كتاب Applied Strength of Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Applied Strength of Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16860
التقييم : 29604
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Applied Strength of Materials  Empty
مُساهمةموضوع: كتاب Applied Strength of Materials    كتاب Applied Strength of Materials  Emptyالسبت 06 مارس 2021, 12:20 am

أخوانى فى الله
أحضرت لكم كتاب
Applied Strength of Materials
Sixth Edition SI Units Version
Robert L. Mott and Joseph A. Untener  

كتاب Applied Strength of Materials  A_s_o_11
و المحتوى كما يلي :


Contents
Preface xi
1 Basic Concepts in Strength of Materials 1
The Big Picture 2
1–1 Objective of This Book: To Ensure Safety 6
1–2 Objectives of This Chapter 15
1–3 Problem-Solving Procedure 15
1–4 Basic Unit Systems 16
1–5 Relationship among Mass, Force, and Weight 18
1–6 Concept of Stress 20
1–7 Direct Normal Stress 22
1–8 Stress Elements for Direct Normal Stresses 25
1–9 Concept of Strain 25
1–10 Direct Shear Stress 26
1–11 Stress Elements for Shear Stresses 32
1–12 Preferred Sizes and Screw Threads 32
1–13 Structural Shapes 33
1–14 Experimental and Computational Stress Analysis 39
1–15 Review of the Fundamentals of Statics 43
2 Design Properties of Materials 65
The Big Picture 66
2–1 Objectives of This Chapter 68
2–2 Design Properties of Materials 68
2–3 Steel 85
2–4 Cast Iron 92
2–5 Aluminum 93
2–6 Copper, Brass, and Bronze 95
2–7 Zinc-, Magnesium-, Titanium-, and Nickel-Based Alloys 96vi Contents
2–8 Nonmetals in Engineering Design 97
2–9 Wood 97
2–10 Concrete 99
2–11 Plastics 101
2–12 Composites 104
2–13 Materials Selection 118
3 Direct Stress, Deformation, and Design 127
The Big Picture 128
3–1 Objectives of This Chapter 131
3–2 Design of Members under Direct Tension or Compression 132
3–3 Design Normal Stresses 132
3–4 Design Factor 133
3–5 Design Approaches and Guidelines for Design Factors 136
3–6 Methods of Computing Design Stress 140
3–7 Elastic Deformation in Tension and Compression Members 145
3–8 Deformation due to Temperature Changes 152
3–9 Thermal Stress 156
3–10 Members Made of More Than One Material 159
3–11 Stress Concentration Factors for Direct Axial Stresses 163
3–12 Bearing Stress 167
3–13 Design Bearing Stress 171
4 Design for Direct Shear, Torsional Shear, and Torsional
Deformation 192
The Big Picture 193
4–1 Objectives of This Chapter 198
4–2 Design for Direct Shear Stress 199
4–3 Torque, Power, and Rotational Speed 203
4–4 Torsional Shear Stress in Members with Circular Cross Sections 207
4–5 Development of the Torsional Shear Stress Formula 210
4–6 Polar Moment of Inertia for Solid Circular Bars 212
4–7 Torsional Shear Stress and Polar Moment
of Inertia for Hollow Circular Bars 212
4–8 Design of Circular Members under Torsion 215
4–9 Comparison of Solid and Hollow Circular Members 218
4–10 Stress Concentrations in Torsionally Loaded Members 222
4–11 Twisting: Elastic Torsional Deformation 229
4–12 Torsion in Noncircular Sections 240Contents vii
5 Shearing Forces and Bending Moments in Beams 262
The Big Picture 263
5–1 Objectives of This Chapter 269
5–2 Beam Loading, Supports, and Types of Beams 270
5–3 Reactions at Supports 278
5–4 Shearing Forces and Bending Moments for Concentrated Loads 283
5–5 Guidelines for Drawing Beam Diagrams for Concentrated Loads 288
5–6 Shearing Forces and Bending Moments for Distributed Loads 295
5–7 General Shapes Found in Bending Moment Diagrams 302
