Admin مدير المنتدى
عدد المساهمات : 19002 التقييم : 35506 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Foundations of Material Science and Engineering السبت 09 يناير 2021, 10:58 am | |
|
أخوانى فى الله أحضرت لكم كتاب Foundations of Material Science and Engineering Third Edition Smith, William F. University of Central Florida
و المحتوى كما يلي :
TABLE OF CONTENTS 1 Introduction to Materials Science and Engineering 2 Atomic Structure and Bonding 3 Crystal Structures and Crystal Geometry 4 Solidification, Crystalline Imperfections, and Diffusion in Solids 5 Mechanical Properties of Metals I 6 Mechanical Properties of Metals II 7 Polymeric Materials 8 Phase Diagrams 9 Engineering Alloys 10 Ceramics 11 Composite Materials 12 Corrosion 13 Electrical Properties of Materials 14 Optical Properties and Superconductive Materials 15 Magnetic Materials Appendix A Some Properties of Selected Elements Appendix B Ionic Radii of the Elements Appendix C Selected Physical Quantities and Their Units Appendix D Answers to Selected Problems Appendix E References for Further Study system , phase diagram of . 411 Alclad alloys, 716 alkali metals electronegativity of, 35-36 in glasses, 582-584 metallic bonding of . 52 allotrophy, 96-97 allotropic transformations, 96-97 alloy steels, 461 classification of, 461, 463 continuous-cooling transformation diagram. 466. 468. 469 distribution of alloying elements. 463-464 hardcnability curves for, 466, 468 alloy-environment systems in which SCC occurs, 705 alloying elements approximate distribution in alloy steels, 463-464 effects on the eutcctoid temperature of steels, 464-465 increasing the electrical resistivity of pure metals, 739-740 alloys, 22, 131 , 173 binary, 383 casting of , 182-184 extrusion of, 188-190 ferrous and nonferrous, 7 hot and cold rolling of, 184-188 mechanical properties of, 201-205 nonequilibrium solidification of . 390-393 oxidation of, 711 oxidation rate of, 711 -714 processing of, 182-193 solidification of, 118-128 strength of, 198-201 stress-strain curves for, 206-207 alnico alloys. 857-858, 868, 871 alternating copolymers, 290, 291 alumina ( AI2O3), 558, 563-564 aluminosilicate glasses, 583 aluminum as an alloying element in alloy steel, 464 calculating the P.B . ratio for, 710-711 energy-band diagram for. 743 engineering properties of, 479-480 production of , 480-481 superpure, 131 aluminum alloys, 470, 472-488 1100 aluminum alloy, 483, 484 l xxx aluminum alloys, 483, 484 2024 aluminum alloy, 483, 484 2xxx aluminum alloys. 483 3003 aluminum alloy, 483, 484 3xxx aluminum alloys, 483 5052 aluminum alloy, 483, 484 5xxx aluminum alloys, 483, 484 6061 aluminum alloy, 484, 485 6xxx aluminum alloys, 483, 484, 485 7075 aluminum alloy, 484, 485 7xxx aluminum alloys, 484, 485 casting, 484, 485-488, 491 correlation of structures and hardness in, 478-479 in fuselage skin, 670 mechanical properties and applications for, 484 MMCs, 652-653 precipitation strengthening (hardening) of, 475-478 strengthening, 379-380 structures formed during the aging of , 475-478 wrought alloys, 481 Aluminum Association system. 487 aluminum honeycomb panels, 651 aluminum -nickel (Al-Ni ) phase diagram, 423 aluminum -nickel -cobalt alloys. See alnico alloys American Concrete Institute. 635 amide linkage, 324 amino resins, 341-342 amorphous polymeric material, 314 amorphous structure of glass. 581 angiosperms. See hardwoods angular aggregate, 640 anion diffusion, 711 anions, 34, 60, 527 anisotropic alnico alloys, 857 anisotropic strength of wood, 640 annealing, 185, 229, 238 of carbon steels. 455 A 1 -4% Cu alloy correlation of structures and hardness in, 478-479 precipitation strengthening (hardening) of, 475-478 structures formed during the aging of , 475-478 abrasive materials, 577 ABS thermoplastics, 318-320 absolute-volume method. 635-636 absorption of light. 797 absorption-type inhibitors, 718 absorptivity. 822 acceptor atoms. 754 acceptor levels, 754, 786 acetals, 328-329 acetylene, 48, 49 acicular eutectic structure. 401 acidic refractories, 578, 579 acrylics, 320 acrylonitrile, 318 activation energy, 149-150, 174 calculating. 169.171-172 for scIf-diffusion, 154, 155 activation polarization, 691 , 692, 721 activation-polarization barrier, 691 activators. 802 ‘"active” photons. 805 adsorption theory. 693 aerospace alloys, 13 age hardening, 379 agglomeration of particles, 547 aggregate material in concrete. 629.634 aggregates. 640. 661 aging of an A1 -4% Cu alloy. 475 artificial, 473 curve, 474-475 effect on strength and hardness , 474—475 in the precipitation -strengthening process, 473 agitated oil as a quenching medium, 468, 470 air-entrained concretes, 634, 635 , 661 AIS1-SAE code, 460-461 Al^CuMg phase in an aluminum matrix , 379, 380kiiymcciiiiyr I I I I I I U kuiuirii annealing—Coni, continuous, 242, 245 tor reciystallization. 238. 241-245 annealing point. 586. 594 annual growth rings, 642 anode, 676, 721 anodic dissolution, 706 anodic protection, 719-720, 722 anodic reaction, 672 anodic to hydrogen metals, 673, 674 anodically controlled corrosion rate, 692 antifeiToinagnetism, 836, 837-838, 869 aniiftuorite crystal structure. 54 J APF (atomic packing factor), 108 BCC unit cell. 74-75 FCC unit cel I, 75 HCP unit cell, 76 applications aluminum alloys, 484 cast irons, 500 copper alloys. 49CM91 low-alloy steels, 470, 471 magnesium. Titanium and nickel alloys, 509 aqueous galvanic cells, 678^679 a ramid fibers, 604, 606, 610, 659, 660 area effect, 697, 698 aromatic polyamide fibeis. See aramid libers Arrhenius diffusivlty plots, 169-171 Arrhenius rate equation, 152, 153, 174 Arrhenius, Svante August. 152 artificial aging, 473 as-cast Ingots. 190. 391 asphalt, 639, 661 Asphalt Institute, 639-640 asphalt mixes, 639-640, 661 A5TM grain-size number, 144 atactic stereoisomer, 300, 302, 367 atom positions in cubic unit cells, 78 atomic bonds. 59 atomic density. 93-94. 108 atomic diffusion, 154, 172 atomic mass unit (u). 22. 60 atomic masses, 22-23 atomic movements, 154 atomic numbers. 20.60 atomic orbitals. See orbitals atomic packing factor. See APF atomic size, 30, 31 atomic-site unit cell for t he BCC crystal structure. 72, 73 for the FCC crystal structure, 75 for the HCP crystal structure. 76 atoms, 59 chemical bonding between, 36 electronic structure of, 24-36 structure of, 20 attenuation for optical fibers, 809 attractive force between an ion pair, 38 austem pering, 459-460, 513 austenite, 433, 447-452, 512 austenitic stainless steels, 495, 496, 497-498, 702, 703 austenitizing, 435, 512 autocatalytic process, 699 autoclave sterilization, resistance to, 331 automobiles, composition of, II , 12, 13 avalanche effect, 766 Avogadro's number 22, 60 axes of symmetry for wood, 642, 643 bias, 786 biased pn junction, 763 bifunctional monomer, 287, 366 billets, 430-431 binaiy alloy, 383 binary eutectic alloy systems, 394-401 binaiy eutectic copper-silver phase diagram, 420 binaiy eutectic reaction , 400-401 binary isomorphous alloy systems, 383-385 binary monotectic systems, 406—407, 408 binaiy peritectic alloy systems, 401-406 binary peritectic iridium-osmium phase diagram, 421 binaiy phase diagram. See phase diagrams binders additives, 547 removing from ceramic parts, 552 bipolar junction transistor (BJT), 767-769 bipolar transistor, 786 Bitter technique, 840, 841 bitumen, 639 BJT (bipolar junction transition ), 767-769 blister copper, 488 block copolymers, 290, 291 blooms, 430, 431 blow molding, 305-306, 307, 367 blowing glass, 588, 590 body-centered cubic crystal structure. See BCC crystal structure body-centered unit cells, 69 Boeing 737, fuselage structural failure, 669-670 Bohr atom, 833 Bohr equation, 25 Bohr hydrogen atom, 25 Bohr