10. See also Electrical conductivity metals: infl uence of impurities, 658, P-77 infl uence of plastic deformation, 658 infl uence of temperature, 657–658 values for various materials, A-27–A-30 Electric dipole moment, 683 Electric dipoles, see Dipoles Electric fi eld, 650, 655, G-4 Electrochemical cells, 611–612 Electrochemical reactions, 609–615 Electrodeposition, 611 Electrode potentials, 611–612 values of, 613 Electroluminescence, 762, G-4 in polymers, 681 Electrolytes, 611, G-4 Electromagnetic radiation, 747–749 interactions with atoms/electrons, 749–750 Electromagnetic spectrum, 747–748 Electron band structu re, see Energy bands Electron cloud, 23, 38 Electron confi gurations, 26–27, G-4 elements, 27 periodic table and, 28 stable, 26 Electronegativity, 29, 43, G-4 infl uence on solid solubility, 96 values for the elements, 29I-8 • Index Fick’s fi rst law, 124–125, 706, G-5 for polymers, 505 Fick’s second law, 127, 136, G-5, P-83 solutions to, 127, 136, P-17 Fictive temperature, 462 Filament winding, 594–595 Fillers, 551–552, G-5 Films: polymer, 543 shrink-wrap (polymer), 528 Fine pearlite, 319, 320, 329, 333, G-5 Fireclay refractories, 447 Firing, 446, 470–471, G-5 Flame retardants, 553, G-5 Flash memory, 648, 677 Flash memory cards, 648 Flexural defl ection, equation for, 588, P-57 Flexural strength, 433–434, G-5 infl uence of porosity on, ceramics, 437–438 values for selected ceramics, 434, A-14–A-15 Float process (sheet glass), 464 Fluorescence, 761, G-5 Fluorescent lights, compact, 761 Fluorite structure, 411 Fluorocarbons, 485 trade names, characteristics, applications, 537 Flux (clay products), 467 Foams, 543, G-5 Forces: bonding, 30–32 coulombic, 32, G-3 Forging, 374, G-5 Formaldehyde, 482, 539 Forming operations (metals), 373–374 Forsterite, 417 Forward bias, 674, G-5 Fractographic investigations: ceramics, 430–433 metals, 213 Fractographs: cup-and-cone fracture surfaces, 213 fatigue striations, 236 glass rod, 432 intergranular fracture, 216 transgranular fracture, 215 Fracture. See also Brittle fracture; Ductile fracture; Impact fracture testing delayed, 429 fundamentals of, 211 of Liberty ships, 6 polymers, 519–521 types, 158, 211–215 Fracture mechanics, 215–224, G-5 applied to ceramics, 429 polymers, 521 use in design, 220–224 Ferroelectric materials, 690 Ferromagnetic domain walls, 109 Ferromagnetism, 721, G-5 temperature dependence, 726 Ferrous alloys, G-5. See also Cast irons; Iron; Steels annealing, 383–384 classifi cation, 289–290, 349 continuous-cooling transformation diagrams, 328–331 costs, A-32–A-33 hypereutectoid, 295–297, G-6 hypoeutectoid, 292–294, G-6 isothermal transformation diagrams, 317–328 microstructures, 290–297 mechanical properties of, 331–335, A-11–A-12 Fiber effi ciency parameter, 580 Fiberglass, 444 Fiberglass-reinforced composites, 583–584 Fiber-reinforced composites, 572–595, G-5 continuous and aligned, 573–579 discontinuous and aligned, 580 discontinuous and randomly oriented, 580–581 fi ber length effect, 572–573 fi ber orientation/concentration effect, 573–579 fi ber phase, 581–583 longitudinal loading, 573–577 matrix phase, 583 processing, 593–595 reinforcement efficiency, 581 transverse loading, 577–578, 579 Fibers, 541, G-5 carbon: graphitic, 455, 456 structure, 456 turbostratic, 455, 456 coeffi cient of thermal expansion values, A-20 in composites, 567 continuous vs. discontinuous, 572–573 fi ber phase, 581–583 length effect, 572–573 orientation and concentration, 573–581 costs, A-36 density values, A-6 elastic modulus values, 582, A-9 electrical resistivity values, A-30 optical, 768–770 polymer, 541 properties of selected, 582 specifi c heat values, A-26 spinning of, 555–556 tensile strength values, 582, A-15 thermal conductivity values, A-24 Extrinsic semiconductors, 662–665, G-4 electron concentration vs. temperature, 666 exhaustion, 666 