5–8 Shearing Forces and Bending Moments for Cantilever Beams 303
5–9 Beams with Linearly Varying Distributed Loads 304
5–10 Free-Body Diagrams of Parts of Structures 306
5–11 Mathematical Analysis of Beam Diagrams 311
5–12 Continuous Beams: Theorem of Three Moments 322
6 Centroids and Moments of Inertia of Areas 340
The Big Picture 341
6–1 Objectives of This Chapter 344
6–2 Concept of Centroid: Simple Shapes 344
6–3 Centroid of Complex Shapes 345
6–4 Concept of Moment of Inertia of an Area 350
6–5 Moment of Inertia of Composite Shapes Whose Parts
Have the Same Centroidal Axis 352
6–6 Moment of Inertia for Composite Shapes: General
Case—Use of the Parallel Axis Theorem 355
6–7 Mathematical Definition of Moment of Inertia 358
6–8 Composite Sections Made from Commercially Available Shapes 359
6–9 Moment of Inertia for Shapes with All Rectangular Parts 363
6–10 Radius of Gyration 364
6–11 Section Modulus 368
7 Stress due to Bending 380
The Big Picture 381
7–1 Objectives of This Chapter 384
7–2 Flexure Formula 385
7–3 Conditions on the Use of the Flexure Formula 388
7–4 Stress Distribution on a Cross Section of a Beam 390
7–5 Derivation of the Flexure Formula 392
7–6 Applications: Analysis of Stresses in Beams 394viii Contents
7–7 Applications: Beam Design and Design Stresses 398
7–8 Section Modulus and Design Procedures 400
7–9 Stress Concentrations 407
7–10 Flexural Center or Shear Center 412
7–11 Preferred Shapes for Beam Cross Sections 416
7–12 Design of Beams to Be Made from Composite Materials 421
8 Shearing Stresses in Beams 441
The Big Picture 442
8–1 Objectives of This Chapter 446
8–2 Importance of Shearing Stresses in Beams 447
8–3 General Shear Formula 448
8–4 Distribution of Shearing Stress in Beams 455
8–5 Development of the General Shear Formula 461
8–6 Special Shear Formulas 464
8–7 Design for Shear 468
8–8 Shear Flow 470
9 Deflection of Beams 480
The Big Picture 481
9–1 Objectives of This Chapter 487
9–2 Need for Considering Beam Deflections 487
9–3 General Principles and Definitions of Terms 489
9–4 Beam Deflections Using the Formula Method 492
9–5 Comparison of the Manner of Support for Beams 498
9–6 Superposition Using Deflection Formulas 505
9–7 Successive Integration Method 514
9–8 Moment–Area Method 527
10 Combined Stresses 555
The Big Picture 556
10–1 Objectives of This Chapter 559
10–2 Stress Element 560
10–3 Stress Distribution Created by Basic Stresses 562
10–4 Creating the Initial Stress Element 563Contents ix
10–5 Combined Normal Stresses 569
10–6 Combined Normal and Shear Stresses 576
10–7 Equations for Stresses in Any Direction 582
10–8 Maximum and Minimum Stresses 585
10–9 Mohr’s Circle for Stress 588
10–10 Stress Condition on Selected Planes 604
10–11 Special Case in Which Both Principal Stresses Have the Same Sign 608
10–12 Use of Strain-Gage Rosettes to Determine Principal Stresses 612
11 Columns 631
The Big Picture 632
11–1 Objectives of This Chapter 636
11–2 Slenderness Ratio 636
11–3 Transition Slenderness Ratio 641
11–4 Euler Formula for Long Columns 642
11–5 J.B. Johnson Formula for Short Columns 643
11–6 Summary: Buckling Formulas 643
11–7 Design Factors for Columns and Allowable Load 646
11–8 Summary: Method of Analyzing Columns 647
11–9 Column Analysis Spreadsheet 650
11–10 Efficient Shapes for Column Cross Sections 652
11–11 Specifications of the AISC 654
11–12 Specifications of the Aluminum Association 656
11–13 Noncentrally Loaded Columns 657
12 Pressure Vessels 671
The Big Picture 672
12–1 Objectives of This Chapter 675
