Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Applied Mechanical Design السبت 06 مارس 2021, 12:15 am | |
|
أخوانى فى الله أحضرت لكم كتاب Applied Mechanical Design Ammar Grous
و المحتوى كما يلي :
Contents Preface xiii Introduction . xv Chapter 1. Case Study-based Design Methodology . 1 1.1. Methodology for designing a project product 1 1.2. Main players involved in the design process 2 1.3. Conceptualization and creativity . 4 1.4. Functional analysis in design: the FAST method 4 1.4.1. Decision-support tools in design . 5 1.5. Functional specifications (FS) . 7 1.5.1. Operational functions, using the APTE method or octopus diagram . 8 1.5.2. Linguistic (or syntactical) writing of the functional specifications 10 1.6. Failure Mode Effects and Criticality Analysis . 10 1.7. PERT method 13 1.7.1. Logic of construction of the graph per level of operations 14 1.7.2. Statistical approach to the PERT diagram using the Gamma distribution 16 1.8. The Gantt method (Henry Gantt’s graph, devised 1910) . 17 1.9. Principal functions of a product 20 1.10. Functional analysis in mechanical design . 21 1.10.1. Product cost in mechanical design . 22 1.10.2. Creation- and monitoring sheets in mechanical design . 22 1.11. Scientific writing on a project 28 1.11.1. Project process . 28 1.11.2. Development of the conceptual model . 29vi Applied Mechanical Design 1.11.3. Development (recap) on a spiral model 30 1.12. Esthetics of materials in mechanical design 30 1.13. Conclusion . 31 Chapter 2. Materials and Geometry in Applied Mechanical Design, Followed by Case Studies . 33 2.1. Introduction to materials in design 33 2.2. Optimization of mass in mechanical design . 38 2.3. Case study of modeling based on the material–geometry couple 39 2.4. Geometry by standard sections in strength of materials 42 2.4.1. Choice of materials in design (airplanes and bikes) 46 2.4.2. Form factors ψ of some usual cross-sections . 49 2.4.3. Form factors in mechanical design . 50 2.5. Case study of design of multi-purpose items 51 2.6. Case study of superposed bimetallic materials . 55 2.7. Curving and incurvate elements by sweeping of sheet metals 58 2.7.1. Sensible choice of optimizing materials in Palmer micrometers 59 2.8. Conclusion 60 Chapter 3. Geometrical Specification of GPS and ISO Products: Case Studies of Hertzian Contacts 63 3.1. Introduction 63 3.2. Dimensional and geometrical tolerances in design . 65 3.2.1. Case study of a bicycle wheel hub 67 3.3. Envelopes and cylinders under pressure (for R/e < 20) 72 3.4. Case study 76 3.5. Rotating cylinders with a full round cross-section: flywheel . 76 3.5.1. Materials used for flywheels with centrifugal effects . 78 3.6. Press fit and thermal effects through bracing 80 3.7. Case study applied to bolted tanks 83 3.8. Case studies applied to contact stresses (Hertz) in design 89 3.8.1. First case: sphere-to-sphere contact . 90 3.8.2. Second case: contact between two parallel cylinders . 93 3.9. Conclusion 96 Chapter 4. Design of Incurvate Geometries by Sweeping . 97 4.1. Introduction 97 4.2. Case studies 99 4.2.1. Case study 1: frame sweeping 99 4.2.2. Case study 2: frame sweeping 101 4.2.3. Case study 3: frame sweeping 104Contents vii 4.2.4. Case study 4: frame sweeping 106 4.2.5. Case study 5: example of a connecting rod of SAE 8650 109 4.2.6. Case study 6: swept double elbow 111 4.2.7. Case study 7: frame sweeping 113 4.3. Conclusion 115 Chapter 5. Principles for Calculations in Mechanical Design: Theory and Problems. Strength of Materials in Constructions 117 5.1. Essential criteria of constructions in design . 117 5.1.1. Stress intensification in shafts and beams 118 5.1.2. Homogeneous, solid, round sections 119 5.1.3. Homogeneous, solid, square sections with recessed section . 119 5.1.4. Homogeneous, hollow, square sections, with no external variation 120 5.1.5. Homogeneous, solid, round sections with a shoulder (shouldered shaft) . 121 5.1.6. Homogeneous, solid, rectangular or square sections, with a groove 121 5.1.7. Homogeneous, hollow, round and flat sections (pierced flat piece with an axle) . 122 5.1.8. Homogeneous, hollow, round sections (shaft with groove) . 122 5.2. Principles of calculations for constructions in design . 