saturation, 666 Extrusion, G-4 clay products, 468 clay, 3D printing, 476 metals, 374 polymers, 554–555 F Fabrication: ceramics, 461 clay products, 466–470 fi ber-reinforced composites, 593–595 metals, 373–382 Face-centered cubic structure, 51–52, G-4 Burgers vector for, 186 close packed planes (metals), 77–79 interstitial sites, tetrahedral and octahedral, 96–97 slip systems, 186 Factor of safety, 174, 223 Failure, mechanical, see Creep; Fatigue; Fracture Faraday constant, 614 Fatigue, 229–240, G-4 corrosion, 240 crack initiation and propagation, 235–237 cyclic stresses, 229–230 environmental effects, 239–240 low- and high-cycle, 234 polymers, 521–522 probability curves, 233–234 thermal, 240 Fatigue damage, commercial aircraft, 209 Fatigue life, 232, G-4 factors that affect, 237–239 Fatigue limit, 231–232, G-4 Fatigue S-N curves, 231–234 for metals, 233 for polymers, 521 Fatigue strength, 232, G-4 Fatigue testing, 231 Feldspar, 442, 467, 470 Fermi energy, 653, 657, 663, 665, 701, G-4 Ferrimagnetism, 722–725, G-4 temperature dependence, 726 Ferrite (α), 287–288, G-5 eutectoid/proeutectoid, 293, G-9 from decomposition of cementite, 355 Ferrites (magnetic ceramics), 722–724, G-4 Curie temperature, 726 as magnetic storage, 738–739 Ferritic stainless steels, 354, 355 Ferroelectricity, 689–690, G-5Index • I-9 Glass transition temperature, 462, 532, G-5 factors that affect, polymers, 534, 535 values for selected polymers, 533, A-41 Gold, 371 atomic radius and crystal structure, 51 electrical conductivity, 656 slip systems, 186 thermal properties, 702 Graft copolymers, 497, 498, G-5 Grain boundaries, 81, 106–107, G-5 Grain boundary energy, 107 Grain growth, 204–205, G-5 Grains, G-5 definition, 79 distortion during plastic deformation, 180, 190–191 Grain size, G-5 dependence on time, 204–205 determination of, 115–118 linear intercept method for determination of, 115 mechanical properties and, 193–195, 204–205 reduction, and strengthening of metals, 193–195 refinement by annealing, 384 Grain size number (ASTM), 115 Graphene, 460–461 applications, 461 in nanocomposites, 601–602 properties, 458 Graphite, 420 in cast irons, 355 compared to carbon, 455, 582 cost, A-35 from decomposition of cementite, 355 electrical conductivity, 679 properties/applications, 453 properties as whisker, 582 as a refractory, 448 structure of, 420 Gray cast iron, 356, 357, G-5 compositions, mechanical properties, and applications, 358 Green ceramic bodies, 469, G-5 Green design, 778 Ground state, 26, 751, G-5 Growth, phase particle, 305, 313–314, G-5 rate, 313 temperature dependence of rate, 313 Gutta percha, 495 H Hackle region, 432–433 Half-cells, standard, 612–613 Half-reactions, 610 Hall coefficient, 671 Hall effect, 671–673, G-5 Gears, transmission, 121 Gecko lizard, 19 Geometric isomerism, 495, 496 Germanium: crystal structure, 419 electrical characteristics, 660, 666, P-79 Gibbs phase rule, 284–286, G-5 Gilding metal, 362 Glass: as amorphous material, 88 annealing, 384, 465, G-1 as biomaterial, 452 blowing, 461, 463 classification, 444 color, 759 commercial, compositions and characteristics, 444 corrosion resistance, 639 cost, A-34 dielectric properties, 683 electrical conductivity, 679 fl exural strength, 434 forming techniques, 463–464 fracture surface (photomicrograph), 432 hardness, 438 heat treatment, 465–466 melting point, 463 modulus of elasticity, 434 optical flint, 444 plane strain fracture toughness, 220 refractive index, 753 sheet forming (fl oat process), 464 soda-lime, composition, 444 softening point, 463 strain point, 463 stress-strain behavior, 435 structure, 417 surface crack propagation, 429 tempering, 465–466, P-60 thermal properties, 702 viscous properties, 463 working point, 463, G-13 Glass-ceramics, 444–445, G-5 as biomaterials, 452 composition (Pyroceram), 444 continuous-cooling transformation