12–2 Distinction between Thin-Walled and Thick-Walled Pressure Vessels 675
12–3 Thin-Walled Spheres 677
12–4 Thin-Walled Cylinders 679
12–5 Thick-Walled Cylinders and Spheres 683
12–6 Analysis and Design Procedures for Pressure Vessels 684
12–7 Spreadsheet Aid for Analyzing Thick-Walled Spheres and Cylinders 691
12–8 Shearing Stress in Cylinders and Spheres 691
12–9 Other Design Considerations for Pressure Vessels 695
12–10 Composite Pressure Vessels 698x Contents
13 Connections 704
The Big Picture 705
13–1 Objectives of This Chapter 708
13–2 Modes of Failure for Bolted Joints 709
13–3 Design of Bolted Connections 710
13–4 Riveted Joints 713
13–5 Eccentrically Loaded Riveted and Bolted Joints 714
13–6 Welded Joints with Concentric Loads 719
Appendix 727
Answers to Selected Problems 787
Index 799
Index
A
Acceleration due to gravity, 18
Aerospace materials system (AMS), 86
Allowable stress, 131–133, 142, 150, 182, 184–185
Allowable stress design (ASD), 142
Alloy steels, 84
Aluminum
alloy groups, 93, 95
characteristics, 93–94
temper designations, 94
Aluminum alloys
cast, 95
coefficient of thermal expansion, 153
design bearing stress, 171, 173
designation system, 92
properties, 762
series, 93–94
tempers, 94
Aluminum Association, 134, 142
Aluminum Association standard channels and I-beams, 36
American Institute of Steel Construction, 133–134,
142, 399
American Iron and Steel Institute, 84
American National Standards Institute, 134
American Society for Testing and Materials, 84
American Society of Mechanical Engineers (ASME),
134, 696
American Standards beams (S-shapes), 35, 743–744
Angle of twist, 194, 230
Angles, structural steel, 36
Anisotropic behavior, 71
Anisotropic materials, 418–419
Annealing and normalizing, 89
Apparent stress, 70
Areas, properties of, 728–729
Austempered ductile iron, 92, 761
Austempering, 93
B
Basic sizes, preferred, 730
Beam, definition, 264, 270
stress distribution, 390
Beam deflection formulas, 777–784
Beam deflections, 399
advantages and disadvantages, 486–487
axial tension, 481
deflection limits, 488–489
formula method
cantilevers, 493
shaft, 495–496
simply supported beams, 492–495
statically indeterminate beams, 499–500
four-point loading arrangement, 481–482
needed for, 487–488
principles and definitions of terms
beam stiffness, 492
bending moment diagram, 489–490
deflection diagram, 491
load diagram, 489
radius of curvature, 491–492
shearing force diagram, 489
slope diagram, 490–491
statically determinate, 482–484
statically indeterminate, 484–486
successive integration method, 514–526
superposition, 504–514
support for beams
cantilever, 499–501
fixed-end beam, 503–504
parameters, 498–499
simply supported beam, 501–502
supported cantilever, 502–503
Beam diagrams, mathematical analysis, 312–323
Beam loading frame, 382
Beam loading patterns, 270800 Index
Beam support types, 247, 252, 270, 276, 498
Beam types, 276, 323
Beams, analysis, 394
comparison of support types, 270–271
continuous, 278, 323
deflection, see Deflection of beams
design examples, 400–407
design procedures, 400
failure modes, 383
fixed-end, 277
flexure formula, 385, 392
made from anisotropic materials, 418–419
made from composite materials, 421
made from thin materials, 418
preferred shapes, 411
reactions, 279
statically indeterminate, 278, 323, 453, 465
statically indeterminate, continuous, 278, 323
stress concentrations, 407
Bearing stress, 167
Bearing stress, design, 171, 176
Bending moment diagrams, area rule, 287, 289