123 5.2.1. Example on stress intensifications 124 5.2.2. Case study on torsion angles . 126 5.2.3. Case study: Tresca and von Mises yield criteria 130 5.3. Pressurized recipients and/or containers . 133 5.4. Calculation principles and solution method for compound loading 135 5.4.1. Case study: mechanical fit . 138 5.4.2. Case study of a profiled piece stressed under conditions of elasticity . 143 5.5. Buckling of elements of machines, beams, bars, shafts and stems 144 5.5.1. Case study: buckling of an I-beam according to AISI specifications . 147 5.5.2. Case study: I-beams and U-beams, homogeneous and isotropic . 149 5.6. Design of stationary and rotating shafts . 152 5.6.1. Design (dimensioning) of shafts subjected to rigidity 154 5.6.2. Case study 1, solution 1 156viii Applied Mechanical Design 5.6.3. Case study 2 with solution: shear, moments, slope, elasticity deflection. Applied SOM in mechanics and civil engineering 156 5.7. Power transmission elements: gear systems and pulleys . 159 5.7.1. Case study 159 5.7.2. Case study: statement of problem 2 . 161 5.7.3. Case study: statement of problem 3 . 163 5.8. Sizing and design of couplings 165 5.8.1. Design of a universal coupling, known as a Hooke coupling . 167 5.9. Design of beams and columns . 170 5.9.1. Solved case study: bending and torsion of a shaft . 172 5.9.2. Case study 3: equivalent bending moment and ideal moment on a shaft . 176 5.9.3. Case studies: maximum performance of pre-stressed bi-materials . 177 5.9.4. Case study: deflection and buckling of elements of machines . 178 5.10. Case studies using the Castigliano method . 180 5.11. Conclusion . 183 Chapter 6. Noise and Vibration in Machine Parts . 185 6.1. Noise and vibration in mechanical systems . 185 6.1.1. Aerodynamism of moving mechanical bodies . 188 6.2. Case study 1 . 189 6.2.1. Lightweight vehicles and trucks . 189 6.2.2. Case study 1 . 191 6.2.3. Case study of the rotor blade of a fire brigade helicopter 194 6.3. Vibration of machines in mechanical design 195 6.4. Case studies with a numerical solution 201 6.4.1. Case study: input parameters: M = 1; k = 1; φ0 = 1 and c = 2.25 . 201 6.4.2. Case study: system with free vibrations . 202 6.4.3. Case study: problem with solution and discussion 204 6.4.4. Case study: problem 3 with solution . 206 6.4.5. Case study: problem 2. Engine represented on two springs . 207 6.4.6. Case study based on a concrete problem with solution 212 6.5. Critical speeds of shafts in mechanical systems 215 6.5.1. Case study with solution and discussion 218 6.5.2. Method of approximation using the Dunkerley equations 222 6.5.3. Method of approximation using the Rayleigh–Ritz equation 223Contents ix 6.5.4. Method of approximation using the equations of the rotation frequencies 224 6.5.5. Method for solving the function F(ωc): roots → (r0 and r1) . 224 6.6. Conclusion 225 Chapter 7. Principles of Calculations for Fatigue and Failure 227 7.1. Mechanical elements of failure through fatigue 227 7.2. Analysis of materials and sizing in applied design . 229 7.3. Sizing of pivot joints with bearings 232 7.3.1. Basic formulae for calculating lifetime . 233 7.3.2. Determination of the minimum viscosity necessary . 238 7.4. Faults of form and position of ranges on the operating clearance fit 239 7.5. Friction and speed of bearings . 240 7.6. Sizing of bearing pivot joints and lifetime 241 7.7. Case study: statement of the problem 243 7.7.1. Internal clearance fit of bearings . 244 7.8. Biaxial stresses combined with shear for ductile materials in concrete application 246 7.9. Fundaments of sizing in mechanical design. Soderberg equations in fatigue of ductile materials 248 7.9.1. Application of Soderberg equations . 248 7.9.2. Stress intensification factors (SIFs) . 249 7.9.3. Case study 250 7.10. Welding and fatigue 253 7.10.1. Case study: calculation of resistance of weld joints in design . 254 7.10.2. Real-world case study: welded cross-shaped structure . 256 7.10.3. Case study: fracture mechanics and stresses . 261 7.10.4. Case study in fatigue fracture mechanics . 262 7.11. Limits of performance and of strength in the elastic domain 267 7.12. Proposed project: outboard motor for a small boat 269 7.13. Conclusion . 270 Chapter 8. Friction, Brakes and Gear Systems . 