diagram, 445 fabricating and heat treating, 466 fl exural strength, 434 modulus of elasticity, 434 optical transparency, conditions for, 760 properties and applications, 445 Glass fibers, 461 fiberglass-reinforced composites, 583–584, 586 forming, 465 properties as fiber, 582 Glass transition, polymers, 532 Fracture profi les, 212, 515 Fracture strength, 156. See also Flexural strength ceramics, 433 distribution of, 429–430 infl uence of porosity, 437–438 infl uence of specimen size, 430, 581 Fracture surface, ceramics, 431–432 Fracture toughness, 160, 218–220, G-5 ceramic-matrix composites, 590–592 ranges for material types (bar chart), 9 testing, 224–228 values for selected materials, 220, A-16–A-17 Free electrons, 654, G-5 contributions to heat capacity, 701 role in heat conduction, 706 Free energy, 254, 305–311, G-5 activation, 307, 310, 311 volume, 306 Freeze-out region, 666 Frenkel defects, 421, G-5 equilibrium number, 422 Full annealing, 329, 384, G-5 Fullerenes, 458–459 applications, 458 properties, 458 Functionality (polymers), 485, G-5 Furnace heating elements, 659 Fused deposition modeling, 3D printing of polymers, 557–558 Fused silica, 416 characteristics, 444, 463 dielectric properties, 683 electrical conductivity, 679 fl exural strength, 434 index of refraction, 753 modulus of elasticity, 434 thermal properties, 702 G Gadolinium, 721 Gallium arsenide: cost, A-34 electrical characteristics, 660, 662 for lasers, 767 for light-emitting diodes, 762 Gallium phosphide: electrical characteristics, 660 Galvanic corrosion, 625–626, G-5 Galvanic couples, 611 Galvanic series, 615, 616, G-5 Galvanized steel, 371, 633 Garnets, 724 Gas constant, 94, G-5 Gating system, 375 Gauge length, 144 Gauss (magnetic unit), 718 Gaussian error function, 127I-10 • Index Hysteresis (magnetic), 728–729, G-6 Hysteresis, ferromagnetic, G-6 soft and hard magnetic materials, 731, 733–734 I Ice, 42, 251, 256, 270, 303, P-43 Iceberg, 251 Impact energy, 225, G-6 fi ne pearlite, 332 temperature dependence: high-strength materials, 228 low-strength FCC and HCP metals, 228 low-strength steels, 228 Impact fracture testing, 225, 226 Impact strength, polymers, 521 Imperfections, see Defects; Dislocations Impurities: in ceramics, 423–424 diffusion, 122 electrical resistivity, 658 in metals, 95–97 thermal conductivity, 707 Incongruent phase transformation, 283 Index of refraction, 752–753, G-6 selected materials, 753 Indices: direction, 64–66 Miller, 70–73 point, 61–63 Indium antimonide, bonding energy and melting temperature, 34 electrical characteristics, 660 Indium phosphide, electrical characteristics, 660 in light-emitting diodes, 762 Induced dipoles, 39–40 Inert gases, 28 Inhibitors, 633–634, G-6 Initial permeability, 727–728 Injection molding, 554 Ink-jet printer heads, piezoelectric ceramics in, 691–692 Insulators (electrical), G-6. See also Dielectric materials ceramics and polymers as, 679–681, 689 color, 759 defined, 651 electron band structure, 652–653, 654–655 translucency and opacity, 760–761 Integrated circuits, 678–679, G-6 interconnects, 138–139 scanning electron micrograph, 648, 678 Hexagonal crystal system, 59, 60 direction indices, 67–69 planar indices, 74–75 Hexagonal ferrites, 724 Hexamethylene diamine, 551 Hexane, 481 High-carbon steels, 349, 352, 353 High-cycle fatigue, 234 High polymers, 490, G-6 High-strength, low-alloy (HSLA) steels, 350–351, G-6 High-temperature superconductors, 741 Holes, 654, 660–661, G-6 role, diffusion in ionic materials, 425 mobility: infl uence of dopant concentration on, 667, 668 infl uence of temperature on, 667–668 values for selected semiconductors, 660 temperature dependence of concentration (Si, Ge), 666 Homogeneous nucleation, 305–311 Homopolymers, 485, 497, G-6 Honeycomb structure, 598, 600 use in Boeing Dreamliner, 600 Hooke’s law, 148, 154, 515 Hoop stress (equation for cylinder), 222 Hot pressing, 471, 473 Hot working, 202, 373, G-6. See also Heat treatments HSLA (high-strength, low-alloy) steels, 350–351, G-6 Hume-Rothery rules, 96, P-56 Hund’s rule, P-86 Hybrid composites, 592–593, G-6 Hybridized bonding, in carbon, 36–38 Hydration, of cement, 451–452 Hydrocarbons, 480–483 Hydrogen: diffusive purifi cation, 126, P-16, P-19 reduction, 618 Hydrogen bonding, 34, 39–40, 41, G-6 water expansion upon freezing, 42 Hydrogen chloride, 40, 41 Hydrogen electrode, 612 Hydrogen embrittlement, 630–632, G-6 Hydrogen fl uoride, 41, P-3 bonding energy and melting temperature, 34 Hydrogen induced cracking, 631 Hydrogen stress cracking, 631 Hydroplastic forming, 467–468, G-6 Hydroplasticity, 467 Hydrostatic powder pressing, 471 Hydroxyapatite, as biomaterial, 453 Hypereutectoid alloys, 295–297, G-6 Hypoeutectoid alloys, 292–294, G-6 Hall-Petch equation, 194 Hall voltage, 671 Halogens, 29 Hard disk drives, 714, 736–738 Hardenability, 385–389, G-5 Hardenability band, 389 Hardenability curves, 386–389 Hard magnetic materials, 733–736, G-5 properties, 735 Hardness, G-5 bainite, pearlite vs. transformation temperature, 334 ceramics, 437–438 comparison of scales, 169–170 conversion diagram, 169 correlation with tensile strength, 170 fine and coarse pearlite, spheroidite, 333 pearlite, martensite, tempered martensite, 335 polymers, 522 tempered martensite, 335–337 Hardness tests, 165–169 summary of tests, 167 Hard sphere model, 50 Head-to-head configuration, 493 Head-to-tail configuration, 493 Heat affected zone, 377 Heat capacity, 699–701, G-5 temperature dependence, 701 vibrational contribution, 700 Heat flux, 706 Heat of fusion, latent, 307 Heat transfer: mechanism, 700, 706 nonsteady-state, P-83 Heat treatable, defi nition of, 361 Heat treatments, 122. See also Annealing; Phase transformations dislocation density reduction, 183 glass, 465–466 hydrogen embrittlement, 632 intergranular corrosion and, 628 polymer morphology, 532 polymer properties, 527 for precipitation hardening, 396–398 recovery, recrystallization, and grain growth during, 199–206 steel, 384–394 Henry (magnetic unit), 718 Hertz, 749 Heterogeneous nucleation, 311–312 Hexagonal close-packed structure, 53–55, G-5 anion stacking (ceramics), 412–413 Burgers vector for, 186 close-packed planes (metals), 78 slip systems, 186 twinning in, 192 unit cell volume, 56Index • I-11 L Ladder polymer, 643 Lamellae (polymers), 503 Laminar composites, 595–597, G-6 angle-ply, 596 carbon fiber-epoxy, Boeing Dreamliner, 599–600 cross-ply, 596 multidirectional, 596 unidirectional, 596 Large-particle composites, 567–571, G-7 Larson-Miller parameter, 244 plots of, 245, P-38 Lasers, 764–767, G-7 semiconductor, 765–767 types, characteristics, and applications, 767 Laser beam welding, 377 Latent heat of fusion, 307 Latex, 542 Lattice parameters, 59, 60, G-7 Lattice position coordinates, 61–63 Lattices, 50, G-7 Lattice strains, 184, 195–196, 401, G-7 Lattice waves, 700 Laue photograph, 48, 86 Layered silicates, 418–419 Lay-up, in prepreg processing, 594 Lead, 371 atomic radius and crystal structure, 51 diffraction pattern, 86 recrystallization temperature, 203 superconducting critical temperature, 741 Lead-free solders, 273 Lead-tin phase diagram, 269, 272–279 Lead titanate, 688, 691 Lead zirconate, 691 Lead-zirconate-titanate, 691 Leak-before-break design, 221–224 Leathery region, polymers, 517–518 LEDs, see Light-emitting diodes Lever rule, 260, 261, G-7 Liberty ship failures, 6 Life cycle analysis/assessment, 778, 779 Light: absorption, 754–758 reflection, 754 refraction, 752–754 scattering, 760 transmission, 758 Light-emitting diodes: organic
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Materials Science and Engineering - An Introduction رابط مباشر لتنزيل كتاب Materials Science and Engineering - An Introduction
|
|