Admin مدير المنتدى
عدد المساهمات : 18936 التقييم : 35318 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Man-Machine Interaction الإثنين 14 سبتمبر 2020, 1:44 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Man-Machine Interaction Karl-Friedrich Kraiss (Ed.) Fundamentals and Implementation With 280 Figures
و المحتوى كما يلي :
Table of Contents 1 Introduction 1 2 Non-Intrusive Acquisition of Human Action . 7 2.1 Hand Gesture Commands 7 2.1.1 Image Acquisition and Input Data . 8 2.1.1.1 Vocabulary . 8 2.1.1.2 Recording Conditions 9 2.1.1.3 Image Representation 10 2.1.1.4 Example . 11 2.1.2 Feature Extraction 12 2.1.2.1 Hand Localization . 14 2.1.2.2 Region Description 20 2.1.2.3 Geometric Features 22 2.1.2.4 Example . 27 2.1.3 Feature Classification . 29 2.1.3.1 Classification Concepts . 29 2.1.3.2 Classification Algorithms . 31 2.1.3.3 Feature Selection 32 2.1.3.4 Rule-based Classification . 33 2.1.3.5 Maximum Likelihood Classification 34 2.1.3.6 Classification Using Hidden Markov Models . 37 2.1.3.7 Example . 47 2.1.4 Static Gesture Recognition Application 48 2.1.5 Dynamic Gesture Recognition Application . 50 2.1.6 Troubleshooting 56 2.2 Facial Expression Commands . 56 2.2.1 Image Acquisition 59 2.2.2 Image Preprocessing 60 2.2.2.1 Face Localization 61 2.2.2.2 Face Tracking . 67 2.2.3 Feature Extraction with Active Appearance Models 68 2.2.3.1 Appearance Model . 73 2.2.3.2 AAM Search 75 2.2.4 Feature Classification . 78 2.2.4.1 Head Pose Estimation 78 2.2.4.2 Determination of Line of Sight . 83 2.2.4.3 Circle Hough Transformation 83 2.2.4.4 Determination of Lip Outline 87 2.2.4.5 Lip modeling . 88 2.2.5 Facial Feature Recognition – Eye Localization Application 90 2.2.6 Facial Feature Recognition – Mouth Localization Application . 90X Table of Contents References . 92 3 Sign Language Recognition . 95 3.1 Recognition of Isolated Signs in Real-World Scenarios 99 3.1.1 Image Acquisition and Input Data . 101 3.1.2 Image Preprocessing 102 3.1.2.1 Background Modeling 102 3.1.3 Feature Extraction 105 3.1.3.1 Overlap Resolution 106 3.1.3.2 Hand Tracking 107 3.1.4 Feature Normalization 109 3.1.5 Feature Classification . 110 3.1.6 Test and Training Samples . 110 3.2 Sign Recognition Using Nonmanual Features 111 3.2.1 Nonmanual Parameters 111 3.2.2 Extraction of Nonmanual Features 113 3.3 Recognition of continuous Sign Language using Subunits . 116 3.3.1 Subunit Models for Signs 116 3.3.2 Transcription of Sign Language . 118 3.3.2.1 Linguistics-orientated Transcription of Sign Language . 118 3.3.2.2 Visually-orientated Transcription of Sign Language . 121 3.3.3 Sequential and Parallel Breakdown of Signs 122 3.3.4 Modification of HMMs to Parallel Hidden Markov Models 122 3.3.4.1 Modeling Sign Language by means of PaHMMs 124 3.3.5 Classification 125 3.3.5.1 Classification of Single Signs by Means of Subunits and PaHMMs . 125 3.3.5.2 Classification of Continuous Sign Language by Means of Subunits and PaHMMs . 126 3.3.5.3 Stochastic Language Modeling 127 3.3.6 Training 128 3.3.6.1 Initial Transcription 129 3.3.6.2 Estimation of Model Parameters for Subunits 131 3.3.6.3 Classification of Single Signs 132 3.3.7 Concatenation of Subunit Models to Word Models for Signs . 133 3.3.8 Enlargement of Vocabulary Size by New Signs 133 3.4 Performance Evaluation 134 3.4.1 Video-based Isolated Sign Recognition 135 3.4.2 Subunit Based Recognition of Signs and Continuous Sign Language . 136 3.4.3 Discussion 137 References . 137Table of Contents XI 4 Speech Communication and Multimodal Interfaces . 141 4.1 Speech Recognition . 