magnetron, 835-837, 869 Bohr, Niels Henrik, 25 Boltzmann's constant, 150, 151 bonding energies between atoms of a particular metal, 51, 52 for covalent bonds, 46, 47 of fourth-period metals, 53 of ionic solids, 43 —44 percentage iconic character of, 58 bonding valence electrons, 744-745 Borazon, 577 boron, diffusing into silicon wafers, 166 boron oxide (B3OI)* 582-583 borosilicate glasses, 582-583, 584-585 bottom veedies, 191 box annealing process, 242, 244 Bragg angle, 100 Bragg, William Henry, ] 01 Bragg's law, 101 Baekeland, L. Hr , 335 Bain, Kr C., 450 bainite, 450, 513 Bakelite, 293, 335 bar magnet, 829 barium ferrites, 867 barium titanate (BaTiOO, 564-565, 566-567, 568 basal plane of HCP unit cell, 88 base of an npn planar bipolar transistor, 769, 771 of a transistor, 767, 768 base-centered unit cells, 69 basic refractories, 578, 579 basic-oxygen process, 429 bauxite, 480 Bayblend, 333 Bayer process, 480 BCC ( body-centered cubic) oystal structure, 71, 72 of alnico alloys, 857 arrangement of atoms in, 72-75 brittle fracture shown by, 247 compared to FCC and HCP sti'uctunes, 92 of iron , 842, 843 slip planes and directions for, 215, 216, 217 twinning found in, 222—223 united!, 108 BCT (body-centered tetragonal ) cystal structure, 444 benzene molecule, 48-50 benzene ring, 49 benzene structure, 48-50 benzoyl peroxide, 285kiiymcciiiiyr IIIIIIU kuiuirii brasses, copper-zinc* 492 Bravais, August, 69 Bravais lattices, 69 breakdown diodes * 766-767 Brinell hardness test, 209, 2lQ brittle fracture, 246, 274 metals and alloys, 247-248, 249 polymeric materiaIs* 362-364 brittleness * of ceramics, 671 bulk polymerization, 296, 366 Buna S^' (butadiene-styrene),346 __ Burgers vector, 138, 139, 140, 173 butadiene, using to produce ABS, 318 butadiene-acrylonitrile rubber* 361 butadiene-styrene rubber,360-351 butane * structural formula for normal, 48, 49 heat treatment, 442-461 limitations * 461 noneutectoid * 461-452 slow cooling, 435-442 tempering* 456 very-low-carbon* 461—462 carbon-carbon bonds * 339 carbon-carbon composites, 603-604 carbon-carbon double bonds, 282, 339 carbon-containing molecules, covalent bonding in, 48 carbon-fiber-epoxy composite material, 10, 15, 614 carbon-fiber-reinforced-epoxy resins* 614-616 carbonization stage for PAN fibers * 608-609 carburized steel parts, manufacture of, 161 carburizing* 260 carrier concentrations extrinsic semiconductors * 755 intrinsic and extrinsic semiconductors, 756-758 case hardening of steel, 161-165 cast aluminum alloy groups, 487 cast copper alloys* classification of* 489 cast ingots, producing with a fine grain size* 128 cast irons * 498-506 chemical composition ranges for* 499 mechanical properties and applications of, 500 properties of, 498 types of, 499, 500 cast monotectic alloy of Cu-36% Pb* 407, 408 cast products, 183 casting alloys* 183 aluminum, 485-487 magnesium, 507 catalysts, using in chain polymerization, 284—285 catastrophic oxidation, 713 cathode * 676 * 721 cathode reactions for aqueous galvanic celts, 679 cathodic hydrogen reduction on a metal surface, 691-692 cathodic polarization* 721 cathodic protection, 718-719, 722 cathodic reaction, 672 cathodic to hydrogen metals, 674 cathodically controlled corrosion rate* 693 cathodic-anodic area ratio, 697, 698 cathodoluminescence, 803—804 cation diffusion * 711 cation-anion divacancy* 137 cations, 34, 60, 527 cavitation damage* 707-708 CDA (Copper Development Association)* 488 * 489 Celcon, 329, 333 cellulose, 645 cellulose molecule * 645 * 647 cellulose-filled mea and melamine compounds, 342 celt-wall ultrastructure of wood * 644-646* 647 cement clinker * 630 cement paste in concrete* 629 cementite, 432, 433, 457, 512 central core glass, 810 centrifugal casting* 588 ceramic abrasive materials * 577 ceramic ball bearings and races* 10 ceramic coating* 716 ceramic compounds critical superconducting temperatures for* 815 ionic and covalent bonding in, 526 ceramic materials, 8-9, 10, 17, 523-524, 591, 592 forcapacitators, 564-565 corrosion control and, 716 deformation of * 570-57 ] electrical properties of * 559-562 factors affecting the strength Of, 572, 573 fatigue failure of* 576 forming products* 547-552 future trends in usage, 14-15 grain boundaries, 143-144, 145 * 146 insulator, 560-561, 562-564 introduction to * 524-525 mechanical properties of, 570-571 processing of, 546-554, 592 properties of, 524, 591-592 thermal properties of, 577-580 toughness of, 572-574 traditional and engineering, 554—559 ceramic parts* manufactured by isostatic pressing* 549 ceramic phase diagram of the Al20r$i02 system, 41 ] ceramic refractory materials, 577-579 ceramic semiconductors, 565-566 ceramic tile insulation for the space shuttle orbiter * 580* 581 ceramic whiskers * 656 ceramic-matrix composites (CMCs), 656-658 Ceratec ball bearing and races, 525 C- 17 transport plane* carbon-fiber-epoxy composite material used for, 10, 15 c/a ratio for an ideal HCP crystal structure, 76 calcium fluorite (Cah’2) crystal stmcture* 539-541 calcium halophosphate, 803 cambium layer, 640, 641, 661 capacitance* 560* 593 capacitors* 559* 564-565 * 593 f carbide forms * 457 carbon covalent bonding by* 46—48 interstitial diffusion in iron * 156 interstitial solid solution in iron, 134—136 carbon black, 345 carbon content of annealed steels * 249* 250* 251 effect On the martensitetransformation start temperature, 442, 443 of steel * 429 carbon dioxide lasers, 807, 808 carbon fibers, 604, 606, 659, 660 mechanical properties compared to aramid and glass* 610 producing from polyacrylonitrile (PAN) precursor material 608-609 for reinforced plastics* 606* 608-609 carbon gradients in test bars of plain-carbon steel, 163 carbon steels, 93-94, 253, 431, 513. See also iron-carbon binary alloys annealing and normalizing* 455-456 classification * 460—461 effect of tempering temperature* 458kiiymcciiiiyr I I I I I I U kuiuirii cesium chloride (CsCI), 529, 530—^3 3 chain polymer 366 chain polymerization, 282-284, 366 chain silicate structure, 544 charge carriers, effect of ionized impurity concentration on, 758-759 charge densities in extrinsic semiconductors, 756 charged panicles in extrinsic semiconductors, 756 Charpy V-notch specimen, 249 chemical attack on a material by its environment, 670 chemical bonding, 36 chemical formula, obtaining the simplest, 23 chemical polymerization processes, 295 chemical reactivity, 32, 34-36 chemical vapor deposition (CVD) process, 778, 780 chemically strengthened glass, 591 chemically tempered glass, 594 chip capacitors, 565 chopped strands, 606, 608 chrome mask, 775 chrome plate, 716 chromium (Cr) as an alloying element in ahoy steel, 464 antiferromagnetism exhibited by, 837 in stainless steel, 494 chromium carbide precipitation mechanism, 702-704 cis-1 ,4 polyisoprene, 343, 367 cladded metal structures, 651-652 coatings, applied to metals to prevent or reduce corrosion, 716-717 cobalt (Co) Curie temperature of, 838 ferromagnetic properties of, 834-835 COK (cube-on-edge) material, 849 coercive force, 847, 856, 868, 870 coherent laSeT beam, 805 coherent precipitate, 476 coherent radiation, 804 cold ductility of he-Cr-Co alloys, 862 cold plastic deformation, 226-227 cold rolling aluminum, 481 metal sheet, 184-185, 187, 188, 189 cold working increasing the tensile strength of unalloyed copper, 226, 227 of metals, 229 cold-formmg processes, 547 cold-setting thermosets, 333 collector of an npn planar bipolar transistor, 769, 771 of a transistor, 767, 768 color television screen phosphorescence, 803-804 columbium in alloy steel, 464 columnar grains, 125, 126, 173 competition among materials, 11-13 complementary circuits, 780 Complementary Metal Oxide Semiconductor (CMOS) devices, 780-781 completely reversed stress cycle, 256-257, 258 components of a phase diagram, 417 composite materials, 9-10, 17, 603-658, com piessive strength ceramic materials, 570 concrete, 633, 634-635 pure-cemeut compound pastes, 632 wood, 648 compressive stresses, 567, 568, 590 concentration galvanic cel Is, 681-683 concentration polarization, 692-693, 721 concrete, 629-630, 659, 661 aggregates for, 634 compressive strength of , 633, 634-635 mixing water for, 634 prestressed , 638-639 reinforced and prestressed, 637-638 concrete mixtures, 635-639 condensation polymerization, 293, 294, 295 condensed phase rule, 383 conduction band, 743, 785 conductivity, 733, 734 congniently melting compound, 412 constructive interference, 101 consumption of electrons, 672 continuous annealing process for low-carbon sheet steel, 242, 245 schematic diagram of, 242, 245 continuous casting of steel ingots, 127 Continuous pultrusion process, 629 continuous strands, 606, 608 continuous wave carbon dioxide laser, 808 continuous-cooling transformation diagram, 513 for A IS I 4340 alloy steel, 466, 468, 469 for a eutectoid plain-carbon steel, 452-454 continuous-fiber reinforced CMCs, 656 continuous-fiber reinforced MMCs, 652-653 continuous-strand fiberglass roving, 627 continuous-wave (CW ) lasers, 806 cooling curves, constmcting an equilibrium phase diagram from, 385 coordination number (CN), 527, 528, 529, 592 copolymerization, 317, 366 copolymers, 290-293, 366 copper (Cu) calculating the electrical resistivity of pure, 739 calculating the volume density of, 92-93 electrical resistivity of, 739-740 general properties of, 488 high-purity, 131 clamshell or "beach'* marks, 254 classes of materials, 6 clays chemical composition of, 554, 555 in traditional ceramics, 554 659 closed-moId processes for fi bePrei nforced-plaStic, 627-629 definition of, 604 fibeT-reinforced - piastic, 612-621 fibers for reinforced-plastic, 604, 606-612 future trends in usane, 15 introduction to, 604, 605 open-mold processes for fi bePreinforced-plaStic, 622-626 types of, 10 composition base for a ternary phase diagram, 414 compound semiconductors, 781-784 compounds, added to PVC, 314 compression molding, 306-308, 367 compression, producing fi bepreinforced plastics, 627 cleavage planes, 246, 247 closed-die forging, 190, 192 closed-moId processes for fiber-re inforced-plastic composite materials, 627-629 close-packed directions, 107 close-packed planes, 107, 216 close-packed structures, 90, 91 C-M (covalent-metai litivities), 52-53 CMCs (ceramic-matrix composites), 656-658 CMOS (Complementary Metal Oxide Semiconductor) devices, 780-781 CN (coordination number), 527, 528, 529, 592 Co, cobalt coarse aggregates, 634, 661kiiymcciiiiyr I I I I I I U kuiuirii as a principal alloying element, 483, 485 production of, 488 copper alloys, 488-493 Cl 0200, 492-493 C26000, 490, 492 C28000, 490, 492 classification of, 488-489, 490-^91 con elation of structures and hardness in, 478-479 mechanical properties and applications of 490-491 precipitation strengthening ( hardening) of, 475-478 structures formed during the aging of, 475-478 Copper Development Association (CDA), 488, 489 copper matrix, stabilizing superconductor wire, 8 )9-820 copper-beryllium (Cu-Be ) alloys, 493 copper-lead (Cu-Pb) phase diagram, 407, 408 copper-nickel (Cu-Ni ) phase diagram, 384 copper-silver (Cu-Ag) phase diagram, 420 copper-tin (Cu-$n) bronzes, 493 copper-zinc (Cu-Zn) alloys, 492-493 phase diagram, 409-411 core electrons, 741 core losses, reducing in magnetic materials , 849 cored a with encasement by the ft phase, 406, 407 cored structure, 390, 391, 392, 417 corrals, 67 corrosion, 669-67 ] , 721 coatings applied to metals to prevent or reduce, 716-717 controlling or preventing, 714-720 definition of, 670 fatigue, 260 at or near grain boundaries, 684 rates (kinetics), 686-695 reactions, 690-691 resistance, 494, 700, 715 types of, 696-701 corrosive fluid decreasing the velocity of, 718 on a metal surface, 707 corrosive ions, reducing the concentration of, 718 corundum (Al20.d crystal structure, 541 Coulomb, Charles Augustin, 38 coulombic forces, 37, 38, 40 Coulomb's law, 38-39 coupled zinc and steel , 697 covalent bonding, 44, 59, 61 by carbon, 46-48 in carbon-containing molecules, 48 in diatomic molecules, 45-46 in fluorine, 46 in the hydrogen molecule, 44-45 covalent bonds, 37 covalent-metalIitiv jties COM values), 52-53 Ci', See chromium crack bridging mechanism, 656, 657 crack deflection mechanism, 656 crack growth on planes of high tensile stress, 259 crack growth rate, 262 crack initation in the fatigue process, 258 crack propagation, 362-363, 576 crack tip, stress maximized at , 251 crazes in glassy thermoplastics, 362-363 creep, 274 of metals, 266-268 of polymeric materials, 358-360 creep curves for metals, 267 plotting, 268-269 creep modulus, 359-360 creep rate, 267, 268, 274 creep (stress)-rupture strength, 274 creep strain of polystyrene, 358-359 creep tests, 268-270 creep-resistant alloys, 270-273 creep-rupture test, 270, 27 ] crevice corrosion, 700-702 cristobatite, 545, 546 critical angle of incidence for total internal reflection of light, 796—797 critical cooling rate, 454 critical cuiTent density, 822 critical held Ht-, 815-816, 822 critical radius of a nucteus, 173 versus undercooling, 122-124 critical (minimum ) radius ratio, 528-529, crystal orientation, effect on the magnetization of ferromagnetic materials, 842 crystal planes in cubic crystals, 107 determining atomic densities on, 93—94 distance between, 85 in HCP unit cells, 87 crystal structures, 68, 108 analysis of , 97-107 determining atomic densities in various directions, 95 effect on diffusion, ] 59 of elemental metals, 71 Ke-C martensite, 444-445 unit cells, 107 using x-ray diffractometer data to determine, 105 x-ray diffraction analysis of , 101-107 crystal systems, 69 crystal line imperfections, 136-149 crystalline lattice, diffusion of atoms in, 154 crystalline materials, 68 crystalline polymeric materials, 325 crystalline regions with a higher refractive index, 800-801 crystalline solids, 68 cry stalline structure of metals, 7 crystallinity (in polymers), 353-354, 367 crystallite arrangemeats for partly crystalline thermoplastic materials, 299 crystal tographic direction indices, 78 crystallographic planes, Miller indices for 82 crystallographically equivalent directions, 79 crystals growth in liquid metal, 125 solidification of singte, 128-131 CsCl (cesium chloride) crystal structure, 530-531 radius ratio for, 529 Cu, See copper Cu-Be (copper-beryllium) alloys, 493 cube-on-edge (COB) grain-oriented material, 849 cubic boron nitride, 577 cubic crystal planes, indices for, 82, 108 cubic magnetic materials, magnetostriction in, 845 cubic soft ferrites, composition and stjucture of, 864 cubic structure for zirconia, 574, 575 592 critical resolved shear stress for metal single crystals, 216, 218, 219 critical temperature Tt, 8 ) 5, 822 cross-linking, 336, 366 crossplied quasi-isotropic lamminate plies for a composite material, 615 crystal, 108 crystal directions, 107 crystal imperfections, 159, 172 crystal lattices interstitial sites in, 535-537 specific directions in, 78kiiymcciiiiyr I I I I I I U kuiuirii cubic system, 69, 70, 84 cubic unit cells atom positions in, 78 diffraction conditions for 103—105 direction vectors in, 80 directions in, 78-81 Miller indices for crystallographic planes in, 82 Cu-Ni equilibrium phase diagram, 385 cup-and-cone ductile fracture, 247 Curie temperature, 566, 593, 838, 870 current density, 736 current flow in superconductor, 817-818 current-carrying conductors, magnetic fields produced by, 830 current-voltage