Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanics of Composite Materials الثلاثاء 01 سبتمبر 2020, 11:41 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Mechanics of Composite Materials Second Edition Robert M. Jones Professor of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, Virginia
و المحتوى كما يلي :
Contents Preface to the Second Edition Xiii Preface to the First Edition Xv 1 Introduction to Composite Materials . 1 1.1 Introduction . 1 1.2 the What - What is a Composite Material? . 2 1.2.1 Classification and Characteristics of Composite Materials 2 1.2.1.1 Fibrous Composite Materials 3 1.2.1.2 Laminated Composite Materials 6 1.2.1.3 Particulate Composite Materials 8 1.2.1.4 Combinations of Composite Materials 10 1.2.2 Mechanical Behavior of Composite Materials 11 1.2.3 Basic Terminology of Laminated Fiber - Reinforced Composite Materials 15 1.2.3.1 Laminae 15 1.2.3.2 Laminates 17 1.2.4 Manufacture of Laminated Fiber - Reinforced Composite Materials 18 1.2.4.1 Initial Form of Constituent Materials 18 1.2.4.2 Layup 19 1.2.4.3 Curing 23 1.3 the Why - Current and Potential Advantages Of Fiber - Reinforced Composite Materials . 26 1.3.1 Strength and Stiffness Advantages 27 1.3.2 Cost Advantages 31 1.3.3 Weight Advantages 36 1.4 the How - Applications of Composite Materials . 37 1.4.1 Introduction 37 1.4.2 Military Aircraft 38 1.4.2.1 General Dynamics F - 111 Wing - Pivot Fitting 38 1.4.2.2 Vought a - 7 Speedbrake 40 1.4.2.3 Vought S - 3a Spoiler 42 1.4.2.4 Boeing F - 18 43 1.4.2.5 Boeing Av - Bb Harrier 44 1.4.2.6 Grumman X - 29a 45 1.4.2.7 Northrop Grumman B - 2 45 1.4.2.8 Lockheed Martin F - 22 46 1.4.3 Civil Aircraft 47 1.4.3.1 Lockheed L - 1011 Vertical Fin 47 1.4.3.2 Rutan Voyager 48 1.4.3.3 Boeing 777 49 1.4.3.4 High - Speed Civil Transport 49 1.4.4 Space Applications 50 1.4.5 Automotive Applications 50 Vvi Content} 1.4.6 Commercial Applications 52 1.5 Summary 52 Problem Set 1 53 References 53 2 Macromechanical Behavior of a Lamina 55 2.1 Introduction . 55 2.2 Stress - Strain Relations for Anisotropic Materials 56 2.3 Stiffnesses, Compliances, and Engineering Constants for Orthotropic Materials . 63 2.4 Restrictions on Engineering Constants . 67 2.4.1 Isotropic Materials 67 2.4.2 Orthotropic Materials 68 Problem Set 2.4 70 2.5 Stress - Strain Relations for Plane Stress In an Orthotropic Material . 70 2.6 Stress - Strain Relations for A Lamina of Arbitrary Orientation 74 Problem Set 2.6 84 2.7 Invariant Properties of an Orthotropic Lamina . 85 Problem Set 2.7 87 2.8 Strengths of an Orthotropic Lamina . 88 2.8.1 Strength Concepts 88 2.8.2 Experimental Determination of Strength and Stiffness 91 2.8.3 Summary of Mechanical Properties 100 Problem Set 2.8 102 2.9 Biaxial Strength Criteria for an Orthotropic Lamina 102 2.9.1 Maximum Stress Failure Criterion 106 2.9.2 Maximum Strain Failure Criterion 107 2.9.3 Tsai - Hill Failure Criterion 109 2.9.4 Hoffman Failure Criterion 112 2.9.5 Tsai - Wu Tensor Failure Criterion 114 2.9.6 Summary of Failure Criteria 118 Problem Set 2.9 118 2.10 Summary .• • . 118 References 119 3 Micromechanical Behavior of a Lamina 121 3.1 Introduction . 121 3.2 Mechanics of Materials Approach to Stiffness . 126 3.2.1 Determination of E1 127 3.2.2 Determination of E2 129 3.2.3 Determination of V12 132 3.2.4 Determination of G12 133 3.2.5 Summary Remarks 135 Contents Vii Problem Set 3.2 135 3.3 Elasticity Approach to Stiffness 137 3.3.1 Introduction 137 3.3.2 Bounding Techniques of Elasticity 137 3.3.3 Exact Solutions 145 3.3.4 Elasticity Solutions With Contiguity 147 3.3.5 the Halpin - Tsai Equations 151 3.3.6 Summary Remarks 157 Problem Set 3.3 158 3.4 Comparison of Approaches to Stiffness 158 3.4.1 Particulate Composite Materials 158 3.4.2 Fiber - Reinforced Composite Materials 160 3.4.3 Summary Remarks 163 3.5 Mechanics of Materials Approach to Strength . 163 3.5.1 Introduction 163 3.5.2 Tensile Strength in the Fiber Direction 164 3.5.3 Compressive Strength in the Fiber Direction 171 Problem Set 3.5 184 3.6 Summary Remarks on Micromechanics . 184 References 185 4 Macromechanical Behavior of a Laminate 187 4.1 Introduction . 187 Problem Set 4.1 190 4.2 Classical Lamination Theory 190 4.2.1 Lamina Stress - Strain Behavior 191 4.2.2 Stress and Strain Variation in a Laminate 191 4.2.3 Resultant Laminate Forces and Moments 195 4.2.4 Summary 199 Problem Set 4.2 202 4.3 Special Cases of Laminate Stiffnesses . 203 4.3.1 Single~layered Configurations 203 4.3.2 Symmetric Laminates 206 4.3.3 Antisymmetric Laminates 214 4.3.4 Unsymmetric Laminates 218 4.3.5 Common Laminate Definitions 219 4.3.6 Summary Remarks 221 Problem Set 4.3 222 4.4 Theoretical Versus Measured Laminate Stiffnesses 222 4.4.1 Inversion of Stiffness Equations 222 4.4.2 Special Cross - Ply Laminate Stiffnesses 224 4.4.3 Theoretical and Measured Cross - Ply Laminate Stiffnesses 229 4.4.4 Special Angle - Ply Laminate Stiffnesses 232 4.4.5 Theoretical and Measured Angle - Ply Laminate Stiffnesses 235 4.4.6 Summary Remarks 237 Problem Set 4.4 237 4.5 Strength of Laminates 237 4.5.1 Introduction 237( Viii Contents 4.5.2 Laminate Strength - Analysis Procedure 240 4.5.3 Thermal and Mechanical Stress Analysis 242 4.5.4 Hygroscopic Stress Analysis 245 4.5.5 Strength of Cross - Ply Laminates 246 4.5.6 Strength of Angle - Ply Laminates 255 4.5.7 Summary Remarks 258 Problem Set 4.5 260 4.6 Interlaminar Stresses . 