141 4.1.1 Fundamentals of Hidden Markov Model-based Speech Recognition . 142 4.1.2 Training of Speech Recognition Systems . 144 4.1.3 Recognition Phase for HMM-based ASR Systems . 145 4.1.4 Information Theory Interpretation of Automatic Speech Recognition . 147 4.1.5 Summary of the Automatic Speech Recognition Procedure 149 4.1.6 Speech Recognition Technology 150 4.1.7 Applications of ASR Systems 151 4.2 Speech Dialogs . 153 4.2.1 Introduction . 153 4.2.2 Initiative Strategies . 155 4.2.3 Models of Dialog . 156 4.2.3.1 Finite State Model . 156 4.2.3.2 Slot Filling . 157 4.2.3.3 Stochastic Model 158 4.2.3.4 Goal Directed Processing . 159 4.2.3.5 Rational Conversational Agents 160 4.2.4 Dialog Design . 162 4.2.5 Scripting and Tagging . 163 4.3 Multimodal Interaction 164 4.3.1 In- and Output Channels . 165 4.3.2 Basics of Multimodal Interaction 166 4.3.2.1 Advantages . 167 4.3.2.2 Taxonomy 167 4.3.3 Multimodal Fusion . 168 4.3.3.1 Integration Methods 169 4.3.4 Errors in Multimodal Systems 172 4.3.4.1 Error Classification 172 4.3.4.2 User Specific Errors 172 4.3.4.3 System Specific Errors . 173 4.3.4.4 Error Avoidance . 173 4.3.4.5 Error Resolution . 174 4.4 Emotions from Speech and Facial Expressions . 175 4.4.1 Background . 175 4.4.1.1 Application Scenarios 175 4.4.1.2 Modalities 176 4.4.1.3 Emotion Model . 176 4.4.1.4 Emotional Databases . 177 4.4.2 Acoustic Information . 177 4.4.2.1 Feature Extraction . 178 4.4.2.2 Feature Selection 179 4.4.2.3 Classification Methods . 180XII Table of Contents 4.4.3 Linguistic Information 180 4.4.3.1 N-Grams . 181 4.4.3.2 Bag-of-Words . 182 4.4.3.3 Phrase Spotting . 182 4.4.4 Visual Information 183 4.4.4.1 Prerequisites 184 4.4.4.2 Holistic Approaches . 184 4.4.4.3 Analytic Approaches . 186 4.4.5 Information Fusion . 186 4.4.6 Discussion 187 References . 187 5 Person Recognition and Tracking 191 5.1 Face Recognition . 193 5.1.1 Challenges in Automatic Face Recognition . 193 5.1.2 Structure of Face Recognition Systems . 196 5.1.3 Categorization of Face Recognition Algorithms . 200 5.1.4 Global Face Recognition using Eigenfaces 201 5.1.5 Local Face Recognition based on Face Components or Template Matching . 206 5.1.6 Face Databases for Development and Evaluation 212 5.1.7 Exercises . 214 5.1.7.1 Provided Images and Image Sequences 214 5.1.7.2 Face Recognition Using the Eigenface Approach . 215 5.1.7.3 Face Recognition Using Face Components . 221 5.2 Full-body Person Recognition . 224 5.2.1 State of the Art in Full-body Person Recognition 224 5.2.2 Color Features for Person Recognition . 226 5.2.2.1 Color Histograms 226 5.2.2.2 Color Structure Descriptor 227 5.2.3 Texture Features for Person Recognition . 228 5.2.3.1 Oriented Gaussian Derivatives . 228 5.2.3.2 Homogeneous Texture Descriptor 229 5.2.4 Experimental Results . 231 5.2.4.1 Experimental Setup 231 5.2.4.2 Feature Performance . 231 5.3 Camera-based People Tracking 232 5.3.1 Segmentation 234 5.3.1.1 Foreground Segmentation by Background Subtraction . 234 5.3.1.2 Morphological Operations 236 5.3.2 Tracking 237 5.3.2.1 Tracking Following Detection . 238 5.3.2.2 Combined Tracking and Detection 243 5.3.3 Occlusion Handling . 248 5.3.3.1 Occlusion Handling without Separation . 248Table of Contents XIII 5.3.3.2 Separation by Shape . 248 5.3.3.3 Separation by Color 249 5.3.3.4 Separation by 3D Information . 250 5.3.4 Localization and Tracking on the Ground Plane . 250 5.3.5 Example 253 References . 259 6 Interacting in Virtual Reality 263 6.1 Visual Interfaces 265 6.1.1 Spatial Vision 265 6.1.2 Immersive Visual Displays . 