characteristics of a pn junction diode, 764 cutting tools, ceramic, 523-524 Cu-Z.n phase diagram, 409-411 CVD (chemical vapor deposition ) process, 778, 780 CWCO? (continueus-wave) carbon dioxide lasen 808 cyclic stresses, 256-258 Cycovin, 333 Czechralski method * 130-131 depletion regions in an NMOS device, 773 design engineer, 2 destructive interference, 99 dezincification, 708, 709 DH (double heterojunction) GaAs laser, 808 diamagnetism, 833—834, 869 diamond, cubic structure * 47-48, 744 diamond-cone identer, 209 diatomic molecules, electron-pair covalent bonds, 45-46 die casting of aluminum, 487 dielectric constant, 559-561, 593 dielectric loss, 559, 562 dielectric strength , 561-562, 593 ceramic materials, 561-562, 593 general-purpose plastic materials* 310-311 selected engineering thermoplastics, 323 selected thermoset plastics* 334, 335 dielectrics, 559-562, 593 diffracting planes in cubic crystals, 104 diffraction. Sec x-ray diffraction diffuse-porous hardwood, 644, 646 diffusing species, concentration of, 159 diffusion, 154-157 coefficient, 157 equation, 168-172 mechanism, 158 processes, 161-168 technique, 775, 777 diffusion less transformation, 444 diffusivity, 157-158, 174 dimensionless units for engineering strain, 196 dimples indicative of ductile fracture, 248 diode lasers, 808-809 dipolar magnetism* 830 dipole bonds, 37, 60, 61 dipole moments* 54-55 dipoles, 37, 55-57, 60 direct chemical attack on ceramics and polymers* 670-671 direct extmsion, 189, 190 direct voltage* converting alternating into, 765 direct-chill casting* 127* 481 directional bonding, 59 directions in cubic unit cel Is, 78-81 discontinuous (whisker) CMCs, 656 discontinuous MMCs, 653, 654, 655 disk ceramic capacitors, 564, 565 dislocation density, 226-227 dislocations * 172* 173* 213-215 cellular wall pattern of, 213, 215 in crystalline solids, 138-141 , 142 observing on a transmission electron microscope, 139-141 piling up against grain boundaries, 225 domain rotation , 839, 840 domain wall * 843-844 energy, 843-844, 870 movement * 840* 841 domains of closure * 845 of laths * 442 donor impurity atoms* 751 donor levels * 752, 786 dopants, 755, 774^-777 doping effect on carrier concentrations in extrinsic semiconductors * 755-758 of extrinsic silicon semiconductor materials * 754—755 double heterojunction (DH) GaAs laser, 808 DP (degree of polymerization), 283-284, 285, 366 drain casting, 551 drain in an NMOS device, 771, 772 drift velocity, 730, 736 drive-in diffusion step, 777 dry pressing, 548, 549, 592 drying of ceramics, 552 dsp hybridized bonding, 52 ductile cast iron, 500, 501-503, 504, 513-514 ductile fracture of a metal, 246-247, 248, 274 of polymeric materials, 364 ductile metal, structural changes in the fatigue process, 258-260 ductile-brittle transition temperature for noncTystaltine thermoplastics, 298 ductility of metals, 204 d orbitals, 32, 34 deaeration, 718 debye units, 55 decarburizing, 260 deciduous trees, 641 decomposition products, 473-474 deep drawing, 193 deformation ceramic materials, 570-571 metal, 193-194 deformation mechanisms in polymeric materials, 352, 353 deformation twinning, 222, 230 degree of polymerization (DP), 283-284, 285, 366 degrees of freedom, 417 delocalized valence electrons, 741, 742 Delrin, 329 demagnetized iron bar, 830-831 demagnetizing curves for hard magnetic materials, 854, 855 dendrites, 118 densely packed crystal structures, 71 densities generaUpmpose thennoplasties, 310 selected engineering thermoplastics, 323 selected theTmoset plastics, 334, 335 vulcanized natural rubber, 345 K (electrical) glass, 606, 659 early-strength portland cements, 632 earlywood ring, 642 earth’s crust and atmosphere, materiats from, 2, 3 easy magnetization directions, 842, 843 eddy currents* 848-849* 867* 870 HDFAs (erbium-doped optical fiber amplifiers), 814 edge crack, 251 edge dislocation, 138, 173, 213, 214 HDS (electrodynamic suspension), 828 elastic constants for isotropic materials * 198kiiymcciiiiyr I I I I I I U kuiuirii elastic deformation, 193, 230, 352, 353 deforming thermoplastics by, 351 maximum , 202 elastic modulus, 98, 201-202, 230 elastic modulus equations, 6 ) 7-62 ] elastomers (rubbers), 280, 343-351 , 367 electric current * 785 electric current density* 785 electric dipole moment* 54, 566* 567 electrical conduction in elemental intrinsic semiconductors * 746-749 energy-based model for, 741-743 in intrinsic semiconductors, 744-745 in metals, 730, 732-740, 784 electrical conductivity* 733* 734* 785 of an extrinsic semiconductor, 759-761 as a function of reciprocal absolute temperature for intrinsic silicon, 750 of selected metals and nonmetals * 733 electrical conductor, 785 electrical forces, converting into mechanical responses, 569 electrical insulating compounds* 336 electrical insulators, 733, 785 electrical neutrality of ionic solids, 43 electrical porcelain, 556, 558, 562-563 electrical properties ceramics, 559-562 materials, 729-784 selected compound semiconductors* 781, 782 electrical resistance, 785 electrical resistivity, 733, 737-740, 785 electrochemical corrosion of metals, 671-674 electrochemical potential of the Zn-Cu galvanic cell, 675-678 electrochemical reactions, 671-672 electrode half-cell potentials for metals* 672-674 electrode kinetics of corrosion reactions, 690-691 electnodynamic suspension (KDS), 828 electrolytic cell, using to produce aluminum , 480 electrolytic tough-pitch (BTP) copper, 488, 489 electromagnetic spectrum* light and, 792-794 electromagnetic suspension (BMS), 828 electromotive force series, 721 electron and hole mobilities, 747-748 electron charge cloud* 20* 27* 28* 730, 732 electron configurations * 60 carbon atom, 46 elements, 30, 32, 33 fourth-period metals, 53 electron flow in a metal wrte, 736-737 ‘"electron gas+1 of delocalized valence electrons, 51 electron lens system in a transmission electron microscope, 142 electron microscope. See SBM electron shell , 60 electron spin quantum number, 29, 59 electron-dot notation, 45, 46 electronegative elements* 34 elect^negativity* 35-36 electronic materials, 10-11 , 15-16, 17 electronic structure of atoms * 24-36 chemical reactivity and, 32, 34—36 of multielectron atoms, 29-32 electronic structure-chemical property relationships for metals and nonmetals, 36 electron-pair bonds, 44 electrons, 20, 59, 785 consumption of, 672 drift velocity of, 736-737 energies associated with, 25 magnetism and, 833 maximum number for each principal atomic shell , 29-30 quantum numbers of, 28-29 subenergy levels of, 29 electroplating, 687^689 electropositive elements, 34 elements electron configurations of, 30, 32, 33 electronegative, 34 electropositive, 34 identified by atomic number, 20 ionic radii of * 879-880 most common in the earth‘s crust and atmosphere, 3 oxidation numbers for, 34, 35 periodic table of , 20-21 properties of selected, 877-878 relative atomic sizes of, 30, 31 elongation, 345-346 embryos, 120, 173 emf. electrochemical potential emitter of an npn planar bipolar transistor, 769, 771 of a transistor, 767, 768 empirical rate laws for oxidation, 712 BIVIS (electromagnetic suspension ), 828 emulsion masks * 775 emulsion polymerization, 295, 296 encasement phenomenon, 405-406 end-quench hardenabiiity test, 465-466 endurance limit in an SN plot, 256 energy versus separation distance for a pair of metal atoms, 52 versus separation distance for oppositely charged ions, 41 energy bands, 74 ] , 742 energy gap for silicon, 746, 747 energy product, 871 energy-band diagrams for an insulator, 743 for intrinsic elemental semiconductors, 746, 747 for metallic conductors, 742, 743 energy-band model, 741-744, 785 engine applications, ceramic materials