rules of drawing, 289
Bending moments in beams, 283, 295
Beryllium copper, 95
Bolted connections, 707, 709–711
Brass, 95–96
Brinell hardness tester, 77
Brittle material, 73–74
Bronze, 96
Bronze, coefficient of thermal expansion, 153
Buckling, columns, 7, 623–670
C
Cantilever, 277–278, 493
Carbon and alloy steels
properties, 757
Carbon steels, 84
Cast iron
austempered ductile, 38, 761
coefficient of thermal expansion, 153
ductile iron, 92
gray iron, 92
malleable, 93
properties, 761
white, 93
Center of gravity, 344
Center of mass, 344
Centroid of an area, 344
Centroidal axis, 352–354
Centroids and moments, inertia
bending stress, 341–342
centroidal axis, 351–354
data, 348–349
definition, 358–359
general procedure for computing, 345–347
hollow rectangular tube, 351
I-beam, 350–351
integration, 351
magnitude, 352
parallel axis theorem, 355–358
radius of gyration, 364–368
rectangular parts, 363–364
section modulus, 368
shapes, 344–345, 348–349
summation, 351
Channels (C-shapes)
properties, 738–741
Channels, aluminum, 715
structural steel
Charpy test, 80–81
Codes and standards, 134, 136
Coefficient of thermal expansion, 83
Cold rolling, 87
Column constant, 641
Column section, commercially available steel,
637–638
Columns
AISC specifications, 653–656
allowable load, 646–647
Aluminum Association specifications, 656–657
analysis method, 647–650
buckling formulas, 644–646
buckling, meterstick, 633–634
critical buckling load, 644
crooked, 658
eccentric, 660
efficient shapes for, 652–653
Euler formula, 642
J.B. Johnson formula, 643
non-centrally loaded
crooked column formula, 658–660
eccentrically loaded columns, 657–658,
660–664
straight centrally loaded column, 657
shapes, 633–634
slenderness ratio, 636–641
spreadsheet for analysis, 651–652
tall tower structure, 632–633
transition slenderness ratio, 641–642
Combined stress, 594–620
Combined stresses, normal, 594–620
normal and shear, 576–581
Strain–Gage Rosette, 612
Competitive stress, 22
Complete fracture, 383–384
Composite materials
beams, 421
design for shear, 469Index 801
Composites, 104–118
advantages, 109
aircraft and aerospace systems, 105
ceramic matrix composites, 107
consumer products and recreation, 104
electrical and electronic systems, 105
filler materials, 117
ground transportation equipment, 104–105
imitations, 111–112
industrial facilities, 105
laminated construction, 113
metal matrix composites, 107
modulus of elasticity, 108, 119
polymer matrix composites, 105
predicting properties, 115
prepreg, 114
pressure vessels, 698
processing, 114
properties, 112
rule of mixtures, 117
specific modulus, 109–111
specific stiffness, 109–110
specific strength, 109–111
volume fraction, 115
Compound beam
Compressive strength, 71
Concentrated loads, 272–273
Concentrated moments, 274–276, 306–311
Concrete
coefficient of thermal expansion, 153
elasticity, 99–110
stress–strain curve, 99
Connections, 705–722
allowable stresses, 709–711, 715, 720
bolted, 710
bolted, eccentrically loaded, 714
modes of failure, 709
riveted, 713
types, 706
welded, 719
Contact stress, 131, 170–171
Continuous beams, 323, 328
Conversion factors, 785–786
Copper, 38, 41, 93, 95–96, 758
Beryllium copper, 95
coefficient of thermal expansion, 153
Copper Development Association, 84
Creep behavior, 82–83
Cylinders, thick-walled, 683
thin-walled, 677
D
Deflection formulas, beams, 777–784
Deflection limits, 399, 487–489
Deflection of beams, 481–557
definition of terms, 489–492
formula method, 492–498