266 6.1.3 Viewer Centered Projection 268 6.2 Acoustic Interfaces 272 6.2.1 Spatial Hearing 272 6.2.2 Auditory Displays 273 6.2.3 Wave Field Synthesis . 274 6.2.4 Binaural Synthesis 275 6.2.5 Cross Talk Cancellation . 276 6.3 Haptic Interfaces 279 6.3.1 Rendering a Wall . 281 6.3.2 Rendering Solid Objects . 283 6.4 Modeling the Behavior of Virtual Objects . 286 6.4.1 Particle Dynamics 286 6.4.2 Rigid Body Dynamics . 288 6.5 Interacting with Rigid Objects 292 6.5.1 Guiding Sleeves 294 6.5.2 Sensitive Polygons . 296 6.5.3 Virtual Magnetism 296 6.5.4 Snap-In . 297 6.6 Implementing Virtual Environments . 298 6.6.1 Scene Graphs 298 6.6.2 Toolkits . 301 6.6.3 Cluster Rendering in Virtual Environments . 303 6.7 Examples 305 6.7.1 A Simple Scene Graph Example 307 6.7.2 More Complex Examples: SolarSystem and Robot 308 6.7.3 An Interactive Environment, Tetris3D 310 6.8 Summary 310 6.9 Acknowledgements . 312 References . 312XIV Table of Contents 7 Interactive and Cooperative Robot Assistants . 315 7.1 Mobile and Humanoid Robots 316 7.2 Interaction with Robot Assistants 321 7.2.1 Classification of Human-Robot Interaction Activities . 323 7.2.2 Performative Actions . 323 7.2.3 Commanding and Commenting Actions 325 7.3 Learning and Teaching Robot Assistants 325 7.3.1 Classification of Learning through Demonstration . 326 7.3.2 Skill Learning . 326 7.3.3 Task Learning . 327 7.3.4 Interactive Learning 328 7.3.5 Programming Robots via Observation: An Overview . 329 7.4 Interactive Task Learning from Human Demonstration 330 7.4.1 Classification of Task Learning . 331 7.4.2 The PbD Process . 333 7.4.3 System Structure . 335 7.4.4 Sensors for Learning through Demonstration 336 7.5 Models and Representation of Manipulation Tasks . 338 7.5.1 Definitions 338 7.5.2 Task Classes of Manipulations 338 7.5.3 Hierarchical Representation of Tasks 340 7.6 Subgoal Extraction from Human Demonstration . 342 7.6.1 Signal Processing 343 7.6.2 Segmentation Step 343 7.6.3 Grasp Classification 344 7.6.3.1 Static Grasp Classification 344 7.6.3.2 Dynamic Grasp Classification . 346 7.7 Task Mapping and Execution . 348 7.7.1 Event-Driven Architecture . 348 7.7.2 Mapping Tasks onto Robot Manipulation Systems . 350 7.7.3 Human Comments and Advice . 354 7.8 Examples of Interactive Programming 354 7.9 Telepresence and Telerobotics 356 7.9.1 The Concept of Telepresence and Telerobotic Systems 356 7.9.2 Components of a Telerobotic System 359 7.9.3 Telemanipulation for Robot Assistants in Human-Centered Environments 360 7.9.4 Exemplary Teleoperation Applications . 361 7.9.4.1 Using Teleoperated Robots as Remote Sensor Systems 361 7.9.4.2 Controlling and Instructing Robot Assistants via Teleoperation . 362 References . 364Table of Contents XV 8 Assisted Man-Machine Interaction . 369 8.1 The Concept of User Assistance . 370 8.2 Assistance in Manual Control 372 8.2.1 Needs for Assistance in Manual Control 373 8.2.2 Context of Use in Manual Control . 374 8.2.3 Support of Manual Control Tasks . 379 8.3 Assistance in Man-Machine Dialogs . 386 8.3.1 Needs for Assistance in Dialogs 386 8.3.2 Context of Dialogs . 387 8.3.3 Support of Dialog Tasks 390 8.4 Summary 394 References . 395 A LTI-LIB — A C++ Open Source Computer Vision Library 399 A.1 Installation and Requirements . 400 A.2 Overview 402 A.2.1 Duplication and Replication 402 A.2.2 Serialization . 403 A.2.3 Encapsulation 403 A.2.4 Examples . 403 A.3 Data Structures . 404 A.3.1 Points and Pixels . 405 A.3.2 Vectors and Matrices 406 A.3.3 Image Types . 408 A.4 Functional Objects 409 A.4.1 Functor . 