for, 9 engineering alloys, 511 engineering ceramics, 14, 524, 556, 558-559. See also ceramic materials engineering designs, plastic materials in, 280-281 engineering materials. See materials engineering metats. See also metals physical properties and costs of, 506 engineering plastics. See also plastics competition with metals* 14 engineering strain, 195-196, 230, See also strain engineering stress, 194—195, 230, See also stress calculating, 206-208 engineering stress-strain, 201, 230 comparing for selected alloys, 206-207 engineering thermoplastics, 322-333, See also thermoplastics entanglement of a linear polymer 287, 288 environment, metal fatigue strength and, 260 environmental conditions, changing to reduce corrosion, 718 epoxide group, chemical structure of, 338 epoxies* 659 epoxy resins, 337-339, 612, 613, 614 equiaxed grains, 118, 120, 125, 126, 173 equilibrium* 417* 762—763 ‘"equilibrium grain size*'" 553* 554 equilibrium interatomic distance, 45 equilibrium phase, 477, 478kiiymcciiiiyr I I I I I I U kuiuirii equilibrium phase diagrams, 417. See also phase diagrams from liquid-solid tooling CUTVCS, 385 for pure iron, 380 s 381 equilibrium precipitate, 474 equipment design effect on corrosion prevention, 7 ] 7 erbium -doped fiber, 834 erbium -doped optical fiber amplifiers (EUFAs), 814 erosion corrosion, 707 error function (erf ) for kick's second law, 161 ester linkage, 330, 339 ethane, structural formula for, 48, 49 ethylene chain polymerization of, 287-284 forming a linear polyester, 340 free-radical chain polymen nation of, 284 molecule, 282, 283 structural formula for, 48, 49 FTP copper, 488, 489 eutectic composition, 394-395, 418 eutectic point, 394, 395, 418 eutectic reaction, 394, 395, 418 invariant reactions in the Fe-Fe .^C phase diagram, 434-435 eutectic reactions, 409 eutectic structures, illustrations of, 401 eutectic temperature, 395, 418 eutectoid (plain carbon steel), 512 eutectoid cementite (Fe^C), 432, 441, 512 eutectoid ferrite, 437, 441 eutectoid a ferrite, 512 eutectoid plain-carbon steel continuous-cooling transformation hardenability diagram, 452 plot—454 , 466, 467 isothermal transformation (IT) diagram for, 447-451 slow cooling of, 435-437 eutectoid reactions, 409, 435 eutectoid steel , 435 eutectoid temperature of steels, 464—465 evergreen trees, 641 exchange energy, 84}, 870 exhaustion range, 760 exothermic reaction, 150 extensometer, 200 extrinsic semiconductors, 751 carrier concentrations in, 756-758 charge densities in, 756 doping of, 754-755 effect of doping on carrier concentrations in, 755-758 effect of temperature on the electrical conductivity of, 759-761 n-type, 751-752, 753 p-type, 752-754 extruder, 306 extrusion, 229, 304-305, 306 of ceramic materials, 552 of metals and alloys, 188-190 of plastics, 367 extrusion ingots, 127, 182 Fe-C martensites formation of, 442 hardness and strength of. 445 'Lap —446 lattice, 445, 446 microstructure of, 442-444 structure on an atomic scale, 444 Fe-Cr phase diagram, 494 Fe-Cr-Co alloys, 860-862, 871 Fe-Fe^C phase diagram alloying elements effect on the eutectoid temperature, 465 invariant reactions in, 434 —435 solid phases in, 432 feldspars, 546, 554, 555 ferrimagnetism, 838, 869 a ferrite, 433, 512 3 ferrite, 380, 434 ferrites, 838, 863, 869 ferrite-stabilizing elements, 465 ferritic malleable iron, 505 ferritic stainless steels, 494-495, 496, 497 ferroelectric ceramics, 566-569 ferroelectric domains, 566^567 ferroelectric material, 593 ferromagnetic domains, 839-846 ferromagnetic elements, magnetos!rictive behavior of, 845 ferromagnetic materials, 829, 832, 868, 869 magnetic domains in, 839 magnetization and demagnetizaiton of, 846-847 ferromagnetism, 834-835, 838, 869 ferrous alloys, 7, 17, 428, 511 ferrous metals, 7, 17 Ferrosdure, 867 fiber pullout, 657 fiberglass-polyester composites, 614 fi berg Iass-rei nforced po I yester resins, 613-614 fiberglass-reinforcing material , 10, 606, fabrication of MOS integrated circuits, 777-780 face-centered cubic structure, See FCC crystal structure face-centered unit cells, 69 face-centered-cubic structure, 51 fan bypass section of a gas-turbine engine, 8 farad (F), 560 Faraday, Michaet, 687 Faraday's equation of general chemistry, 687^688 fatigue, 274 of metals, 254-260 testing, 261 fatigue crack growth, 274 correlation with stress and crack length, 261-263 as a function of the stress-intensity factor, 262-263 Tate of, 260-266 versus stress-in tensity factor range plots, 263-264 fatigue failures, 254, 274 of ceramics, 576 fatigue life, 274 calculating, 264-266 determining, 254-256, 257 fatigue properties of carbon (graphite)-epoxy composite material, 614, 615 fatigue strength of a metal or alloy, 260 fatigue striations, 259-260 fatigue test, 254, 255-256 FCC (face-centered cubic) crystal structure, 71, 72, 215-216, 217, 218 arrangement of atoms in, 75-76 compared to HCP> 90-92 of cubic soft ferrites, 864 —865 of ionic crystals, 536 metals, 218, 223 unit celt, 69, 108, 537 Fe, See lion Fe . iC (iron carbide), 432 607 fiber-reinforced plastics, 15, 659 fiber-reinforced-plastic composite materials, 612-621, 659 closed-moId processes for, 627-629 matrix materials for, 612-613 open-mold processes for, 622-626 fibers in hardwood trees, 644 for reinforced-plastic composite materials, 604, 606-612 fibrous composite materials, 10 Fick, Adolf Fugen, 158 Kick's first law of diffusion, 158, 172, 174 kick's second law of diffusion, 159-16 ] , 172, 174kiiymcciiiiyr I I I I I I U kuiuirii field-effect transistor 770 filament network, 818 filament winding, 625-626 , 660 filament x-ray tube, 98 fillers, 315, 367 fine aggregates, 634, 661 fine-grain structure for metals and alloys, 126 finely dispersed precipitate, 473 firedays, 679 firing, 546, 593 fixed internat thermostats, 332 fiat dies, 191 fiat glass, 588 flaws in processed ceramics, 572 fiint , 555 float glass, 688, 689, 594 fluorescence, 802, 822 fluorescent lamp, 802-803 fluorine, covalent bonding in , 46 fluorite structure, 540 fiuoroplastics, 321-322 flux density, 831 fiux in steady-state diffusion, 157 fluxoids, 818, 823 folded-chain modet, 299 folded-chain stimcture, 300 forging, 181, 190-191 , 192, 229 forming ceramic products, 547-552 methods for glasses, 588 forward bias, 786 forward-biased pn junction diode, 763-765 fosterite, 563 fracture, 246 in ceramic polycrystals, 572 of metals, 246-254 of polymeric materials, 362-364 fracture toughness ( Kich 251-254 equation, 573-574 test, 252, 572-573 values for ceramic materials, 572-573 fractured surfaces of metals, 148, 149 free electrons, 50, 730, 732 free radicals, 284 free-radical chain polymerization of ethylene, 284 freezing temperature, 120 Frenkel, Yakov Ilyich, 137 Frenkel imperfection, 137, 173 fretting corrosion, 708 fringed-micelle model , 299 full annealing, 238, 455 fully stabilized zirconia, 574 functionality of a monomer, 287, 366 fused alumina (aluminum oxide ), 577 fused silica glass, 584, 585 fuselage, structural failure of, 669-670 glass plate absorption of light by, 798-799 reflectance, absorption, and transmittance of light by, 799-800 reflection of light from a single surface of, 798 glass preforms, 812 glass reference points, 594 glass transition temperature, 298-299, 365, 367, 581-582, 593 glasses, 580-581 , 592, 593 alkali metals in, 582-584 compositions of, 584-686 forming methods foT, 588 intermediate oxides in, 583 percent transmittance versus wavelength, 800 structuie of, 582-584 viscous deformation of, 586-588 glass-fiber reinforcing mats, 606, 608 gIass-fiberoeinforced u nsaturated polysters, 341 glass-forming oxides, 582-583, 593 glass-moditying oxides, 583, 584, 594 glassy copolymeT, 319 glassy polymeric