moment-area method, 527–547
moment-area method, beams with varying cross section,
537–538
moment-area method cantilever, 531
moment-area method, distributed loads, 544–547
moment-area method, theorems, 531
moment-area method, unsymmetrically loaded, 540–543
moment-area, simply supported beams, 534–537
needed for, 487–488
radius of curvature, 491–492
successive integration method, 514–526
superposition, 504–514
Deformation, 147
axial, 147
normal, 146
thermal, 152
torsional, 229
unit, 26
Density, 19
and specific weight, 83
Department of Defense, 134
Design bearing stress, 171–172, 174
Design factor, 133–136, 199
Design factor, column loading, 646–647
Design factor, direct tensile stresses, 132
guidelines, 136–137
torsional shear, 216
Design for direct stresses, 132
Design for shear
aluminum, 468–469
composite materials, 469
concrete, 469
masonry, 469
steel, 468
wood, 469
Design of bolted connections
bearing failure, 712
bearing-type, 710
shear failure, 710–711
slip-critical, 710
tensile failure, 712
Design stress, 128, 131–134, 137, 140, 215, 398, 400
bending, 398–399
methods of computing, 140
normal, 133
pressure vessels, 684
shear, 215
torsional shear, 215
Design stress guidelines, 136–137, 765–766
Direct normal stress, 22–25
Direct shear stress, 199–203
Distributed loads, 270–274, 295–302, 323, 325802 Index
Double shear, 29
Drop weight tester, 80
Ductile iron, 92
Ductile material, 74
Ductility
Gage length, tensile test, 73
percent elongation, 74
E
Eccentrically loaded riveted and bolted joints, 714–717
Effective length, 637
Elastic limit, 69
Elastic torsional deformation, 229–240
Elongation, 26, 66, 68–69, 71, 75, 87
End-fixity factor, 637–639
Endurance strength, 82, 140–141
English Gravitational Unit System, 17
Equivalent torque, 578
Euler formula, 642
Euler formula for columns, 642
Experimental stress analysis, 164, 407
F
Fabricated beams, 448
Factor of safety, 131, 133; see also Design factor
Failure modes, 6
Failure of bolted connections, 709
Fastener failure, 383–384
Fasteners, spacing, shear flow, 471
Fatigue strength/endurance strength, 82
Fexural strength and flexural modulus, 77
Filament winding, 115
Filler materials for composites, 108
Finite element analysis, 42–43
Flexural center, 412
Flexural modulus, 77
Flexure formula, 385
conditions on use, 388
derivation, 392
Force, 8
Fracture, 6, 9, 13, 67–68, 73, 80, 83, 99, 129, 200,
383–384, 644
Free-body diagrams, parts of beams, 306–313
Full annealing, 89
G
Gage length, 73
General shear formula, 448
development of, 461
guidelines for use of, 453
Glass, coefficient of thermal expansion, 153
Gray iron, 92
H
Hardness
measurement, plastics, rubbers, and elastomers, 79
and strength, steel, 77–78
Heat treatment, 87–88
Hertz stress, 76
Hollow structural sections (HSS), 34, 35, 38, 91, 162, 182,
341, 748
Hollow thin-walled tubular shape, 466–467
Hollow tubing, square and rectangular
properties, 748–752
Hooke’s law, 68, 72–73
Hoop stress, 675, 681
I
I-beams, 37, 90, 115, 240, 341, 572
aluminum, 37, 679
Impact energy/impact resistance, 80
Impact testing devices and equipment, 81
Interlaminar shear, 383–384
I-shapes
properties, 742–747
Izod test, 80–81
J
J. B. Johnson formula for columns, 643
J, Polar moment of inertia, 198, 211–214, 232, 234, 241
K
Keys, 30–31
Keyseats, 225–226, 260
L
Laminated composite construction, 113–114
Length, effective, for columns, 639
Load and resistance factor design, 142, 399
Loads, concentrated, 271
distributed, 272