410 A.4.2 Classifier 411 A.5 Handling Images 412 A.5.1 Convolution . 412 A.5.2 Image IO 413 A.5.3 Color Spaces 414 A.5.4 Drawing and Viewing . 416 A.6 Where to Go Next . 418 References . 421 B IMPRESARIO — A GUI for Rapid Prototyping of Image Processing Systems 423 B.1 Requirements, Installation, and Deinstallation . 424 B.2 Basic Components and Operations . 424 B.2.1 Document and Processing Graph 426 B.2.2 Macros . 426 B.2.3 Processing Mode . 429 B.2.4 Viewer 430 B.2.5 Summary and further Reading 431 B.3 Adding Functionality to a Document . 432XVI Table of Contents B.3.1 Using the Macro Browser 432 B.3.2 Rearranging and Deleting Macros . 434 B.4 Defining the Data Flow with Links . 434 B.4.1 Creating a Link 434 B.4.2 Removing a Link . 436 B.5 Configuring Macros . 436 B.5.1 Image Sequence 437 B.5.2 Video Capture Device . 440 B.5.3 Video Stream 442 B.5.4 Standard Macro Property Window 444 B.6 Advanced Features and Internals of IMPRESARIO 446 B.6.1 Customizing the Graphical User Interface 446 B.6.2 Macros and Dynamic Link Libraries . 448 B.6.3 Settings Dialog and Directories . 449 B.7 IMPRESARIO Examples in this Book . 450 B.8 Extending IMPRESARIO with New Macros 450 B.8.1 Requirements 450 B.8.2 API Installation and further Reading . 451 B.8.3 IMPRESARIO Updates . 451 References . 451 Index . Index 4-neighborhood, 20 8-neighborhood, 20 AAC, 393 accommodation, 266, 271 acoustic alert, 382 acoustic interfaces, 272 Active Appearance Model, 68, 186 active shape model, 87, 186 active steering, 383, 385 active stereo, 268 AdaBoost, 64, 183 adaptive filtering, 384 adjacency pixel, 20 agent, 349 ALBERT, 363 alerts and commands, 381 analytic approaches, 186 application knowledge, 386 architecture event-driven, 348 ARMAR, 322 articulatory features, 178 assistance in manual control, 372 assisted interaction, 369 auditory display, 273 augmented reality, 266, 392 auto completion, 394 automatic speech recognition, 141, 154 automation, 384 autonomous systems, 358 background Gaussian mixture model, 104 median model, 103 modeling/subtraction, 102 background subtraction, 234 shadow reduction, 255 bag-of-words, 182 Bakis topology, 39 Bayes’ rule, 148 Bayesian Belief Networks, 388, 389 Bayesian nets, 182 beliefs, desires, and intentions model, 159 binaural synthesis, 274, 275 black box models, 376 border computation, 21 length, 23 points, 20 braking augmentation, 383 camera model, 251 cascaded classifier, 66 CAVE, 266 cheremes, 119 circle Hough transformation, 83 class-based n-grams, 181 classification, 29, 110 class, 29 concepts, 29 garbage class, 30 Hidden Markov Models, 37 Markov chain, 37 maximum likelihood, 34 overfitting, 31 phases, 29 rule-based, 33 supervised, 31 training samples, 29 unsupervised, 31 color histogram, 226, 241 color space RGB, 11 color structure descriptor (CSD), 227 command and control, 153 commanding actions, 325 commenting actions, 325 compactness, 25 conformity with expectations, 391 context of use, 5, 370 control input limiting, 384 control input management, 383 control input modifications, 383 controllability, 391 convergence, 266, 271 conversational maxims, 162454 Index coordinate transformation, 251 cross talk cancellation, 274, 276 crossover model, 373, 376 DAMSL, 163 data entry management, 372, 391, 393 data glove, 336, 363 decoding, 147 Dempster Shafer theory, 388 design goals, 2 dialog context, 391 dialog design, 162 dialog management, 154 dialog system state, 390 dialog systems, 1 dilation, 237 discrete fourier transform (DFT), 210 display codes and formats, 392 distance sensors, 378 do what