271 8.1. Friction, materials and design of assembled systems . 271 8.2. Buttressing of mechanical connections . 274 8.3. Case study: principles of calculations for brakes 279 8.3.1. Design of a double brake block by calculation . 281 8.3.2. Design of inner double-shoe block brake 282 8.3.3. Design of a band brake block . 284 8.3.4. Examples of principles of calculations for brake design, with solutions 287x Applied Mechanical Design 8.3.5. Case study: hypothesis of the design of a double-shoe brake . 289 8.3.6. Case study: hypothesis of the band brake whose drum has a radius R (mm and in) 291 8.3.7. Case study: differential brake using a roller pressed against a drum 292 8.3.8. Symmetrical shoe brake pressed against a drum with radius R . 294 8.4. Principles of calculations of a gear system or gear disc 298 8.4.1. Case study: principles of calculations for gear systems . 299 8.4.2. Analysis and choice of the dimensions of the cam gear system . 300 8.4.3. Sizing of a cam gear system and case study 301 8.4.4. Case study: principles of calculations for gear systems in design . 304 8.4.5. Conical gear system 307 8.5. Flywheels and rims (discs and rims) . 309 8.5.1. Flywheel for a solid disc 311 8.5.2. Flywheel system with rim and discs (internal and external) made of cast iron 312 8.5.3. Flywheel: numerical applications. Hypothesis II . 314 8.6. Conclusion 315 Chapter 9. Sizing of Creations 317 9.1. Elastic machine elements and bolted assemblies 317 9.2. Dimensions (sizing) of bolted assemblies 321 9.3. Fatigue, shocks and endurance of bolted assemblies 324 9.4. Springs in mechanical design . 325 9.4.1. Materials and geometry of compression springs 326 9.4.2. Case study of helical springs in mechanical design 338 9.4.3. Case study of a spring in a rocker switch 340 9.4.4. Verification of buckling of compression spring 344 9.5. Simple blade and spiral blade springs 345 9.6. Main expressions of design calculations for Belleville washers . 346 9.7. Power transmission. Case study: hoist 347 9.7.1. Power transmission and simple drum brake 348 9.8. Case study on couplings 350 9.8.1. Case study: analysis in design of brake elements . 351 9.9. Case study on power transmission: external spring clutch 352 9.9.1. Case studies: power transmission. Bolted assembly . 353 9.9.2. Computer-assisted design of a hub (bolted assembly) 355 9.10. Couplings and machine elements subjected to stress at high speeds 356 9.10.1. Determination of the error in position of the shaft 357 9.10.2. Determination of the output velocity of the shaft 358Contents xi 9.11. Design of spring rings . 359 9.12. Principle of calculations for a Belleville washer: case study 361 9.13. Determination of the pressing moment for a bolted assembly . 362 9.14. Power transmission by epicyclic gear system . 363 9.15. Conclusion . 365 Chapter 10. Design of Plastic Products 367 10.1. Calculations for the design of plastic parts . 367 10.1.1. Mechanical parameters used during traction tests 368 10.2. Jointing of a ball bearing in a metal casing 370 10.3. Cylindrical clip of PP (e.g. blinds): force exerted . 371 10.3.1. Spherical clip of a PP: force exerted 374 10.4. Types of clip fitting: counter-cylindrical cantilever . 376 10.4.1. Conical cantilever . 378 10.4.2. Short cantilever 378 10.5. Configuration of strips: two-dimensional spline interpolation . 381 10.5.1. Graphs of the model of the original surface 383 10.6. Press assembly . 383 10.7. Reduction of stress relaxation: bolts and self-tapping screws 385 10.8. Case study: piping link 386 10.9. Assembly by forced jointing . 388 10.10. Stress and thermal swelling in assembled materials 391 10.10.1. Stress intensifications 393 10.11. Capacity and reliability of roller bearings (plastic and otherwise) 395 10.12. Safe stress of the appropriate material for a plastic clutch system 396 10.13. Case study: plastic ball bearings 398 10.13.1. Calculation of the lifetime of roller bearings 401 10.14. Limits of performances of polymer design 401 10.15. Case study: fan with plastic blades 402 10.16. Conclusion . 404 Chapter 11. Mechanical Design Projects . 405 11.1. Proposed projects in mechanical design 405 11.2. Case studies of hoisting and handling devices . 405 11.3. Projects design proposal for a lifting winch 406 11.3.1. Case study: parameters in sketching a lifting hook . 408 11.3.2. Principles of calculations of the resistance of a lifting hook 409 11.3.3. Calculation and design (choice) of the round-wire coil spring . 412 11.4. Calculation and design of a bolted assembly . 414 11.5. Yield of power transmission of a screw mechanism . 417 11.5.1. Calculations of stresses on the threads of a screw mechanism . 419xii Applied Mechanical Design 11.5.2. Calculations of stresses at the root of the thread in a screw mechanism 420 11.5.3. Case study: numerical applications . 420 11.6. Project 2: case studies: scooter 424 11.6.1. Presentation of the main parts 426 11.7. Project 3: dental hygiene dummy 428 11.7.1. Support clamped to the lab bench in the dental hygiene department 435 11.7.2. Case studies of a complete block and crank link . 438 11.7.3. Explanatory photographic definition of the final product 439 Conclusion 443 Appendix . 445 Bibliography . 467 Index . Index A airplane, 39, 191, 192 amplitude, 197–199, 206, 212–215, 221, 324 approximation, 221–225, 254, 313, 314 APTE, 7–9, 432 assemblies, B Bayes, 6 beam(s), bearing, bending, blade, 194, 195, 326, 327, 345, 403 bolts, bracing, 65, 72, 80–83 brakes, buckling, buttressing, 274, 275, 277 C cam, 299–304, 368 cantilever, 157, 376–378, 399 capacity, 233, 234, 300, 302, 395 clamp, 113, 115, 436, 437 clearance fit, clip, 111–113, 371–378, 387 clipping, coefficient, Applied Mechanical Design, First Edition. Ammar Grous. ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.472 Applied Mechanical Design column, compression, connection, connecting rod, 109, 117 contact, coupling, 55, 165–168, 350, 353– 358, 380 cracks, 327 creep, 383–387 criteria, speed, 215 criticality, 10, 11, 12 cylinder, 75, 76, 84, 85, 89, 312, 313, 315, 438 D damping, 186, 196–198, 200–214, 222, 225 deflection, displacement, dummy, 113, 429, 430–442 E elbow, 58, 111 elongation, 85, 322, 324, 339, 342, 369, 380, 387 equilibrium, expansion, 55, 56, 59, 60, 67, 70, 83, 387, 391, 392 F failure, fan, 126, 250, 251, 402–404 FAST, 4, 5, 76, 145, 356, 434 fatigue, fiber, finesse, 37, 42 fishing reel, 385, 386 FMECA, 10–13, 25, 26, 100, 102– 104, 109–115 forces, form factors, 44, 45, 49, 50, 128, 150, 270Index 473 frequency, friction, G, H Gantt, 13, 17–20, 27 gears, 218, 301 geometrical product specifications, 63, 434 handling, 4, 352, 405 heat-hardening, 367 Hertz, 65, 67, 76, 89, 91, 92, 94, 232, 234, 262, 440 hoist, 11, 12, 347, 352 hoisting, 405 Hooke, hub, I, J indices, 44, 60, 80, 268 inertia, interference, 65, 67, 69–72, 81–83, 126, 352, 383–385 interpolation, 381–383 jack, 131, 277 jaws, 21, 429-433 joint, 87, 88, 135, 239, 240, 244, 254, 259, 260, 318, 322, 355–358, 363, 374, 389, 390, 414 jointing, 370, 388, 390 L load, loading, loft, 381 M, N materials, metrology, 4, 23, 24, 28–30, 51, 60, 61, 185, 241, 321, 381, 382, 433, 437, 438 micrometer, 59, 60 Mohr, 92, 94, 130, 136 moment, noise, 60, 185, 219, 225, 235, 242, 275 notch, 106, 107, 249–252474 Applied Mechanical Design O, P optimization, 32, 38, 39, 44, 45, 49, 78, 135, 172, 253 oscillation, 186, 197 outboard, 269, 270 performance, pipe, 131, 388 pivot, plastic, polymer, pressure, project, pulley, 155, 159–161, 163, 166, 167, 172–174, 284, 303 R random, 185–188, 237 recipient, 135 relaxation, reliability, resonance, 200, 206, 208, 212, 214 rim, 309–315 rings, S safety, scooter, 34, 424–428 shaft, shear, shell, sizing, skull, 428–433, 437 slide, 95, 274–276 Soderberg, 248 sphere, 89, 90, 93, 433, 438 spiral, 30, 326, 345 spires, 325–345, 352, 353, 356, 412, 413, 416, 417, 435 spline, 115, 381Index 475 spring, standards, static, steering, 424, 426 stick-slip, 274–277 stiffness, stresses, strip, 55, 57, 378–381 structures, supports, 88, 104, 189, 211, 217, 308, 317, 318 sweep, 97, 115 T table, 6, 31, 39–42, 113, 229, 233, 352 tank, torque, transmissibility, 204, 210, 215 transmission, Tresca, V, W vat, 84, 85, 131 vibration, 60, 185, 196–200, 205– 208, 212–219, 275 wiscosity, 238, 398 Von Mises, 83, 132, 137, 404 Wahl, 328, 330, 340–343 wall, welding, 61, 253, 270, 368 wings, 189, 192, 194
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Applied Mechanical Design رابط مباشر لتنزيل كتاب Applied Mechanical Design
|
|