distributed, varying, 274, 305
Local crippling, 383–384
Longitudinal stress, 679
M
Machine-graded structural lumber, 98
Magnesium, 96
coefficient of thermal expansion, 153
Malleable iron, 93
Margin of safety, 131, 133
Masonry, design bearing stress, 171, 175–176
Mass, 17Index 803
Mass, force, and weight relationship, 18
Mass per unit volume, 117
Materials, anisotropic, 418–419
composites, beams, 419, 421
concrete, 99
plastics, 101
wood, 97
Materials, design properties
coefficient of thermal expansion, 84
compressive strength, 71
creep behavior, 82–83
density and specific weight, 83
ductility, 73–74
elasticity, 76–77
fatigue strength/endurance strength, 82
flexural strength and flexural modulus, 77
hardness, 77–78
metals and alloys, 84
Poisson’s, 74–76
shearing strain, 76
stiffness, 72–73
strength, stiffness, and ductility, 68
tensile and yield strengths, 68–71
test equipment, 67
toughness, 80–81, 80–82
Materials selection, 118–122
Matrix materials for composites, 105
Maximum shear stress, 586
Maximum shear stress theory of failure, 603
Mean diameter for pressure vessels, 675
Members made of more than one material, 159–163
Metals, 84–92
and alloys, 84
brittle, 68
ductile, 73
proportional limit, 70
stiffness, 72
strength, 71
stress–strain curve, 71
yield point, 71
Metric Unit System, 15, 17
Military standards, 134
Modulus of elasticity, 42, 68, 72, 76, 101, 108, 116, 131
Modulus of elasticity in shear, 231–232
Mohr’s circle for stress, 588–610
examples, 593–604
procedure for drawing, 591
Moment of inertia, definition, 351, 358–359
general procedure for computing, 355–356
parallel axis theorem, 355
Moment of inertia for composite shapes, 352,
355–358, 363
Moment of inertia for shapes with rectangular parts, 363–364
Moment of inertia for structural shapes, 359
Moment of intertia of an area, 350–352
Moment–area method
applications, 531
beam deflections, 530
beams with distributed loads, 543–547
cantilever, 527–528, 531–534
M/EI diagram, 527, 529
principles, 527, 529
semigraphical procedure, 527
shafts, 527
simply supported beams, 534–537
symmetrically loaded simply supported beam, 535–540
unsymmetrically loaded simply supported beams, 540–543
Moments, concentrated, 274–276
Monocoque structures, 448
N
Newton, the unit of force, 18
Newton’s law of gravitation, 18
Nickel-based alloys, 97
Noncircular sections, torsions, 240
table, 240
Nonmetals in design, 97
Nonquantitative torsional activity, 196–197
Normal stress, 22
Normal stress element, 25
Normalizing, 89
O
Offset, 71
Overhanging beam, 271, 277, 279
P
Percent elongation, 74
Photoelastic stress analysis, 39, 164, 390
Pin joints, bearing stress in, 169
Pipe, steel, 38
Plastics
applications, 103
coefficient of thermal expansion, 154
design guidance, 102–103
thermoplastics, 101–102
thermosets, 102
Poisson’s ratio
approximate values, 75
element, tension, 75
Hertz stress, 75
Polar moment of inertia, 213–214, 232, 234, 241
Polar section modulus, 215–219, 223, 227–228, 241
Power, 203, 205
Precipitation hardening steels, 90
Preferred basic sizes, 33
Prepreg, 114804 Index
Pressure vessels
composites, 698
cylinders, thin-walled, 677
design considerations, 695
design procedure, 684
hoop stress, 684
longitudinal stress, 679
mean diameter, 676
shearing stresses in, 692
spheres, thin-walled, 677
spreadsheet aid for analyzing, 691
thick-walled, 683
wall thickness, thin/think, 675
Principal stresses, 585
Proportional limit, 69
Pultrusion, 115
Punching operation, 27
Q
Quantitative torsional activity, 196–197