i mean, 394 driver modeling, 375 driver state, 374 dual hand manipulation, 338 dynamic grasp classification, 346 dynamic systems, 1 early feature fusion, 186 ECAM, 392 eigenfaces, 183, 185, 201 eigenspace, 78 emotion model, 176 emotion recognition, 175 emotional databases, 177 ensemble construction, 180 erosion, 237 error active handling, 172 avoidance, 173 identification, 393 isolation, 393 knowledge-based, 173 management, 393 multimodal, 172 passive handling passive, 172 processing, 173 recognition, 173 rulebased, 173 skillbased, 172 systemspecific, 173 technical, 173 tolerance, 391 userspecific, 172 Euclidian distance, 78 event-driven architecture, 348 eye blinks, 375 face localization, 61 face recognition affecting factors, 194 component-based, 206 geometry based, 200 global/holistic, 200 hybrid, 200 local feature based, 200 face tracking, 67 facial action coding system, 186 facial expression commands, 56 facial expression recognition, 184 facial expressions, 183 feature area, 23 border length, 23 center of gravity, 23 classification, 29, 110 compactness, 25 derivative, 27 eccentricity, 24 extraction, 12, 105 geometric, 22 moments, 23 normalization, 26, 109 orientation, 25 selection, 32 stable, 22 vector, 8 feature extraction, 178 feature groups, 122, 124 feature selection, 179 filter-based selection, 179 fine manipulation, 338 finite state model, 156 force execution gain, 383 formant, 178 frame-based dialog, 157 freedom of error, 2 function allocation, 385 functional link networks, 376 functionality, 390Index 455 functionality shaping, 392 fusion early signal, 168 late semantic, 169 multimodal integration/fusion, 168 fuzzy logic, 388 Gabor Wavelet Transformation, 83 garbage class, 30 Garbor-wavelet coefficients, 185 Gaussian mixture models, 241 gen locking, 268, 303 geometric feature, see feature, geometric gesture recognition, 7 goal directed processing, 159 goal extraction, 342 grasp, 324 classification, 344 dynamic, 324, 344 segmentation, 343 static, 324, 343 taxonomy, 348 taxonomy of Cutkosky, 345 gray value image, 11 guiding sleeves, 294 Haar-features, 62 hand gesture commands, 7 hand localization, 14 handover strategies, 385 haptic alerts, 381 haptic interfaces, 279 head pose, 375 head pose estimation, 78 head related impulse response, 272 head related transfer function, 272 head-mounted display, 266, 361 head-up display, 380, 382 Hidden Markov Models, 37, 142 Bakis topology, 39 multidimensional observations, 46 parameter estimation, 44 high inertia systems, 380 histogram object/background color, 15 skin/non-skin color, 18 holistic approaches, 184 homogeneous coordinates, 251 homogeneous texture descriptor (HTD), 229 human activity, 322 decomposition, 323 direction, 322 operator selection, 323 human advice, 354 human comments, 354 human transfer function, 374 human-computer interaction, 164 humanoid robot, 316 image gray value, 11 intensity, 11 mask, 11 object probability, 16 preprocessing, 102 representation, 10 skin probability, 19 immersion, 264 immersive display, 266 immersive interface, 361, 362 Impresario, 6 information management, 379, 391 input shaping, 384 integral image, 62 intensity panning, 273 intent recognition, 392 intentions, 370 inter-/intra-gesture variance, 22 interaction, 164 active, 322 passive, 322 robot assistants, 321 interaction activity classification, 323 commanding actions, 323 commenting actions, 323 performative actions, 323 interaction knowledge, 386 interactive learning, 328 task learning, 330 interactive programming example, 354 interaural time difference, 