260 4.6.1 Classical Lamination Theory 262 4.6.2 Elasticity Formulation 264 4.6.3 Elasticity Solution Results 267 4.6.4 Experimental Confirmation of Lnterlaminar Stresses 269 4.6.5 Lnterlaminar Stresses in Cross - Ply Laminates 271 4.6.6 Implications of Lnterlaminar Stresses 272 4.6.7 Free - Edge Delamination - Suppression Concepts 274 Problem Set 4.6 275 References 275 5 Bending, Buckling, and Vibration of Laminated Plates • .• 277 5.1 Introduction . 277 5.2 Governing Equations for Be~, Buckling, and Vibration of Laminated Plates . 279 5.2.1 Basic Restrictions, Assumptions, and Consequences 279 5.2.2 Equilibrium Equations for Laminated Plates 282 5.2.3 Buckling Equations for Laminated Plates 285 5.2.4 Vibration Equations for Laminated Plates 288 5.2.5 Solution Techniques 288 5.3 Deflection of Simply Supported Laminated Plates Under Distributed Transverse Load . 289 5.3.1 Specially Orthotropic Laminated Plates 290 5.3.2 Symmetric Angle - Ply Laminated Plates 291 5.3.3 Antisymmetric Cross - Ply Laminated Plates 295 5.3.4 Antisymmetric Angle - Ply Laminated Plates 298 Problem Set 5.3 301 - 5.4 Buckling of Simply Supported Laminated Plates Under in - Plane Load 301 5.4.1 Specially Orthotropic Laminated Plates 303 5.4.2 Symmetric Angle - Ply Laminated Plates 306 5.4.3 Antisymmetric Cross - Ply Laminated Plates 307 5.4.4 Antisymmetric Angle - Ply Laminated Plates 312 Problem Set 5.4 315 5.5 Vibration of Simply Supported Laminated Plates ••.••••• ·315 5.5.1 Specially Orthotropic Laminated Plates 315 5.5.2 Symmetric Angle - Ply Laminated Plates 317 5.5.3 Antisymmetric Cross - Ply Laminated Plates 318 5.5.4 Antisymmetric Angle - Ply Laminated Plates 320 Problem Set 5.5 322 5.6 Summary Remarks on Effects of Stiffnesses 323 References 329 ( Contents Ix 6 Other Analysis and Behavior Topics 331 6.1 Introduction . 331 6.2 Review of Chapters 1 Through 5 • .•• .• • 332 6.3 Fatigue .• •• ••• •.• .• .• . 333 6.4 Holes in Laminates .••• .• • 336 6.5 Fracture Mechanics .• • .• .• .• • • • 339 6.5.1 Basic Principles of Fracture Mechanics 340 6.5.2 Application of Fracture Mechanics to Composite Materials 343 6.6 Transverse Shear Effects •• .•• .• .•• .• 345 6.6.1 Exact Solutions for Cylindrical Bending 346 6.6.2 Approximate Treatment of Transverse Shear Effects 350 6.7 Postcuring Shapes of Unsymmetric Laminates 356 6.8 Environmental Effects . 359 6.9 Shells • •• .•.• •• .• • .• .• 361 6.10 Miscellaneous Topics . 362 References 362 7 Introduction to Design of Composite Structures 367 7.1 Introduction.• ••.•••••.• • •• • • .• • • 368 7.1.1 Objectives 368 7.1.2 Introduction to Structural Design 368 7.1.3 New Uses of Composite Materials 368 7.1.4 Manufacturing Processes 368 7.1.5 Material Selection 369 7.1.6 Configuration Selection 369 7.1.7 Joints· 369 7.1 .8 Design Requirements 370 7.1.9 Optimization 370 7.1.1 O Design Philosophy 371 7.1.11 Summary 372 7.2 Introduction to Structural Design 372 7.2.1 Introduction 372 7.2.2 What is Design? 372 7.2.3 Elements of Design 376 7.2.4 Steps in the Structural Design Process 380 7.2.4.1 Structural Analysis 381 7.2.4.2 Elements of Analysis in Design 381 7.2.4.3 Failure Analysis 382 7.2.4.4 Structural Reconfiguration 383 7.2.4.5 Iterative Nature of Structural Design 384 7.2.5 Design Objectives and Design Drivers 385 7.2.6 Design - Analysis Stages 386 7.2.6.1 Preliminary Design - Analysis 387 7.2.6.2 Intermediate Design - Analysis 388 7.2.6.3 Final Design - Analysis 388 7.2.7 Summary 389x Contents ( 7.3 Materials Selection 389 7.3.1 Introduction 389 7.3.2 Materials Selection Factors 390 7.3.3 Fiber Selection Factors 391 7.3.4 Matrix Selection Factors 392 7.3.5 Importance of Constituents 393 7.3.6 Space Truss Material Selection Example 394 7.3.7 Summary 400 7.4 Configuration Selection 400 7.4.1 Introduction 400 7.4.2 Stiffened Structures 400 7.4.2.1 Advantages of Composite Materials in Stiffened Structures 401 7.4.2.2 Types of Stiffeners 403 7.4.2.3 Open - Versus Closed - Section Stiffeners 405 7.4.2.4 Stiffener Design 407 7.4.2.5 Orthogrid 410 7.4.3 Configuration in Design Cost 411 7.4.4 Configuration Versus Structure Size 413 7.4.5 Reconfiguration of Composite Structures 414 7.4.6 Summary 417 7.5 Laminate Joints .: - : - ,_ . 417 7.5.1 Introduction 417 7.5.2 Bonded Joints 419 7.5.3 Bolted Joints 420 7.5.4 Bonded - Bolted Joints 421 7.5.5 Summary 422 7.6 Design Requirements and Design Failure Criteria . 422 7.6.1 Introduction 422 7.6.2 Design Requirements 422 7.6.3 Design Load Definitions 424 7.6.4 Summary 425 7.7 Optimization Concepts . 425 7.7.1 Introduction 425 7.7.2 Fundamentals of Optimization 426 7.7.2.1 Structural Optimization 426 7.7.2.2 Mathematics of Optimization 429 7.7.2.3 Optimization of a Composite Laminate 431 7.7.2.4 Strength Optimization Programs 435 7.7.3 Invariant Laminate Stiffness Concepts 440 7.7.3.1 Invariant Laminate Stiffnesses 440 7.7.3.2 Special Results for Invariant Laminate Stiffnesses 443 7.7.3.3 Use of Invariant Laminate Stiffnesses in Design 446 Problem Set 7.7.3 447 7.7.4 Design of Laminates 447 7.7.5 Summary 453 7.8 Design Analysis Philosophy for Composite Structures .• . 453 7.8.1 Introduction 453 7.8.2 Problem Areas 454 7.8.3 Design Philosophy 455 7.8.4 'anisotropic' Analysis 455 7.8.5 Bending - Extension Coupling 456 7.8.6 Micromechanics 457 7.8.7 Nonlinear Behavior 458 7.8.8 Lnterlaminar Stresses 459 7.8.9 Transverse Shearing Effects 460 7.8.10 Laminate Optimization 461 7.8.11 Summary 462 Contents Xi 7.9 Summary .