Quenching, 68, 88–89, 91
R
Radius of gyration, 364–368, 639–641
Reactions on beams at supports, 279
Reinforcement materials and matrix, 117
Resistance factor, 142
Retaining rings, 225–226
Ring groove in tension, 165–166
Riveted joints, 713–714
Rivets, 713
Rockwell hardness scales, 77, 79
Rollers, bearing, 171
Rosettes, strain gage, 613
Rotational speed, 203, 206
Rule of mixtures, 117
S
Safety factor, 131, 133
Screw threads, 33, 626, 731–732
Secant modulus, 100
Section modulus, 368–370, 400
torsional, 215
Shafts, solid and hollow, comparison, 218
Shafts with flats, 242
Shapes, structural, 34–36
Shear center, 412–416
Shear, double, 29
Shear failure of rivets, 714
Shear flow, 471
Shear modulus of elasticity, 232
Shear pin, 200–201
Shear, single, 29
Shear stress
direct, 199–203
Shear stress, design, 215
direct, 24
maximum, 587
maximum, theory of failure, 604
Shear stress element, 33
Shearing force, definition, 283
Shearing force diagrams, 284, 289–290, 298–299
for distributed loads, 300
guidelines for drawing, 290, 299–300
Shearing forces for cantilevers, 303–304
Shearing forces in beams, 264, 283, 289, 295–296, 444
Shearing strain, 231
Shearing stress in beams, 441–473
circular shapes, 465
design, 464
distribution of, 455
first moment of the area, 471
general shear formula, 448
development of, 461
hollow thin-walled tubular shapes, 466–467
importance, 447
rectangular shapes, 450, 456, 464
special shear formulas, 464–468
statical moment, 448
stressed skin structures, 448
thin-webbed, 467
visualization, 461
wooden, 442–443, 447
Short beams, 448
SI Metric Unit System, 16
Simple axial loads, 381
Simple beam, 276–277
Single shear, 29
Single-stage gear reducer, 195
Sizes, preferred basic, 32–33
Slenderness ratio, 636
actual length, 637
effective length, 639
end-fixity factor, 637–639
radius of gyration, 639–641
transition, 641
Slug, the unit of mass, 17
Society of Automotive Engineers, 84
Soils, design bearing stress, 176
Special shear formulas, 464–468
Specific modulus, 109–111
Specific stiffness, 109–111
Specific strength, 109–111
Specific weight, 19
Spheres, thick-walled, 683
thin-walled, 677
S-shapes, structural steel, 34–36, 743–744Index 805
St. Venant principal, 390, 407
Stability, 7, 388–389, 644
Stainless steel, 90
coefficient of thermal expansion, 153
Stainless steels and nonferrous metals
properties, 758–759
Standard structural shapes, 34
Statical moment, 472
Statically indeterminate beams, 323–328
Statically indeterminate members, axial, 159
Statics, review, 43–55
Steel
alloy steels, 84
alloying elements, 85–86
annealing, 89
carbon and alloy, properties, 757
carbon steels, 84
cold drawn, 87
cold rolled, 87
conditions for, 87–89
designation system, 85
globalization, 87
hot rolled, 87
normalizing, 89
precipitation hardening, 90
quenching, 88
stainless, 90, 759
stress relief annealing, 89
structural, 90, 760
tempering, 88
weathering, 91
Steel angles
properties, 735–737
Steel pipe and mechanical tubing
properties, 753–756
Stiffness
elasticity, 72
torsional, 230
uniaxial strain, 73
Young’s modulus, 72
Strain, definition, 26
shearing, 231
Strain gaging, 40–42
Rosettes, 614
Strength, ultimate tensile, 68
yield, 68
Stress
direct shear, 199–203
Stress, apparent, 69
bearing, 167
compressive, 22
definition, 21
design for bending, 398
hoop, pressure vessels, 681–682
longitudinal, pressure vessels, 679–680
normal, 22
shear, direct, 26
shear stress, 30
tensile, 22
thermal, 131
units, 22
Stress concentration factors charts, 767–776