272 intervention, 372 intrusiveness, 374 Java3D, 6456 Index kernel density estimation, 242 keyword spotting, 180 kNN classifier, 205 language model, 148, 181 late semantic fusion, 186 latency, 263 LAURON, 361 learning interactive, 328 learning automaton, 350 learning through demonstration classification, 326 sensors, 336 skill, 326 task, 327 level of detail rendering, 300 lexical predictions, 393 Lidstone coefficient, 182 limits of maneuverability, 381 line-of-sight, 375 linear regression tracking, 245 linguistic decoder, 148 local regression, 377 magic wand, 363 magnetic tracker, 336 man machine interaction, 1 man-machine dialogs, 386 man-machine task allocation, 385 manipulation tasks, 338 classes, 338 definition, 338 device handling, 339 tool handling, 339 transport operations, 339 manual control assistance, 379 mapping tasks, 350 movements, 353 coupling fingers, 351 grasps, 351 power grasps, 352 precision grasps, 352 Markov chain, 37 Markov decision process, 158 maximum a-posteriori, 182 maximum likelihood classification, 34, 85 maximum likelihood estimation, 181 mean shift algorithm, 244 mental model, 386 menu hierarchy, 386 menu options, 386 MFCC, 178 mobile robot, 316 modality, 166 morphological operations, 236 motion parallax, 266 motor function, 165 moving platform vibrations, 384 multimodal interaction, 393 multimodality, 4, 166 multiple hypotheses tracking, 107 mutlimodal interaction, 164 n-grams, 181 natural frequency, 381 natural language generation, 155 natural language understanding, 154 nearest neighbor classifier, 205 noise canceling, 384 normalization features, 26, 109 notation system, 118 movement-hold-model, 120 object probability image, 16 observation, 29 oculomotor factors, 266 ODETE, 363 on/off automation, 385 operator fatigue, 375 oriented gaussian derivatives (OGD), 228 overfitting, 31 overlap resolution, 106 Parallel Hidden Markov Models, 122 channel, 122 confluent states, 123 parametric models, 376 particle dynamics, 286 passive stereo, 268 PbD process, 333 abstraction, 333 execution, 334 interpretation, 333 mapping, 334 observation, 333 segmentation, 333Index 457 simulation, 334 system structure, 335 perceptibility augmentation, 380 perception, 165 performative actions, 323 person recognition authentication, 191 identification, 191 verification, 191 phrase spotting, 182 physically based modeling, 286 physiological data, 371 pinhole camera model, 251 pitch, 178 pixel adjacency, 20 plan based classification, 389 plan library, 388, 391 plan recognition, 388 predictive information, 380 predictive scanning, 394 predictive text, 394 predictor display, 381 predictor transfer function, 380 preferences, 370 principal component analysis, 179 principle component analysis (PCA), 204 prioritizing, 392 programming explicit, 358 implicit, 358 programming by demonstration, 330 programming robots via observation, 329 prompting, 392 prosodic features, 178 question and answer, 153 Radial Basis Function (RBF) network, 345 rational conversational agents, 160 recognition faces, 193 gestures, 7 person, 224 sign language, 99 recording conditions laboratory, 9 real world, 9 redundant coding, 382 region description, 20 geometric features, 22 responsive workbench, 271 RGB color space, 11 rigid body dynamics, 288 robot assistants, 315 interaction, 321 learning and teaching, 325 room-mounted display, 267 safety of use, 2 scene graph, 298 scripting, 163 segmentation, 16, 234 threshold, 16 self-descriptiveness, 391 sense, 165 sensitive polygons, 296 sensors for demonstration, 336 data gloves, 336 force sensors, 337 magnetic tracker, 336 motion capturing systems, 336 training center, 337 sequential floating search method, 179 shape model, 186 shutter glasses, 267 sign language recognition, 5, 99 sign-lexicon, 117 signal transfer latency, 358 signal processing, 343 simplex, 59 single wheel braking, 385 skill elementary, 331 high-level, 331 innate, 327 learning, 326 skin probability image, 19 skin/non-skin color histogram, 18 slot filling, 157 snap-in mechanism, 297 soft decision fusion, 169, 187 sparse data handling, 158 spatial vision, 265 speech commands, 382 speech communication, 141 speech dialogs, 153458 Index speech recognition, 4 speech synthesis, 155 spoken language dialog systems, 153 static grasp classification, 344 steering gain, 383 stemming, 181 stereopsis, 265 stick shakers, 381 stochastic dialog modeling, 158 stochastic language modeling, 127 bigramm-models, 127 sign-groups, 128 stopping, 180 subgoal extraction, 342 subunits, 116, 117 classification, 125 enlargement of vocabulary size, 133 estimation of model parameters, 131 training, 128 suitability for individualization, 391 supervised classification, 31 supervised training, 376 supervisory control, 1 support of dialog tasks, 390 Support Vector Machines (SVM), 346 tagging, 163 takeover by automation, 372 task abstraction level, 331 example methodology, 332 goal, 328 hierarchical representation, 340 internal representation, 332 learning, 327 mapping, 333 mapping and execution, 348 model, 328 subgoal, 328 task learning classification, 331 taxonomy multimodal, 167 telepresence, 356 telerobotics, 356 concept, 356 controlling robot assistants, 362 error handling, 360 exception handling, 360 expert programming device, 360 input devices, 359 local reaction, 359 output devices, 359 planning, 359 prediction, 360 system components, 359 template matching, 209 temporal texture templates, 240 texture features homogeneous texture descriptor (HTD), 229 oriented gaussian derivatives (OGD), 228 threshold automatic computation, 17 segmentation, 16 tiled display, 271 timing, 392 tracking, 238 color-based tracking, 246 combined tracking detection, 243 hand, 107 hypotheses, 107 multiple hypotheses, 107 shape-based tracking, 244 state space, 107 tracking following detection, 238 tracking on the ground plane, 250 tracking system, 268 traction control, 384 traffic telematics, 378 training, 144 training center, 337 training phase, 29 training samples, 29 trajectory segmentation, 343 transcription, 117, 118 initial transcription, 129 linguistic-orientated, 118 visually-orientated, 121 transparency, 391 Trellis diagram, 146 trellis diagram, 42 tremor, 384 tunnel vision, 373 tutoring, 392 unsupervised classification, 31 usability, 2, 163, 390Index 459 user activities, 390 user assistance, 5, 370 user expectations, 371 user identity, 370 user observation, 371 user prompting, 371 user state, 370 user state identification, 388 user whereabouts, 390 variance inter-/intra-gesture, 22 vehicle state, 377 viewer centered projection, 268 virtual magnetism, 296 virtual reality, 4, 263 vision systems, 378 visual commands, 382 visual interfaces, 265 visualization robot intention, 362 Viterbi algorithm, 42, 146 voice quality features, 178 VoiceXML, 163 VR toolkits, 301 warning, 393 wave field synthesis, 274 wearable computing, 390, 394 whereabouts, 370 window function, 178 working memory, 386 workload assessment, 371 wrapper-based selection, 179
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Man-Machine Interaction رابط مباشر لتنزيل كتاب Advanced Man-Machine Interaction
|
|