materials, 362 globular eutectic structure, 401 goniometer, 102 Goodyear, Charles, 344 GP zones, 473-474. to also precipitation zones GP1 zones, 475-476, 477 GP2 zones, 476, 477, 478 graft copolymers, 290, 291 grain boundaries, 125, 141, 143-144, 172, 173 compared to domain walls, 843 comosion at or near, 684 effect on the strength of metals, 223—224, 225 grain boundary diffusion, 174 grain growth of a cold-worked metal structure, 238 grain refiners, 125, 128 grain shape changes with plastic deformation, 224-225 grain size of polycrystalline metals, 144 — 147 grain structure formation of, 118, 119, 120 of industrial castings, 125-128 grain-gTain-boundary eIectrochem ica l cells, 684-685 grain-oriented iron-silicon sheets, 849, 850 grains, 125, 173 grain-size numbers, 144, 173 Ga (gallium ), 168 GaAs (gallium arsenide), 782-784 lasers, 808-809 MHSFFTs, 783 gage length, 196 gain in MO$FTK.T devices, 772 gallium (Ga), 168 gallium arsenide (GaAs), to GaAs galvanic cells, 674-686, 721 with acid or alkaline electrolytes, 678-679 concentration, 681-683 corrosion of single electrodes, 679-681 created by differences in composition, structure, and stress, 683-686 with electrolytes that are not one molar, 677-678 galvanic corrosion, 696-697, 698 galvanic series, 694-695, 721 galvanically similar metals, 717 galvan tzed steel, 696 gas carburizing, 161-165 gas turbine blades, 128-129 gas-phase Gnipol process, 296-297 gate in an NMOS device, 771, 772 Ge (germanium), 748 gears general , manufacturing attack corrosion , 427 , 696 —428 , to atso uniform corrosion general reaction for the chain polymerization of ethylene, 282-284 generat-purpose phenolic motding compounds, 336 generat-purpose thermoplastics, 309-322 Getb, 811 geometric arrangement of ions in an ionic solid, 43 germanium (Ge), 748 Gibbs, Josiah Willard, 382 Gibbs phase rule, 382-383, 417 glass fibers, 604, 659 mechanical properties compared to aramid and carbon, 611 production of, 606, 607 properties of, 606 for reinforcing plastic resins, 606, 607, 608 reinforcing thermoplastics, 357 glass intermediate oxides, 594 glass phase of ceramic products, 553kiiymcciiiiyr I I I I I I U kuiuirii gram-mole, 22 graphite, 501, 542-543 graphitization of white irons, 505-506 graphitization treatment for PAN fibers, 609 gray cast iron, 409, 500, 501, 502, 513 Greek alphabet, 882 green condition of living trees, 648 ground state, 26, 27, 60 growth rings in a softwood tree, 642 gutta-percha, 344 gymnosperms, softwoods heat treatment plain-carbon steels, 442-461 white irons, 505 heat-resistant phenolic molding compounds, 336 heat-treatable wrought aluminum alloys, 483^185 heavily cold-worked metal, 238-239, 240 Heisenberg, Werner Karl, 27 Heisenberg's uncertainty principle, 27, 60 hemiceltulose, 645 heterogeneous nudeation, 124-125, 173 Hevea brasiliensis tree, 343 hexa (hexamethylenetetramine), adding to phenolic resin, 335-336 hexagonal close-packed structure. See HCP ciystal structure hexagonal ferrites, 867-868 hexagonal system, 69, 70, 71 hexamethylenetetramine (hexa), adding to phenolic resin, 335-336 high critical temperature superconducting oxides, 820-822 high electrical insulating compounds, 336 high-alloy cast irons, 499 high high- -alumina alumina (refractories A^O.O insulator , 579 , 547, 548 high-carbon steels, 46 ) , 462 high-current, high-field superconductor technology, 819 high-density polyethylene (HDPE-i), 311-312 chain structure of, 312 compared to low-density, 354 high-impact-strength phenolic molding compounds, 336 high-purity copper, 131 High-Speed Civil Transport (HSCT), 2-4 high-strength hollow cylinders, 625-626 high-temperature reusable-surface insulation ( HRS0 tile material, 580, 581 HRS1 (high-temperature reusable-surface insulation ) tile material, 580, 581 HSCT (High-Speed Civil Transport ), 2-4 Hume-Kothery, William, 383 Hume-Rotheiy solid solubility rules, 383-384 hybrid orbital, 61 hybridization, 4M7, 61 hydration reactions, 632^633, 661 hydrocarbons, 48 hydrogen atom, 2-4—28 hydrogen bond, 56, 61, 325-326 hydrogen embrittlement, 489, 492 hypereutecfic compositions, 395-396, 418 hypereutectoid steel, 435, 439-442, 512 hypoeutectic compositions, 395-396, 418 hypoeutectoid steel, 435, 437-439, 451-452, 512 hysteresis energy Iosses, 847-848, 870 hysteresis loops, 846, 847, 868, 870 of hard magnetic materials, 853-854, 856 for soft and hard magnetic material, 847, 848 half-cell standard electrode potentials, 672-673 hammer forging, 190 hand lay-up process, 622, 660 hard ferrites, 867-868, 871 hard glass, 587 hard magnetic materials, 828, 847, 853-862, 868, 871 properties of, 853-856 selected magnetic properties of, 856 hard magnetization directions, 842, 843 halienability, 465-470, 513 hardening of portland cement, 632-633 hardness, 208-210, 230 versus aging time curves, 478-479 compared to hardenability of steel, 465 of iron-carbon martensites, 458 hardness tests, 208-210 hard-sphere unit cell for the RCC crystal structure, 73 for the HX crystal structure, 75 for the HCP crystal structure, 76 hardwood trees, 661 hardwoods (angiosperms), 641, 644, 659 HCP (hexagonal dose-packed) crystal structure, 71 , 73 arrangement of atoms in, 76-77 basal plane, 88 basal slip planes, 211 compared to PCC, 90-92 crystal planes in unit cells, 87-88 direction indices in unit cells, 88-89 of magnesium, 506, 507 metals, 222, 247 obtaining the volume of unit cells, 77 slip planes and directions for, 215 unit cells, 108 HDPEr high-density polyethylene heartwood, 641, 659, 661 heat of fusion, 120 heat stabilizers adding to PVC, 314, 315 III-V semiconductor compounds, 781 IIS (International Space Station), 1-2, 4 11-VI semiconductor compounds, 781 imide linkage in polyetherimide, 332 immobile ions, 756 impact strengths general-purpose plastic materials, 310 selected engineering thermoplastics, 323 selected thermoset plastics, 334, 335 impact styrene, copolymers of, 317 impact testing, 249-251 imperfections and detects in crystal lattices, 136-149 impurity atoms, 686, 751-752 impurity diffusion, ] 6(M 68 incident angle, 794, 795 incoherent precipitate, 476, 478 incoherent radiation, 804 incongruently melting compound, 412 indenters, 208 index of refraction, 794-796, 822 indices for crystal planes in HCP unit cells, 87-88 for cubic crystal planes, 108 of a family or form, 79 indirect extrusion, 189, 190 induced channel in an NMOS device, 773 induction, 83 ] hole, 785 motion of, 745, 746, 747-748 positively charged, 745 homogeneous nucleation, 1 IS, 120, 121 , 172-173 homogenization , 39 ) , 393 homogenized aluminum ingots, 481 homojunction GaAS laser, SOS homopolymers, 290, 316, 366 honeycomb sandwich structures, 651 Hooke's law, 202 hot forming, 547 hot pressing, 550 hot rolling, 184, 186, 187, 48 ) hot working, 229kiiymcciiiiyr I I I I I I U kuiuirii industrial days, 554, 555 industrial ferrites, 867, See also ferrites industrial polymerization, 294-297 , See also polymerization industrial refractories, 577, 5^ also refractory (ceramic) material InGaAs/lnP PIN photodiode, 813 JnGaAsP laser transmitter 809 InGAsP double heterojunction laser diode transmitter, 813 inhibitors, adding to decrease corrosion, 718 injection molding, 303-304, 305, 367 producing tiber-neinforced plastics, 627 for thermosetting compounds, 309 inner bark layer 640, 641 inorganic coatings, 716 insulator blank in isostatic pressing mold, 549 insulators, energy-band model for 743-744 ion arrangements in ionic solids, 42-43 ion concentration cells, 681-683 ion diffusion, 712, 713-714 ion implantation technique, 777 ion pair interionic energies for, 41-42 interionic forces for, 38-41 net force between an, 39 ion-concentration cell, 721 ionic bonding, 37-38, 781-782 ionic bonds, 37, 59, 61 ionic crystals bonding energies of, 43-44 dense packing of ions in, 527-529 electrical neutrality of, 43 ion arrangements in, 42-43 point defects in, 137 radii of selected elements, 42 radii of the elements, 879-880 ioutcally bonded ceramics, deformation of, 571 ionic-covalent mixed bonding, 57-58 ionization energy, 27, 60 ionization process, 37 ionized impurity concentration, 758-759 ions, packing together in a solid, 43 iridium-osmium phase diagram, 421 a iron, 380 y iron , 380, 444, 445 iron (Fe) altotropic crystalline forms of, 96-97 Curie temperature of, 838 ferromagnetic properties of, 834-835 production of, 428, 429 rusting of , 670, 680 iron alloys, ferrous alloys o iron BCC structure, 445 iron carbide (Fe-jC), 432 r See also FejC y iron F’CC crystal structure, 444, 445 iron-carbon binarv aliovs, 43K See also w w carbon steels iion-carbon martensites, hardness of, 458 iron-chromium (Fe-Cr) phase diagram, 494 i ron-ch rom i u m-cobait (he-Cr-Cu) magnetic alloys, 860-862, 871 iron-chromium-nickel system, 416 iron-iron carbide (be-Fe^C) phase iron-nickel diagram(be , 431 -Nil—phase 432, 434 diagram , 465 , 402, 403 iron-silicon alloys, 849, 850 iron-silicon magnetic alloys, 870 island silicate structures, 543 —544 isomorphous binary alloy system, 384 isomorphous phase diagrams, 417 isomorphous systems, 383, 417 isostatic pressing, 548-550, 592 isostrain conditions, 617-619 isostrain loading, 621 isostress conditions, 619-621 isostress loading, 621 isotactic isomer, 367 isotactic polypropylene, 301 isotactic stereoisomer, 300, 302 isothermal decomposition of austenite, 447-452 isothermal section* 414 isothermal transformation (IT) diagmm, 513 for a eutectoid plain-carbon steel, 447 —451 for a hypoeutectoid steel, 45 }—452 for noneutectoid piain-carbon steel, 451-452 isothermal transformations, 448-449 isotropic behavior, 197 £ zod impact test, 310, 311 intensity of luminescence, 804 of magnetization, 831 interatomic distance, 45, 72 intergranular brittle fracture, 248 intergranular corrosion, 497, 702-704, 721 intergranular fractured surface, 148, 149 interionic energies, 41-42 mterionic forces, 38-41 intermediate compounds, 412-413 intermediate metastable precipitate, 474 intermediate oxides in glasses, 583 intermediate phases, 409-4 ] 1 , 418 intermetallic compounds, 815 International Space Station (ISS), 1-2, 4 interplanar spacing in cubic crystal structures, 85 interstices, 134 interstitiat diffusion, 174 interstitial mechanism, 154, 156—157, 172 interstitial sites in crystal lattices, 535-537 interstitial solid solutions, 134 —136, 173 interstitiatcy, 136, 137, 173 intrinsic semiconductors, 744-751, 756-758, 785 effect of temperature on, 749-751 energy-band diagram for, 746, 747 invariant point , 382 invariant reactions, 395, 407, 409, 417, 418 inverse spinel ferrites, 865-867 inverse spinel structure, 864, 865, 869, 871 Jominy hardenability test , 465, 513 K electrons, 98-99 kaolinite, 545, 546 Kevlar, 610, 616, 660 keyed steel shaft, fatigue failure of, 254, 255 Kio See fracture toughness Kirkendall effect, 156 Knoop hardness test, 209, 210 lake asphalt, 639 lamella, 300 lamellar continuous-fiber-plastic matrix composite, 617-621 lamellar eutectic structures, 403, 402 lamellar pearlite, 436, 440 laminate, 660 laminate ply (lamina), 660 laminated (stacked-sheet) structure, 849 lamination of carbon-fiber-epoxy material, 614, 615 large-scale integrated (1 -51) microelectronic circuits, 769 Larsen-Miller (LM.) parameter equation, 271-273 lasers, 804-806, 822 applications for, 808 types of, 806-809 latewood ring, 642 latex, 343 lath mariensites, 442* 443, 444* 457kiiymcciiiiyr I I I I I I U kuiuirii lattice constants RCC crystal structure metals, 72 FCC crystal structure metals, 72 HCP crystal structure metals, 73 unit cell, 68, 69 lattice energies of ionic solids, 43-44 lattice planes within a crystal structure, 82 lattice point 108 lattice vectors, 68-69 LL3PK flow-density polyethylene), 311-312 leaching, 708-709, 721 lead glass, 585-586 lead-tin (Pb-Sn) equilibrium phase diagrams, 39M00 lead-tin alloys, 394^00 leakage current, 763, 764 lehr, 588 lever rule, 386-390, 418 Lexan, 327, 333 light loss factor, 559, 562 low-alloy steels, 461-470, 471, 511 low-density polyethylene (LDPE), 311-312 lower bainite, 450 lubricants, adding to PVC, 314, 315 lubricating properties of graphite, 542 Lucite, 320 lumen, 644, 662 luminescence, 802, 804, 822 magnetic-field exclusion in the superconducting state, 816, 817 magnetism in rare earth alloys, 858-859 types of, 833-838 magnetite fh’eAO, 565-566, 838 magnetization, 831, 869 magnetocrystal Iiue anJsotropy energy, 842-843, 870 magnetostatic energy, 841-842, 870 magnetostriction, 844, 845, 870 magnetostrict!ve energy, 844—846, 870 majority carriers, 755, 786 majority-carrier devices, 773 malleable cast irons, 500, 503-506, 514 manganese (Mu) as an alloying element in alloy steel, 463 antiferromagnetism exhibited by, 837 in most plain-carbon steels, 46 ) as the principal alloying element of 3xxx aluminum alloys, 483 manganese-zinc-ferrite, 867 martempering (marquenchiug), 458-459, 513 martensite finish temperature, 442 martensite structure of martempered steel, 458 martensites, 442-446, 457, 512 martensitic malleable iron, 506 martensitic stainless steels, 495, 496, 497 Mass Action law, 755 mass continuous polymerization processes, 296 material replacement changes, 11 materials classes of , 6 competition among, 11—13 definition of, 2, 16 future trends in usage, 13-16 knowledge spectrum, 5 optical properties of , 792 production and processing of, 3 search for new, 4 —5 selecting corrosion-resistant, 714—715 types of, 6-11 materials engineering, 5-6, 16 materials science, 5-6, 16 matrix materials for fibeweinforcedplastic composite materials, 612^613 maximum elastic deformation, 202 maximum energy product, 854—855 estimating, 856 measuring progress in permanent-magnet quality, 860 maximum magnetic permeability, 832 Mach ] , 4 macroscopic form of Ohm's law, 735 macroscopic galvanic cells, 674-676 maglev trains, 827-828 magnesium (Mg) in 5xxx aluminum alloys, 483 in 6xxx aluminum alloys, 483, 485 in 7xxx aluminum alloys, 485 energy-band diagram for, 743 magnesium alloys, 506-508 classification of, 506 mechanical properties and applications of, 509 magnesium-nickel (Mg-Nt ) phase diagram, 412 magnetic annealing, 853, 854, 871 magnetic domains, 835, 839, 868, 870 magnetic exchange interaction energy, 836 magnetic fields, 829-830, 869 applying to ferromagnetic materials, 839, 840 magnetic induction, 830^831, 869 magnetic levitation of vehicles, 820 magnetic materials, 868 eddy -current losses in, 867 reducing core tosses, 849 types of, 828 magnetic moments in inverse spinel ferrites, 865-867 of single unpaired atomic electrons, 835-837 magnetic permeability, 831-833, 869 of nickel-iron alloys, 851-853 magnetic properties of superconductors, 815-817 magnetic quantum number 29, 59 magnetic saturation, 866 magnetic susceptibility, 833, 834, 869 magnetic units, 831 magnetically hard ferrites, 867-868 magnetically levitated (magtev) trains, 827-828 magnetically soft ferrites, 864-867 magnetic-core memories, 867 absorption, transmission, and reflection of , 797-801 attenuation, 822 electromagnetic spectrum and, 792-794 loss in optical fibers, 809-810 refraction of, 794 —797 light refraction, 796-797 lignin, 640, 645, 661 line imperfections,^ dislocations linear absorption coefficient, 798 linear density, 95, 108 linear polymers, branching of, 288 linear rate law for oxidation, 712-713 linear unsaturated polyester, 340 It near- low-density polyethylene (LLDPK), 312 liquation, 391 , 393, 417 liquid glass phase, 554 liquid metals, 118-125 liquidus, 384, 417 LLDPE (linear-low-density polyethylene ), 312 LrMr parameter, 271-273 local anodes, 672, 679-680 local cathodes, 672, 679-680 local oxidation process, 780 logarithmic rate law for oxidation, 712, 713 long glass, 587 longitudinal axes (I.), 642, 643 longitudinal parenchyma, 644 longitudinal tracheids, 644 loose network in simple silica glass, 582, 583kiiymcciiiiyr I I I I I I U kuiuirii metallic glasses, 849-851 production of, 85 l, 852 properties of, 851, 852 metallic impurities in a metal or alloy* 686 metallic solid solutions, 13 3 —136 metallic-covalent mixed bonding, 58-59 metallic-ionic mixed bonding, 59 metallocene catalysts 301 metal-matrix composite materials ( MMCs), 652-655 metals, 6-8, 16 absorption and reflection of light by, 797-798 allotnopic crystalline forms of some, 96 bonding energies and melting points of fourth period, 52 casting of, 182-184 corrosion control of, 714-715 corrosion of , 670 creep of, 266-268 critical superconducting temperatures foT, 815 deformation of, 193-194 ductility of, 204 electrical conduction in, 730, 732-740, metal-semiconductor field-effect transistors (MESKETs), 783 methane, 48, 49 methyl ethyl ketone ( IVIEK.) peroxide, 340 methylene cross-linkages, 335 Mg. See magnesium MgAl204. Sue spine) Crystal structure microcracks, 248 microelectronic integrated circuits, 730, 731, 773-781 microelectronic planar bipolar transistors, 769-770, 771 microelectronic planar field-effect transistors, 770-773 microelectronics, 769-781 microfarad, 560 microfibrils, 646, 647, 662 microprocessor, 731, 761 microscopes optical microscope, 143, 144, 145, 146 SKM (scanning electron microscope), 147-149 STM (scanning tunneling microscope), 67-68 TKM (transmission electron microscope), 139-141, 142 microscopic form of Ohm's law, 735 microscopic galvanic cells comosion of single electrodes, 679-681 existing in metals or alloys, 683-686 Miller indices for crystallographic planes in cubic unit cells, 82-87 of diffracting planes for BCC and ECC lattices, 104-105 Miller notation system, 82 Mitler, Wiliiam Hallowes, 82 Miller-Bravais hexagonal crystal structure direction indices, 89 Millerdfiravais indices, 87 minimum creep rate, 268 minimum energy between a pair of oppositely charged ions, 41 minority carriers, 755, 786 mixed bonding, 57-59, 60 mixed dislocations, 138, 139, 140, 173 mixed state fora superconductor, 817 MMCs (metal-matrix composites), 652-655 Mn , See manganese mobile charge carriers, 756 mobilities of electrons and holes, 747-748 mode I testing, 252 modified chemical vapor deposition (MCVD) process, 810-813 maximum-use temperature selected engineering thermoplastics, 323 selected thermoset plastics, 334, 335 thermoplastic materials, 311 MCVD process for producing optical glass fibers, 810-813 mean Stress, 257 mechanical failure, 572 mechanical properties AISI-SAE type plain-carbon steels, 461, 462 aluminum alloys, 484 carbon, aramid, and glass fibers, 610-612 cast irons, 500 ceramics, 570-571 copper alloys, 490-491 low-alloy steels, 470, 471 magnesium, titanium and nickel alloys, 509 metal-matrix composite materials, 653 metals and alloys, 201-205 SiC whisker reinforced ceramic matrix composites, 656 mechanical strength of wood, 648-650 medium-carbon steels, 461, 462 Meissner effect, 816, 817, 822 melamine-formaldehyde, 341-342 melting compounds, 412 melting points fourth-period metals, 53 ionic solids, 43-44 noble gases, 56 simple ceramic compounds, 526 melt-processible thermoplastics, 324 Merlon, 327 mers, 366 MESEETs (metal-semiconductor field-effect transistors), 783 metal alloys, 7. See also alloys metal billet in direct extrusion, 190 metal oxide semiconducting compounds, 565 metal oxide semiconductor field-effect transistor (MOSEKT), 764, 771 metal single crystals critical resolved sheer stress, 216, 218, 219 plastic deformation of, 210-223 metallic bonding, 50-54, 59 It- r metallic bonds, 37, 61, 730 metallic coatings, 716 metallic crystal structures, 71 metallic elements, 7 metallic glass material, 828 metallic glass ribbon, 828 784 electrical resistivity of, 737-740 electrochemical corrosion of, 671-674 electrode half-cell potentials for, 672-674 electronic structure-chemical property relationships, 36 energy-band mode] for, 741—743 evaluating the strength of, 198-201 examining fractured surfaces of, 148, 149 extrusion of , 188-190 factors affecting the recrystall Nation process in, 242 fatigue of , 254-260 fracture of, 246-254 future trends in usage, 13 hot and cold rolling of, 184-188 hot and cold working of , 229 identifying grain boundaries, 143-144, 145, 146 mechanical properties of, 201-205 oxidation of, 709-714 oxidation rate of , 711-714 passivation of, 693-694 processing of , 182-193 solidification of, 118-128 solubsolution strengthening of, 227-229 strengthening by cold working, 226-227 stress and strain in, 193-198kiiymcciiiiyr I I I I I I U kuiuirii modulus of elasticity, 202, 230, 619 moisture content of wood, 646, 648 mole, 22 molecular mass, 781 molecular weight for thermoplastics, 286^287 molybdenum as an alloying element in alloy steel, 464 x-ray spectrum emitted, 98, 99 Monel 400 alloy, 509, 510 mouodmic structure forzircoma, 574, 575 monodinic system, 69, 70, 71 monomers, 282, 287, 366 monotectic reaction, 407, 409, 418 MOS integrated circuits, 777-780 MOSF’KT (metal oxide semiconductor field-effect transistor), 764, 771 mutlite, 411 multiatom metal crystals, 51 multidirectional laminate, 660 muttidirectional laminate plies, 615 multielectron atoms, 29-32 multimode optical fiber, 810, 81 I multiphase alloys, higher corrosion rates for, 685 multiple-impression dies, 190, 192 multiple-phase electrochemical cells, 685-686 Muntz metal, 490, 492 MX semiconducting compounds, 781 neodymium-iron-boron magnetic alloys, 859-860, 861 neod ymiu m-yttrium-al um inum-garnet ( Nd:YAG ) laser, 807, 808 neoprene. See polychloroprene Nernst equation, 677-678 Nernst, Walter Hermann, 677 net energy between a pair of oppositely charged ions, 41-42 net magnetic moments in inverse spinel ferrites, 865-867 network modifiers, 583, 584 network polymerization, 293, 294 neutrons, 20 nickel ( Ni) as an alloying element in alloy steel, 463 Curie temperature of, 838 ferromagnetic properties of, 834-835 nickel alloys, 509, 510-511 nickel-base superatloys, 12, 510-511 nickel-iron alloys ( Ni-Fe), 851-853 nickel-iron magnetic alloys, 870 nickel-vanadium (NS-V ) phase diagram, 424 nickel-zine-fenite, 867 nitriding, 260 Nitrile or Buna N* (butadieneacrylonitrile), 346 nitrite rubbers, 347 nitrogen ( N) covalent bonding in, 46 in the main chains of thermoplastics, 356 nitrogen methanol carburizing, 161-163 NMOS, 771 field-effect transistor, 771-772, 773 integrated circuits, 778 noble gases, 32, 34 melting and boiling points of , 56 noble-gas atoms, election charge cloud distribution in, 55 nodular or spherulitic graphite cast iron. See ductile cast iron non -close-packed plane, 216 noncrystalline linear polymers, 287—288 noncrystalline structure of metallic glasses, 849-850 noncrystalline thermoplastics glass transition temperature for, 298 solidification of, 297-298 nondirectional bonding, 51 , 59 nondirectional ionic bond, 43 nonequilibrium solidification of alloys, 390-393 nonequilibrium solidus, 391 noneutectoid plain-carbon steels, isothermal transformation diagrams for, 451-452 nonferrous alloys, 7, 17, 428, 511 nonferrous metals, 7, 17 non-heat treatable wrought aluminum alloys
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Foundations of Material Science and Engineering رابط مباشر لتنزيل كتاب Foundations of Material Science and Engineering
|
|