in beams, 506
in combined stress, 556
normal stresses, 163, 165
torsion, 222
Stress condition on selected planes, 604
Stress element, normal stress, 23, 25
bearing, 167
contact, 170–171
general, 561
shear stress, 29, 30
thermal, 156–159
Stressed skin structures, 448
Stresses, allowable on connections, 710–711, 715, 720
combined, normal, 569–576
combined, normal and shear, 576–581
principal, 585
Stress-relief annealing, 89
Stress–strain curve, 70–72
Stress–strain diagram, 69
Structural shapes, 31, 33
designations, 33
Metrication, 34
Structural steels, 90–92
properties, 760
Structural tubing, 91
Successive integration method
analytic geometry states, 517
approach, 517–518
beam, 520
bending and shear, 526
computer-based equation, 523
curvature, 517
graph showing points, 524–525
load, shearing force and bending momen, 520–522
moment–area method, 517
neutral axis states, 515
segment of beam, 514–515
slope and deflection curves, 524
value of quantity, 523
Summation, 351
Superposition
continuous beam, 513–514
deflection of shaft, 508
downward deflection, 510–511
physical implementation, 512–513
principle, 504–506
roof beam, 505
shaft, 507806 Index
shearing force and bending moment, 512
statically indeterminate beams, 509–510
supported cantilever, 509–510
upward deflection, 510–511
Superposition, for statically indeterminate
beams, 486
Support types, 276
T
Tempering, 88
Tensile and yield strengths
load versus elongation, 69
proportional limit, 69
stress–strain curve, 69–72
testing machine, 68–71
unit deformation, 71
Tensile stress, 131, 147, 157, 165, 167
Tension
axially loaded grooved round bar, 767
axially loaded stepped flat plate, 769
axially loaded stepped round bar, 768
Theorem of three moments, 323–328
Thermoplastics, 101–102
Thermosets, 102
Thermosetting plastic, 101
Thin-walled vessels, 677
Thin-webbed
beams, 447
shapes, 467–468
Three moment theorem, 323–328
Titanium, 96–97
coefficient of thermal expansion, 153
Torque, 203
equivalent, 578
Torsion
grooved round bar, 772
stepped round bar, 773
Torsional deformation, 230, 240
Torsional shear stress, 207–210
circular sections, 207
design, 215
formula, 208
formula, derivation, 210
noncircular sections, 240
stress concentrations, 222
Torsional stiffness, 229, 240
recommended, 230
Toughness
impact energy/impact resistance, 80
impact testing devices and equipment, 81
Trusses, analysis, 633
Tubing, mechanical, 34, 38–39, 243, 359, 418, 753–756
Tubing, structural, 38, 90, 95, 102, 756, 760
Twisting, 229
U
Ultimate strength in shear, 200–201
Ultimate tensile strength, 68
Uniaxial strain, 73
Unified Numbering System, 84
Unit deformation, 71
Unit systems, 16–17
Unit weight, 100
Units, stress, 20
U.S. Customary Unit System, 17
V
Volume fraction, 115–117
W
Weathering steel, 90–91
Web wrinkling, 383–384
Weight, 18–19
Welded joints, 719–721
Welding electrodes, 720
Welds, types of, 718
White iron, 93
Wide-flange shapes (W-shapes), 34–35, 37, 185, 652–653,
742, 760
Wind turbine blade, 106
Wood, 97–98
properties, 763
Wood boards
properties, 733–734
Wooden beams, 442–443, 447
Working stress, 131, 133
Y
Yield point, 69
Yield strength, 68
Yield strength in shear, 132–133, 140, 199–200
Young’s modulus, 72
Z
Zinc, 94, 96, 622


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Applied Strength of Materials
رابط مباشر لتنزيل كتاب Applied Strength of Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Applied Strength of Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: