Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Structural Analysis of Composite Wind Turbine Blades الجمعة 25 ديسمبر 2020 - 16:44 | |
|
أخوانى فى الله أحضرت لكم كتاب Structural Analysis of Composite Wind Turbine Blades Nonlinear Mechanics and Finite Element Models with Material Damping Dimitrios I. Chortis Research Topics in Wind Energy 1
و المحتوى كما يلي :
Contents Abstract . VII 1 Introduction 1 1.1 The Significance of the General Problem . 1 1.2 Scope and Objectives 3 1.3 Chapters Outline 4 1.4 DAMPBEAM Finite Element Code 6 2 Historical Review on the Linear and Nonlinear Damped Structural Behavior of Composite Structures 9 2.1 Development of Models for the Undamped Structural Analysis of Thin-Walled Composite Beams and Blades 9 2.1.1 Nonlinear Beam Theory Models . 9 2.1.1.1 Analytical Solution Methods 10 2.1.1.2 Finite Element Approaches 11 2.1.2 Incorporation of Material Coupling in the Static and Dynamic Analysis of Composite Beams . 13 2.1.3 Effect of Rotational and Buckling Loads on Composite Structures 15 2.1.4 Brief Description of Multi-body Dynamic System Approaches 17 2.2 Damping Models for Composite Structures 18 2.2.1 Macro- and Micro-mechanical Models of Damping . 18 2.2.2 Discrete Layer Damping Model Theories . 21 2.2.3 Optimization of Composite Damping . 22 2.3 Theoretical Framework for the Prediction of Nonlinear Damping in Composite Structures 23 3 Linear Material Coupling Effect on Structural Damping of Composite Beams and Blades . 25 3.1 Tubular Laminated Beam 26 3.2 Composite Ply Level . 26 3.2.1 Constitutive Equations 27 3.2.2 Strain-Displacement Relations 28X Contents 3.2.3 Equations of Motion 29 3.2.3.1 Differential Form of Stress Equilibrium Equation . 29 3.2.3.2 Weak Formulation 29 3.3 Composite Cross-Section Mechanics 30 3.3.1 Section Kinematics 30 3.3.2 Variational Form of Beam Equations of Motion . 32 3.3.3 Section Stiffness Terms . 33 3.3.4 Section Damping Terms 34 3.3.5 Section Mass Terms 36 3.4 Structural Level . 37 3.4.1 Damped Beam Finite Element Formulation 37 3.4.1.1 Shape Functions of the Tubular Beam Finite Element 38 3.4.1.2 Total Structural Matrices of the Beam Finite Element 39 3.4.1.3 Calculation of Structural Matrices at the Local Coordinate System of the Element . 40 3.4.2 Discrete System of Equations of Motion . 41 3.4.3 Calculation of the Modal Loss Factor of the Composite Beam . 41 3.5 Validation of Coupling Terms . 42 3.5.1 Box-Section Carbon/Epoxy Beams . 42 3.5.1.1 Static Response of Carbon/Epoxy Beam 43 3.5.1.2 Modal Characteristics of Carbon/Epoxy Beam 47 3.5.2 Small Model Blade 51 3.5.2.1 Blade Testing and Numerical Simulation 51 3.5.2.2 Effect of Coupling Terms . 53 3.5.3 19m Wind-Turbine Blade 56 3.6 Application of the Developed Finite Element on a 61.5m Wind-Turbine Blade Model 58 3.6.1 Advanced Cross-Section Structural Properties 59 3.6.2 Modal Analysis of the Wind-Turbine Blade . 65 3.7 Conclusions . 65 4 Nonlinear Damping Mechanics and Finite Element Model for the Static and Damped Free-Vibration Analysis of Composite Strips 69 4.1 Composite Ply Level . 71 4.1.1 Constitutive Equations 71 4.1.2 Composite Ply Damping . 72 4.1.3 Equations of Motion 72 4.1.3.1 Differential Form of Stress Equilibrium Equation 72 4.1.3.2 Weak Formulation 72Contents XI 4.2 Laminate Level 73 4.2.1 Section Kinematics 73 4.2.2 Strains-Displacements Compatibility Equations . 75 4.3 Composite Laminate Section Matrices 75 4.3.1 Section Stiffness Terms . 76 4.3.2 Section Damping Terms 78 4.3.3 Section Mass Terms 81 4.4 Structural Level . 81 4.4.1 Damped Nonlinear Beam Finite Element 82 4.4.1.1 Shape Functions of the Two-Node Beam Strip Finite Element 82 4.4.1.2 Discrete System Equations . 86 4.4.1.3 Transformation to the Local Coordinate System of the Element . 88 4.4.1.4 Beam Element Matrices in the Local Coordinate System 89 4.5 The Newton-Raphson Technique 90 4.6 Final System of Equation 92 4.6.1 Tangential Matrices at the Local Coordinate System of the Finite Element . 93 4.6.2 Assembly of System Equations . 94 4.6.3 Boundary Conditions . 94 4.6.4 Expression of the Final Set of Equations 95 4.7 Small-Amplitude Free-Vibration of Composite Strip . 95 4.8 Displacement Control Method 96 4.9 Numerical Integration . 100 4.10 Conclusions . 100 5 Nonlinear Dynamic Response of Composite Plate-Beams 103 5.1 Calculation of System Eigenfrequencies and Modal Damping . 104 5.2 Experimental Determination of Elastic and Damping Material Properties 104 5.2.1 Extraction of Material Elastic and Damping Coefficients . 105 5.2.2 Relation of Damping with Natural Frequency 114 5.2.3 Damped Modal Testing of Composite Beam Modal Characteristics 115 5.2.3.1 Tension Experimental Procedure . 115 5.2.3.2 Buckling Experimental Procedure 117 5.3 Numerical Results . 119 5.3.1 Effect of In-Plane Tensile Load 119 5.3.1.1 Cross-Ply Composite Strips . 119 5.3.1.2 Quasi-isotropic Composite Strips . 127 5.3.2 Aluminum Plate-Beam Model . 133XII Contents 5.3.2.1 Static Response of Aluminum Beam Specimen Subject to Compressive In-Plane Load 134 5.3.2.2 Small-Amplitude Free-Vibration Response of Aluminum Beam Specimen Subject to In-Plane Tensile and Compressive Load. . 135 5.3.3 Nonlinear Buckling Analysis of Composite Strips 139 5.3.3.1 Composite Cross-Ply Beam Specimens . 139 5.3.3.2 Composite Beams with Quasi-isotropic and Asymmetric Lamination . 145 5.4 Conclusions . 148 6 Prediction of Nonlinear Damped Response of Large-Scale Blade Composite Structures . 151 6.1 Nonlinear Mechanics of Composite Blade Structures . 152 6.1.1 Nonlinear Section Mechanics 152 6.1.2 Nonlinear Stiffness Cross-Section Terms . 154 6.1.3 Linearized Stiffness Cross-Section Terms 160 6.1.4 Nonlinear Damping Cross-Section Terms . 163 6.2 Tubular Nonlinear Damped Beam Finite Element 168 6.3 Numerical Evaluation Cases on Box-Section Beams 169 6.3.1 Static Response under Large Loads 169 6.3.1.1 Hinged-Hinged Beam . 169 6.3.1.2 Pressure Loaded Clamped-Free Beam . 171 6.3.2 Effect of Rotational Stresses . 174 6.4 Modal Analysis of a Girder Box-Section Beam of a 5MW Wind-Turbine Blade 178 6.5 Conclusions . 183 7 Conclusions and Suggestions for Future Research Topics . 185 7.1 General Concluding Remarks . 186 7.2 Future Research Topics . 188 References . 191 Appendix A 201 Appendix B 207 B.1 Damping Material Models 207 B.2 Viscous Damping 207 B.3 Hysteretic Damping 208 B.4 Kelvin-Voigt Model 210 B.5 Relationship of Kelvin Modal Parameters to Measure Damping 210 B.6 Other Damping Models . 212Contents XIII Appendix C 215 C.1 Secondary Warping of the Cross-Section . 215 C.2 Ply and Laminate Damping Matrices 215 C.3 Skin Laminate Stiffness and Damping Matrices . 217 C.4 Reduction of Stiffness and Damping Laminate Matrices 217 C.5 Detailed Expressions of Section Stiffness, Damping and Mass Linear Terms of the Tubular Beam Finite Element . 220 Appendix D 225 D.1 Tangential Section Stiffness Matrix of the Composite Strip Finite Element . 225 D.2 Section Mass Matrices 225 D.3 Shape Function Matrices for the Two-Node Beam-Strip Finite Element . 226 Appendix E 229 E.1 61.5m Wind-Turbine Blade Configuration . 229 E.2 54m Girder Box-Section Beam Cross-Sectional Geometric Properties 233 About the Author .
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Structural Analysis of Composite Wind Turbine Blades رابط مباشر لتنزيل كتاب Structural Analysis of Composite Wind Turbine Blades
|
|