• 463 References 465 Appendix a: Matrices and Tensors 467 A.1 Matrix Algebra 467 A.1.1 Matrix Definitions 467 A.1.2 Matrix Operations 470 A.2 Tensors .• . 472 A.2.1 Transformation of Coordinates 473 A.2.2 Definition of Various Tensor Orders 474 A.2.3 Contracted Notation 475 A.2.4 Matrix Form of Tensor Transformations 476 Reference 477 Appendix B: Maxima and Minima of Functions of a Single Variable • 479 Reference 483 Appendix C: Typical Stress - Strain Curves 485 C.1 Fiberglass - Epoxy Stress - Strain Curves • 485 C.2 Boron - Epoxy Stress - Strain Curves . 485 C.3 Graphite - Epoxy Stress - Strain Curves ••• • • . 485 References 494 Appendix D: Governing Equations for Beam Equilibrium and Plate Equilibrium, Buckling, and Vibration . 495 D.1 Introduction . 495 D.2 Derivation of Beam Equilibrium Equations • .• 495 D.3 Derivation of Plate Equilibrium Equations . 498 D.4 Plate Buckling Equations 505 D.5 Plate Vibration Equations •.• •.• • • . 506 References 506 Index . 507index - Aadams, D. F. 146, 152, 156, 254, 362 Adelman, H. M. 117 Almroth, B. 0. 284, 506 Alva, F. 48 Ambartsumyan, S. A. 91, 350, 355, 361 Analysis 372 - 373, 376 Analysis in Design 381 Angle - Ply Laminate 216 - 217 Antisymmetric 216 - 217, 222, 233, 298 - 301, 312 - 315, 320 - 322 Bending 291 - 295, 298 - 301 Buckling 306 - 307, 312 - 315, 328 Interlaminar Stresses 260 - 275 Stiffnesses 232 - 237 Strength 255 - 258 Symmetric 212 - 213, 233, 291 - 295, 306 - 307, 317 - 318 Vibration 317 - 318, 320 - 322 Anisotropic Lamina 77 - 79 Anisotropic Material See Also Anisotropy Anisotropic Behavior 14, 80 Definition of 12 Engineering Constants 78 - 79 Invariant Properties of 85 - 87 Plane Stress State 70 Strain - Stress Relations 60, 79 Stress - Strain Relations 56, 79 Anisotropy 336 - 337, 343, 454 - 456 Antisymmetric Laminate 214 - 222 Angle - Ply 216 - 217, 222, 233, 298 - 301, 312 - 315, 320 - 322 Bending 295 - 301 Buckling 307 - 315 Cross - Ply 215 - 216, 226, 295 - 298, 307 - 312, 318 - 320 Vibration 318 - 322 Applications of Composite Materials Automotive 50 - 52 Civil Aircraft 4 7 - 50 Commercial 52 Military Aircraft 38 - 46 Space 50 ( Inaex 507 Ashton, J. E. 199, 289, 292 - 295, 306 - 307, 328 - 329, 350, 355, 360, 364, 435,454,456,485, 489 - 494 Asymmetric Laminate See Unsymmetric Laminate Axial Stiffness 91 - 95, 101, 127 - 128, 149 Axial Strength 88, 91, 93, 101 - Bbaker, D. J. 272 Batdorf Shell Curve Parameter 361 Beam Boundary Conditions 496 - 498 Beam Equilibrium Equations 495 - 498 Beer, R. 350 Bend - Twist Coupling 198 - 199, 211 - 215, 233, 235, 278 - 279, 290 - 295, 306 - 307, 317 - 318, 323, 327 - 328, 439, 454 - 455 Bending of Laminated Plates 277 - 278, 282 - 285, 289 - 301, 323,360 Antisymmetric Angle - Ply Laminates 298 - 301 Antisymmetric Cross - Ply Laminates 295 - 298 Boundary Conditions 283 - 285 Cylindrical Bending 346 - 350 Equilibrium Equations 282 - 285 Solution Techniques 288 - 289 Specially Orthotropic Laminates 290 - 291 Symmetric Angle - Ply Laminates 291 - 295 Unsymmetric Cross - Ply Laminates 324 - 325 Bending - Extension Coupling 7, 198 - 199, 206, 214 - 222, 227 - 228, 277 - 279, 290, 295 - 301, 307 - 315, 317 - 327, 355, 361, 408, 439, 454, 456 - 457 Benign Failure 382 Berg, K. R. 419 Bernoulli 374, 399 Bert, C. W. 91 Betti's Law 66 Biaxial Strength Criteria508 Mecha!.~ - of Composite Materials For a Lamina 102 - 118 Hoffman Failure Criterion 105, 112 - 114, 422 Maximum Strain Failure Criterion 105, 107 - 109 Maximum Stress Failure Criterion 105, 106 - 107 Tsai - Hill Failure Criterion 105, 109 - 112, 115 - 116, 241,246, 249 - 250, 256 - 258 Tsai - Wu Tensor Failure Criterion 105, 114 - 118 Bifurcation 302 Bimetallic Strip 6 - 7, 202 Bimetals 6 - 7 Boeing Av - Bb Harrier 44 - 45 Boeing F - 18 43 - 44 Boeing 777 49 Boron Fibers 4 Boron - Aluminum 392, 458 Boron - Epoxy 17, 19, 21 - 22, 30, 67, 69, 81 - 82, 91, 100 - 101, 113 - 118, 147, 152 - 155, 182, 221, 298, 304, 306, 311 - 312, 316,334, 336 - 337, 359,380, 392,421,457, 485,489 - 491 Boundary Conditions Beam 496 - 498 Plate 283 - 285, 287 - 288, 501 - 503 Boundary Layer Effect 267 Broutman, L. J. 363 Browning, C. E. 246, 360 Brozovic, G. 48 Brush, D. 0. 506 Buckling 277, 285 - 288, 301 - 315, 323, 357, 360 - 361, 374, 381 - 382, 398, 427 Buckling of Laminated Plates 277 - 278, 285 - 288, 301 - 315, 323 - 329 Antisymmetric Angle - Ply Laminates 312 - 315 Antisymmetric Cross - Ply Laminates 307 - 312 Boundary Conditions 287 - 288 Governing Equations 285 - 288 Initial Imperfections 303 Solution Techniques 288 - 289 Specially Orthotropic Laminates 303 - 305 Symmetric Angle - Ply Laminates 306 - 307 Unsymmetric Cross - Ply Laminates 326 - 327 Bulk Modulus 67 - Ccarbon Fibers 4 Carbon Matrix Materials 23, 392 Carbon - Carbon 362 Card, M. F. 221, 406, 408 Caril, B. 48 Catastrophic Failure 382 Ceramic Matrix Materials 23, 392 Chamis, C. C. 120, 137, 147, 158, 306, 345 Cheng, S. 361 Chentsov Coefficients 80, 84 Chen, E. P. 345 Charon, T. 363 - 364 Chou,p.c. 89,362 Chou, T. W. 245 - 246 Clad Metals 7 Classical Lamination Theory 190 - 203, 260 - 264, 267, 271 - 272, 274, 337, 346 - 348, 350 - 352, 354, 356 Bending - Extension Coupling 198 - 199 Cylindrical Bending 346 - 350 Laminate Forces and Moments 195 - 199 Middle - Surface Curvatures 194 Middle - Surface Strains 194 Strain and Stress Variation 191 - 195 Cocuring 25 Coefficients of Moisture Diffusion 245 Coefficients of Moisture Expansion 245 Coefficients of Mutual Influence 79, 84 Coefficients of Thennal Expansion 242, 245 Cole, B. W. 113 - 114, 116 - 117 Compliance Matrix See Compliances Compliances Elastic Constants 58 For Anisotropic Material 79 For Orthotropic Material 64 - 66 In Stress - Strain Relations 58, 118 Mnemonic Notation 58 Relation to Stiffnesses for Orthotropic Materials 66 Restrictions on 68 Symmetry of 58 Composite Materials Advantages of 2 Characteristics of 2 - 11 Classification of 2 - 11 Definition of 2 History of 2 Manufacturing of 18 - 26 Mechanical Behavior of 11 - 14 Tailoring of 12, 18 Composite Structures Cost 368 - 369, 375, 412,425 Composite Structures Weight 375, 377, 425,427 Concentric Cylinder Model 144, 147 Concentric Spheres Model 143 Configuration Selection 369, 376, 400 - 417 Constitutive Relations See Strain - Stress Relations See Stress - Strain Relations Contiguity 147 - 151 Contiguity Factor 149 - 151, 160 - 163 Degree of 147 Contracted Notation 56, 475 Strains 56, 475 Stresses 56,115,475 Corten, H. T. 120,345,363 Cost 31 - 36, 47 - 48, 411,424, 463 - 464 See Also Composite Structures Cost See Also Life - Cycle Cost Coupling 7,211,215 See Also Eccentrically Stiffened Plates And Shells Bend - Twist 198 - 199, 211 - 215, 233, 235, 278 - 279, 290 - 295, 306 - 307, 317 - 318, 323, 327 - 328, 439, 454 - 455 Bending - Extension 7, 198 - 199, 206, 214 - 222, 227 - 228, 277 - 279, 290, 295 - 301, 307 - 315, 317 - 327, 355, 361,408,439, 454,456 - 457 Shear - Extension 14, 59, 77, 81, 91, 97,205, 211 - 213, 230, 235 - 237, 258, 269, 273, 277 - 278, 291, 306, 317, 348, 439, 454 - 455 Shear - Shear 80 Stiffnesses 198, 277 !henna! 252 - 253, 258 Crack Propagation 334, 339 - 345 Cracks 333 - 334, 339 - 345, 359 Cramer's Rule 472 Crocker, J. F. 47 Cross - Beam Test 99 - 100 Cross - Ply Laminate 188, 206, 210, 213, 215 - 216, 224 - 232, 354 Antisymmetric 215 - 216, 226, 295 - 298, 307 - 312, 318 - 320 Bending 290 - 291, 295 - 298, 324 - 326 Buckling 303 - 305, 307 - 312, 326 - 327 Inter1aminar Stresses 271, 273 Stiffnesses 224 - 232 Strength 246 - 255 Symmetric 210 - 211, 225, 354 Unsymmetric 323 - 327 Vibration 315 - 320, 327 - 328 Cross - Ply Ratio 224 Cruse, T. A. 345 Curing 23 - 26 Cylindrical Bending 346 - 350 - Ddamage Fatigue 333 - 336 Growth 333 - 336 Mechanics 333 Daniel, I. M. 269 - 270 Davies, G. J. 165, 167 Davis, J. G. 364 Index De Malherbe, M. C. 152, 156 Debonding 261 See Also Delamination Deflection 382 Deflection of Plates See Bending of Laminated Plates Delamination 260, 271 - 272, 333 Delamination - Suppression Concepts 274 - 275 Design 373, 431 Buckling - Critical 399 Constraints 434 Cost - Effective 398 Isotropic Plate 431 509 Laminate 431 - 440, 446 - 453, 461 - 462 Least - Weight 398 Merit Function 434 Simplified Design Space 439 Stiffness - Critical 399 Strength - Critical 399 Testing During 388, 389 Design Drivers 372, 378, 382, 385 - 386, 390,463 Design Elements 376 - 380 Design Failure Criteria 370, 422 - 425 Design Load Definitions 424 - 425 Design Load Limit 424 Design Ultimate Load 424 Ultimate Load 424 Design Modification See Design Reconfiguration Design Objectives 372, 385, 448 Design Parameters See Design Variables Design Philosophy 371,374 Design Requirements 370, 373, 380 - 381, 384,389, 422 - 425,427 Design Space 377 Design Variables 370 - 371, 373, 377 - 378, 383,426 Design - Analysis 386 Final 387 - 389 Intennediate 387 - 388 Iterations 384 - 385 Philosophy 453 - 463 Preliminary 387 - 388 Stages 386 - 389 Design - Analysis Iterations 384 - 385 Design - Analysis Philosophy 453 - 463 Design - Analysis Stages 386 - 389 Detailed Design 388510 Mej ,s of Composite Materials Deterministic 373 - 374, 381, 432, 434 Dickerson, E. O. 69 Dietz, a. G. H. .3 Diffusion Coefficient 245 Dimartino, B. 69 Dispersion - Stiffened Composite Material 135, 137 - 143, 158 - 159 Doner, D. A. 152,156,254 Dong, S. B. 191, 361 Dow, N. F. 169 - 172, 1n, 181 - 182 Duke, J. C. 333 - Eeccentrically Stiffened Plates and Shells 221 See Also Coupling Eisenmann, J. A. 335, 345 Ekvall, J.c. 47, 135 Elastic Constants See Also Compliances, Engineering Constants, Stiffnesses Definition 118 Restrictions on 67 Elasticity 264 - 268, 340 - 341, 343, 346 - 348, 350, 353 - 354 Elasticity Approach to Micromechanics 122, 126, 137 - 163 Bounding Techniques 137 - 144 Contiguity 147 - 151 Discrete Element Approaches 125, 137,145 Exact Solutions 137, 145 - 147 Halpin - Tsai Equations 151 - 158 Microstructure Theories 137, 158 Self - Consistent Models 137, 147 Statistical Approaches 137 Variational Techniques 137 Electrical Conductivity 359 Energy 424 Engineering Constants 63 - 64, 118, 191 Apparent for Orthotropic Lamina 80 Restrictions on 67 Environmental Effects 359 - 361 Epoxy 5, 393 - 394 Eudaily, a. R. 47 - 48 Euler 374, 399 Ewing, M. S. 329 Expansional Strains 242 - 246, 360 Extrema of Material Properties 81 - 85 118 ' - Ffactor of Safety 382 - 383, 448 Failure 370 Benign 382 Catastrophic 382 Modes 381 Failure Analysis 382 - 383 Failure Criteria 370 For a Lamina 102 - 118 For a Laminate 237 - 260 Hoff:nan Criterion 105, 112 - 114, 422 Maximum Strain Criterion 105 10? - 109, 112, 435, 453 ' Maximum Stress Criterion 105 - 107 112 ' Tsai - Hill Criterion 105, 109 - 112, 115 - 116, 241, 246, 249 - 250 256 - 258 ' . Tsai - Wu Criterion 105, 114 - 118 Failure Envelopes 102 - 105 Fatigue 2, 7, 272, 333 - 336 339 370 398,440 ' ' ' Fatigue Life 390 Fatigue Strength 272, 333 - 336, 339 Fem, P. 363 Fiber Buckling 171 - 183 Extensional Mode 171 - 178, 180 - 183 Shear Mode 171 - 174, 179 - 183 Transverse Mode 171 - 178 180 - 1b3 Fiber Misalignment Factor 149' 160 Fiber Selection Factors 391 ' Fiber - Matrix Interface 339 360 Fib~r - Reinforced Laminated ~omposite Matenals Advantages of 11 Applications of 37 - 52 Constituents of 15 - 18 Curing of 23 - 26 Current and Potential Uses of 37_38 Definition of 11 Lay - Up of 19 - 23 Manufacturing of 18 - 26 Molding of 20 - 23 Quality Control Factors 26 Tailoring of 12 18 Fiber - Volume Fracti~n 123 Fiberglass - Epoxy 1o Fibers Boron 4 Carbon 4 Contiguity Factor 147, 149 - 151, 160 - 163 Definition of 3 Diamond Array 145 - 146 Function of 15 Glass 3 Graphite 4 Hexagonal Array 146 Initial Form 18 Misalignment Factor 149, 160 Properties of 3 - 4, 16 Random Arrangement 147 Restrictions on Micromechanical Behavior 124 Square Array 146 Staggered Square Array 145 - 146 Fibrous Composite Materials Definition of 2 Filament Winding 19 - 20, 74,119,410 Final Design - Analysis 388 - 389 Finite Difference Approach 145, 266 - 267, 289 Finite Element Approach 125, 145, 289 First - Ply Failure Load 452 Flaws 339, 343 Flom, D. G. 4 Fourier Series 289, 291 - 292, 296,328 Foye, R. L. 152, 154, 272 Fracture Mechanics 339 - 345 Application to Composite Materials 343 - 345 Basic Principles of 340 - 342 Crack Extension Modes 340 Fracture Process 339 Strain - Energy - Release Rate 340 - 341 Stress - Intensity Factors 342 - 344 Free Thermal Strain 242 Fried, N. 359 - Ggalerkin Method 289, 306 Galvanic Corrosion 361 General Dynamics F - 111 Wing - Pivot Fitting 38 - 40 Generally Orthotropic Lamina 77 - 79 See Also Orthotropic Lamina Generally Orthotropic Laminate 214 Gere, J.m. 174 - 175, 301, 506 Girkmann, K. 350 Glass Fibers 3 Glass - Epoxy 22, 30 - 31, 74, 81 - 82, 91, 100 - 101, 105 - 107, 109, 111 - 113, 118, 143, 149, 152 - 155, 160, 162, 164, 171 - 172, 180 - 182, 334,336,343, 359, 361, 380, 485 - 488 Glass - Transition Temperature 360 Goland, M. 419 Graphite Fibers 4 Graphite - Epoxy 17, 29 - 30, 33, 35, 38, 41, 43 - 44, 47 - 48, 50, 52, 84, 98, 100 - 101, 113 - 114, 147, 152, 184, 221, 245, 267, 269, 297 - 298, 300, 310 - 313, 319,321, 325 - 328, 336, 347, 354 - 361, 369, 380, 391 - 392, 395 - 397, 415, 421, 457 - 458, 485, 491 - 494 Greszczuk, L.b. 171, 182, 336 - 338 Griffith, a. A. 340 Grumman X - 29a 45 Gurland, J. 158 - Hhadcock, a. N. 439 Hahn,h.t. 99,362 Halpin - Tsai Equations 123, 126, 137, 151 - 157 511 Halpin, J.c. 97 - 98, 119 - 120, 123, 126, 151 - 155, 199,363,365,466,485, 489 - 494 Hansen, M. P. 345 Han, B. 269 Hart - Smith, L. J. 103, 420, 422 Hashin, 2. 143 - 144, 147, 159, 163, 170, 362 Hatfield, S. J. 348 Henkel, J. 48 Henneke, E. G. 333 Hennemann,j.c.f. 286 Herakovich, C. T. 362 Hermans, J. J. 147, 151 - 152 Herrmann, L. A. 145 Heterogeneity 11, 122 Hewitt, R. L. 152, 156 High - Speed Civil Transport 49 - 50 Hill, a. 105, 109, 111 - 112, 115 - 116, 147, 151,241,246,249,256,258,422 Hinger, R. J. 329 Hoffman Failure Criterion 105, 112 - 114, 422 Hoffman, O. 112,422 Holes in Laminates 336 - 339 Hollister, G. S. 362 Homogeneity 11, 122 Hooke's Law 118 Howell, H. B. 100 Ho, P. B. C. 361 Humidity 359 Husman, G. E. 246, 360 Hyer, M. W. 356 - 359 Hygroscopic Stresses 245 - 246 - 1 - Lfju, P. 269 Impact Resistance 345 Inhomogeneity 11 - 12 Definition of 11 Innovative Fabrication 463 - 464 Interaction Strength 114 - 118 Lnterlaminar Stresses 260 - 275, 459 - 460 Angle - Ply Laminates 260 - 275512 Mechanics of Composite Materials Boundary Layer Effect 267 Cross - Ply Laminates 271, 273 Delamination - Suppression Concepts 274 - 275 Elasticity Solution 264 - 268 Experimental Confirmation 269 - 270 Implications 272 - 274 Intermediate Design - Analysis 388 Invariant Properties 85 - 87 Invariant Stiffness Concepts 85 - 87, 440 - 447 Irwin, G. R. 340 - 341 Isotropic Material See Also Isotropy Definition of 11 Isotropic Behavior 12 - 14 Plane Stress State 70 Strain - Stress Relations 62 Stress - Strain Relations 60 Iteration 373, 380, 384, 424 - Jjackson, a. C. 47 - 48 Johnson, R. 48 Joints 369, 376 - 377, 383, 417 - 422 Bolted 417, 420 - 421 Bonded 417 - 420 Bonded - Bolted 417, 421 Failures in Bolted Joints 420 - 421 Failures in Bonded Joints 420 Shimmed 421 Jones, R. M. 81, 91, 99, 221, 275, 286, 307 - 308, 310 - 312, 314, 320, 322 - 327, 361 - 362, 364,406,408,457,506 Judge, J. F. 26 June, R. R. 182 - 183 - Kkaminski, B. E. 335, 345 Keiffer, R. 158 Kelly, a. 165, 167 Kevlar 49@ - Epoxy 100 - 101 Kevlar - Epoxy 30, 413, 457 - 458 Kim, R. Y. 113 - 114 Kirchhoff Free - Edge Condition 283, 352 Kirchhoff Hypothesis 192 - 195, 281, 347 - 348, 504 Kirchhoff Shear Force 502 Kirchhoff - Love Hypothesis 192 - 195 Konish, H.j., Jr. 345 Krock, R. H. 363 - Llager, J. R. 182 - 183 Lamina Definition of 15, 55 Design 85 Invariant Properties of 85 - 87 Restrictions on Micromechanical Behavior 124 Strength 88 - 118 Stress - Strain Behavior 191 Unidirectionally Reinforced 15, 27 - 28 Lamina Stiffness In Fiber Direction 88, 91, 93 - 95 Shear 88,91,96 - 101,115 Transverse to Fiber Direction 88, 91, 95 - 96 Lamina Strength In Fiber Direction 88, 91, 93 - 95 Shear 88, 91, 96 - 101, 115 Transverse to Fiber Direction 88, 91, 95 - 96 Laminate 435 See Also Angle - Ply Laminate See Also Cross - Ply Laminate Antisymmetric 214 - 222 Balanced 220 - 221 Curing 206,239 Cylindrical Bending 346 - 350 Definition of 6, 17, 187 Design 431 - 440, 446 - 453, 461 - 462 Displacements 192 - 193 Environmental Effects 359 - 361 Forces and Moments 195 - 199 Fracture Mechanics 339 - 345 Holes in 336 - 339 Hybrid 221 Interlaminar Stresses 260 - 275 Invariant Stiffness Concepts 440 - 447 Joints 417 - 422 Macromechanical Behavior Of 187 - 275 Manufacturing 18 - 26 Notation 219 Postcuring Shapes 356 - 359 Purpose of 18 Quasi - Isotropic 219 - 220, 435, 445 Regular 210 - 212, 216 - 217, 219 Stacking Sequence 219, 240, 272, 379,449 Stiffnesses 198 - 237 Strain and Stress Variation 191 - 195 Strength 237 - 260 Analogy to Plate Buckling 237 Analysis Procedure 240 - 242 Fatigue 272, 333 - 336, 339 Symmetric 206 - 214, 354 Symmetry 439 Tailoring 378 Temperature - Dependent Properties Of 197 Unsymmetric 206,214, 218 - 219, 356 - 359 Laminate Behavior Brittle 449 Ductile 449 Energy Absorption 449 Fatigue 449 Load - Deflection Behavior 449 Laminate Design 431 - 440, 446 - 453, 461 - 462 Laminae Reorientation 436 Laminate Design Problem 434, 450 Laminate Life - Prediction Techniques 451 Laminate Optimization 431 - 440, 446 - 453, 461 - 462 Laminate Stacking Sequence 379, 449 Laminate Strength Analysis Procedure 450 Laminate Tailoring 378 Laminated Composite Materials See Also Laminate Definition of 2, 6 Types of 6 - 8 Laminated Glass 7 - 8 Laminated Plates 277 - 329 Behavioral Restrictions and Assumptions 279 - 282 Bending 277 - 279, 282 - 285, 289 - 301, 323 - 325 Boundary Conditions 283 - 285, 287 - 288 Buckling 277 - 279, 285 - 288, 301 - 315, 323 - 329 Governing Equations 279 - 289 Initial Imperfections 303 Kirchhoff Hypothesis 281 Stiffnesses 325 - 326 Vibration 277 - 279, 288, 315 - 322, 327 Laminated Shells 361 Langhaar, H. L. 292, 483 Latour, R. A. 183 Law of Mixtures See Rule of Mixtures Least - Cost Structures 368 - 369, 375,412, 425 Least - Weight Structures 375,377,425, 427 Leissa, a. W. 295,298,329 Lekhnitskii, S. G. 79, 336 Lempriere, B. M. 68 Liebowitz, H. 364, 466 Life 424 Life - Cycle Cost 32, 368, 385 Lightning 359 Linear Stress - Strain Behavior 16 - 17, 91 - 99, 102 Lockheed L - 1011 Vertical Fin 47 - 48 Lockheed Martin F - 22 46 Longitudinal Stiffness 101, 127 - 128, 149 Index 513 Longitudinal Strength 88, 91 - 95, 101 Lubin, G. 394 - Mmacdonald, D. 118 Macromechanics Definition of 12, 55, 122 Major Poisson's Ratio 132 Mandell, J. F. 306 Manufacturing 18 - 26, 376, 424 Filament Winding 19 - 20 Molding 20 - 23 Pultrusion 22 - 23 Resin - Transfer Molding 20 - 21 Roll Forming 22 Sheet Molding 22 Tape Laying 19 - 20 Manufacturing Processes 368 Contrast Between Metals and Composites 464 Materials Selection 369, 376, 389 - 400 Factors 390 Materials Utilization Factor 33 Mathews, F. L. 422, 466 Matrix Selection Factors 392 Matrix (Material) 15, 55 Bismaleimides 394 Carbon 394 Definition of 5 Epoxy 393 - 394 Function of 15 Peek 394 Phenolics 394 Polyester 393 Polyimide 393 - 394 Polysulfone 394 Properties of 5 - 6 Restrictions on Micromechanical Behavior 124 Thermoplastic 393 - 394 Thermoset 393 - 394 Vinyl Ester 393 Volume Fraction 123 Matrix (Mathematical) 56 - 63 Addition 470 Adjoint 471 Algebra 467 - 472 Cofactor 469 Column 468 Compliance 58 Cramer's Rule 472 Definition of 467 Determinant of 469 Diagonal 468 Identity 468 Inverse 471 Inversion 471( 514 Mechanics of Composite Materials Multiplication 470 Nonsingular 472 Principal or Main Diagonal of 468 Reversal Laws for 472 Row 468 Scalar 468 Singular 471 Solution of Linear Equations 471 Square 467 Stiffness 56, 57 Subtraction 470 Symmetric 468 Transpose 468 Unit 468 Maxima and Minima of Functions of a Single Variable 479 - 483 Maximum Strain Failure Criterion 105, 107 - 109, 112,435,453 Maximum Stress Failure Criterion 105 - 107, 112 Mccullers, L. A. 435 Measurement of Stiffness Cross - Beam Test 99 - 100 For a Lamina 91 - 102 Rail Sheartest 100 Torsion - Tube Test 99 Uniaxial Tension Test 93 - 98 Measurement of Strength Cross - Beam Test 99 - 100 For a Lamina 91 - 102 Rail Shear Test 100 Torsion - Tube Test 99 Uniaxial Tension Test 93 - 98 Mechanical Behavior of Composite Materials 11 - 14 Mechanical Properties 100 - 101 Mechanics of Materials Approach to Micromechanics Of Stiffness 123, 126 - 137, 158 - 164 Of Strength 126, 163 - 183 Mechanistic Relationships 371, 374, 376, 386 Merit Function 377 - 378, 427, 434 Metal Matrix Materials 23, 392 Microcrack See Cracks _ Micromechanics 393, 454, 457 - 458 Definition of 12, 122 Elasticity Approach 122, 137 - 163 Mechanics of Materials Approach 122, 126 - 136 Of Stiffness 123 Of Strength 123 Representative Volume Element 124 Restrictions on Theory 123 Strain Assumptions 126 Mindlin, R. D. 350 Minimum Complementary Energy 138 Minimum Potential Energy 140,479 Modes of Failure 381 Mohr's Circle 477 Moire Technique 269 Moisture 359 - 360 Moisture Absorption 245 - 246, 360 Molding 20 - 23 Monoclinic Material 59 Plane Stress State 70 Strain - Stress Relations 61 Stress - Strain Relations 59 Morgan, H. S. 99, 314, 322 - 324, 361 - 362, 457 Mosesian, B. 47 - 48 Muskhelishvili, N. I. 145 - Nnanyaro, a. P. 118 Narayanaswami, R. 117 Narrow Optimum Design 378 Nastran 388 - 389 Netting Analysis 137, 253 Newton's Method 430 Nishimatsu, C. 158 Nodal Line 302 Nomex 413 Nondeterministic 374, 433 - 434 Nonlinear Behavior 458 Nonlinear Stress - Strain Behavior 362 Nonsymmetric Laminate See Unsymmetric Laminate Norris, C. H. 355 Northrop Grumman B - 2 45 - 46 Noton, B. R. 365,412 - 0 - O'brien, R. 48 Olsen, F. 0. 435 Open - Versus Closed - Section Stiffeners 405 - 407 Oplam 435, 439 Optimization 370 - 371, 376 - 377, 385, 425 - 454 Artificial Constraint 437 Brute - Force Search 428 - 429, 433, 435 Constraints 427, 434 Fundamentals of 426 Laminate 431 Mathematical 370, 428 - 430 Merit Function 427, 434 Nonlinear 429 Strength 435 Structural 426 Tsai's Laminate Ranking Procedure 433 Orthogrid 410 - 411 Orthotropic Lamina 70 - 73 See Also Generally Orthotropic Lamina See Also Specially Orthotropic Material Definition of 70 - 73 Invariant Properties of 85 - 87 Stiffness in Arbitrary Coordinates 74 - 84 Strength 88 - 118 Orthotropic Material 59 Compliances for 64 Definition of 11 Engineering Constants of 63 Invariant Properties of 85 - 87 Orthotropic Behavior 12 - 13 Plane Stress State 70 Strain - Stress Relations 61 Stress - Strain Relations 59 Orthotropic Modulus Ratio 298, 300, 311 - 312,314, 320,322,328 See Also Stiffness Ratio Orthotropy 191,200,264,282, 336 - 337, 343 - 344,346, 348,350,455 Overdesign 383, 384, 404, 447 - Ppadding Up 409 Pagano, N. J. 85, 87, 89, 97 - 99, 119 - 120, 261,264,266, 268 - 273, 346 - 347, 348 - 350, 353, 355, 363, 365, 440 - 443, 446 - 447, 460 - 461, 466 Particulate Composite Materials 158 - 159 Definition of 2, 8 Types of 8 - 1 O Particulate Reinforcement 2, 8 - 10, 136, 158 - 159, 163 Paul, B. 137, 143, 158 - 159, 163 Perrone, N. 364, 466 Petit, P. H. 199, 485, 489 - 494 Philips, L. N. 365 Pinckney, R. L. 334 Pipes, R. B. 99, 113 - 114, 116 - 117, 245 - 246, 261,264,266, 268 - 273, 460 Pister, K. S. 145,191,361 Plane Stress 70 Plastic Deformations 340, 362 Plastic - Based Laminates 8 Plate Aspect Ratio 279 Plate Boundary Conditions 501 - 503 Plate Buckling Equations 505 - 506 Plate Equilibrium Equations 498 - 505 Plate Vibration Equations 506 Plates, Laminated See Laminated Plates Ply Drops 409 Plywood 2 Poisson's Ratios 13, 63 - 67, 84, 101 Lnutlx 515 Apparent 140 - 143 Apparent for a Lamina 132 - 133, 142 - 143, 148 Definition of 64 Effect on Transverse Modulus 131 Restrictions on 67 - 70 Polymer Matrix Materials 392 Polymers Branched 5 Cross - Linked 5 Linear 5 Postcuring Shapes of Laminates 356 - 359 Post, D. 269 Potential Energy 357 Preliminary Design - Analysis 387 - 388 Principal Material Coordinates Definition of 59 Shear Strength in 89 Principal Material Directions 59 See Also Principal Material Coordinates Definition of 59 Determination of 67 Nonalignment With Coordinate Directions 74 Principle of Minimum Complementary Energy 138 Principle of Minimum Potential Energy 140, 479 Principle of Stationary Potential Energy 292, 479 Pultrusion 22 - 23 - Qquasi - Isotropic Laminate - Rradiation 361 Rail Shear Test 100 Rayleigh - Ritz Method 289, 292 - 294, 306, 318,328 Rc7 435 Reciprocal Relations 65, 68, 72, 80, 95 Generalized Betti's Law 66 Reddy,j. N. 91,277 Reduced Bending Stiffness Approximation 328 - 329, 456 Reduced Stiffnesses 71, 77, 191 Reed, D. L. 335 Regular Antisymmetric Angle - Ply Laminate 217, 232( 516 Mechanlc:s of Composite Materials Regular Antisymmetric Cross - Ply Laminate 216 Regular Laminate 210 - 212, 216 - 217, 219 Regular Symmetric Angle - Ply Laminate 212, 232 Regular Symmetric Cross - Ply Laminate 210 Reifsnider, K. L. 333 Reissner Variational Theorem 355 Reissner, E. 191,350,355,419 Representative Volume Element 124 - 134, 145 - 146, 168, 172 Definition of 124 Resin - Transfer Molding 20 - 21 Reuter Matrix 75 - 76, 78 Reuter, R. C. 75 Riley, M. B. 147 Roll - Forming 22 Rosen, B. W. 4, 143 - 144, 147, 163, 168 - 172, 1n. 101 - 102 Rule of Mixtures 127, 132, 135, 138, 144, 149, 151, 156, 159 Rutan Voyager 48 - Ssaint - Venant, Barre De End Effects 97 Semi - Inverse Method 145 Salkind, M. J. 333, 335, 362 Savin, G. N. 336 Schapery, R. A. 362 Schmit, L. A. 431, 447 Schuerch, H. 182 - 183 Schwartzkopf, P. 158 Schwartz,h.s. 120 Schwartz, M. M. 394 Schwartz,r. T. 120 Self - Consistent Model 137, 147, 151 Semi - Inverse Method 145 Sendeckyj, G.y. 118, 137, 147, 158 Sensitivity Studies 371, 378 Separation of Variables 289, 291 Serafini, T. T. 345 Shear Deformation Theory 350 - 355 Shear Moduli Shear Stiffness Shear Strength 88, 91, 96 - 101, 115 Shear - Extension Coupling Shear - Shear Coupling 80 Sheet Molding Compound 22 Shells, Laminated 361 Shen, C. H. 245 Shockey, D. 99 Shtrikman, S. 143, 159 Sierakowski, R. L. 2n Signorelli, R. A. 365 Sih, G. C. 345 Sims, D. F. 362 Skew Plates 293 - 307 Softening Strip Concept 338 - 339 Solution Techniques 288 - 289 Complex Variable Mapping 145 Fin!te Differences 145, 266 - 267, 289 Finite Elements 125,145,289 Galerkin Method 289 Rayleigh - Ritz Method 289 Semi - Inverse Method 145 Separation of Variables 289 Space Effects 361 Specially Orthotropic Lamina 76, 78 See Also Orthotropic Lamina Specially Orthotropic Laminate 214, 278 - 279, 290 - 291, 303 - 305, 315 - 317 Specific Stiffness 3 - 4, 27 - 31 Specific Strength 3 - 4, 27 - 31 Springer, G. S. 245, 276, 360 Stacking Sequence 219, 240, 272 Stansbarger, D. L. 100 Stationary Potential Energy 292, 479 Stavsky, Y. 191, 355 Stiffened Structures 400, 414 See Also Stiffeners Advantages of Composite Materials 401 Honeycomb Core 414 - 415, 421 Isogrid 411 Metal Versus Composite 402 Optimization 402 Orthogrid 410 - 411 Sandwich Core 414 Shells 361 Stiffener Design 407 - 410 Stiffeners 379,400 Design 407 - 410 Design Parameters 407 Eccentricity 408 Embedded Stiffening Strap 404 Hat 405 - 406 Manufacturing 403 Open - Versus Closed - Section 405 Optimum Design 404 Sandwich - Blade 405 - 406 Types 403 Stiffening Strip Concept 338 - 339 Stiffness 2, 26 - 31, 381,390,398,423 Stiffness in Fiber Direction 88 Stiffness Ratio 225 See Also Orthotropic Modulus Ratio Stiffness Tensor 91, 102 Stiffness Transverse· to Fiber Direction 88 Stiffness - Sensitive Structures 386 Stiffnesses See Also Coupling Bending 198 - 199 Bending - Extension 198 Comparison of Measured and Predicted 222 - 237 Definition of 56 Elastic Constants 58 Extensional 198 - 199 For Bending - Extension Coupling 199 In Fiber Direction 88, 91, 93 - 95 Inversion of 222 - 224 Laminate 198 - 237 Measurement of 91 - 102, 229 - 232, 235 - 236 Mnemonic Notation for 58 Of Anisotropic Layer 205 - 206 Of Generally Orthotropic Layer 205 Of Isotropic Layer 203 - 204 Of Specially Orthotropic Layer 204 - 205 Reduced 191 Relation to Compliances for Orthotropic Materials 66 Restrictions on 68 Shear 88, 91, 96 - 101, 115 Special Cases for 203 - 222 Symmetry of 58 Transformation of N, 85 Transformed Reduced 191 Transverse to Fiber Direction 88, 91, 95 - 96 Unequal in Tension and Compression 89 - 91 Stinchcomb, W. W. 333 Strain Distribution 281 Strain Energy 138 - 141, 340 - 341, 345 Strain - Displacement Relations 56, 193, 265 Strain - Energy - Release Rate 340 - 342 Strain - Stress Relations Anisotropic 60 Isotropic 62 Monoclinic 61 Orthotropic 61 Plane Stress (Orthotropic) 71 Transversely Isotropic 61 Strains Engineering Shear Strain 56 - 57, 75 Expansional 242 - 246 Linear Strain - Displacement Relations 56 Principal 88 Tensor Shear Strain 56 - 57, 75 Transformation of 7 4 Volumetric Strain 67 Street, K. N. 365 Strength 2, 26 - 31, 390, 398, 423 See Also Anisotropic Lamina See Also Generally Orthotropic Lamina See Also Orthotropic Lamina See Also Specially Orthotropic Lamina Analogy to Plate Buckling · 238 Angle - Ply Laminate 255 - 258 111dex 517 Axial 88 Cross - Ply Laminate 246 - 255 Experimental Determination Of 91 - 102 Fatigue 272, 333 - 336, 339 In Fiber Direction 88, 91, 93 - 95 Longitudinal 88 Of a Laminate 237 - 260 Of an Orthotropic Lamina 88 - 118 Shear 88, 91, 96 - 101, 115 Transverse to Fiber Direction 88, 91, 95 - 96 Unequal in Tension and Compression 89 - 91, 115 Strength in Fiber Direction 88 Strength Tensor 91, 102, 115 Strength Transverse to Fiber Direction 88 Stress Concentration 409 Stress Concentration Factor 336 - 339, 342,383 Stress Distribution 281 Stress - Strain Behavior Lamina 191 Nonlinear 454, 458 Stress - Strain Relations 118 Anisotropic 56 Compliances in 118 Engineering Constants in 118 For a Generally Orthotropic Lamina 77 For a Lamina of Arbitrary Orientation 74 - 85 For a Specially Orthotropic Lamina 76 Isotropic 60 Monoclinic 59 Orthotropic 59 Plane Stress (Orthotropic) 71 Stiffnessesin 118 Thermal 242 - 244 Transformed 7 4 Transversely Isotropic 59 Stresses Hygroscopic 245 - 246 Intertaminar 260 - 275 Moisture 245 - 246 Principal 88 Thermal 242 - 260 Transformation of 7 4 Strong Design Drivers 378 Structural Configuration 426 Structural Design Process 368, 370, 372 - 389 Structural Optimization 426 Structural Optimization Techniques 447 Structural Polymers Thermoplastic - Matrix Materials 5, 25 - 26 Thermoset - Matrix Materials 5, 23 Structural Reconfiguration 380, 383 - 384, 414 - 417 Structural Response Parameters 381 - 382 Structural Synthesis 428( 518 Mecha~ .,f Composite Materials Supersonic Transport 38, 49 Sutton, W. H. 4 Swedlow, J. L. 345 Symmetric Laminate 206 - 214 Angle - Ply 212 - 213, 233, 291 - 295, 306 - 307 Bending of 290 - 295 Buckling of 303 - 307 Cross - Ply 210 - 211, 225, 354 Regular 210 - 212 Stiffnesses 206 - 214 Vibration 315 - 318 With Anisotropic Layers 213 - 214 With Generally Orthotropic Layers 211 - 213 With Isotropic Layers 207 - 209 With Specially Orthotropic Layers 209 - 211, 290 - 291 - Ttailoring of Composite Materials 12, 18, 378 Talreja, R. 335 Tape Laying 19 - 20 Taylor Series 480 - 481 Taylor, R. L. 361 Technical Constants 63 See Also Engineering Constants Temperature Effects 242 - 260, 360 Tennyson, R. C. 118 Tensors 467, 472 - 477 Cartesian 472 Contracted Notation for 475 - 476 Direction Cosines for 473 Dummy Index 473 Index Notation 472 Matrix Form of 476 - 477 Order of 472, 474 Range Convention for 473 Scalar 474 Summation Convention for 473 Transformation of 472 - 477 Vector 474 Tetelman, a. S. 345 Thermal Conductivity 2 Thermal Expansion 242, 390 Thermal Stresses 242 - 260, 356 Coefficient of Thermal Expansion 242 Equivalent Mechanical Loads 244 Free Thermal Strain 242 Thermal Coupling 252 - 253, 258 Thermal Forces 243, 356 Thermal Moments 244, 356 Thermoplastic - Matrix Materials 5, 25 - 26 Thermoset - Matrix Materials 5, 23 Thomas, R. L. 152 Tirnoshenko, S. P. 174 - 175, 283, 289, 301,506 Torsion - Tube Test 99 Total Potential Energy 357 Trade Studies 388 Trade - Off 375, 390, 463, 465 Transformation of Stiffnesses 77, 85 Transformation of Strains 74 Transformation of Stresses 74 Transformed Reduced Stiffnesses 77, 85, 97, 191 Transverse Load 289 - 290, 296, 353 - 354 Transverse Shearing Effects 345 - 355, 460 - 461 Transverse Shearing Stresses 454, 505 Transverse Stiffness 91, 95, 101, 129 - 131, 148 Transverse Strength 88, 91, 95, 101 Transversely Isotropic Material 59 Plane Stress State 70 Strain - Stress Relations 61 Stress - Strain Relations 59 Triclinic Material 58 See Also Anisotropy Trifurcation 358 Tsai - Hill Failure Criterion Tsai - Wu Tensor Failure Criterion Tsai - Uunderdesign 383 Uniaxial Tension Test 93 - 98 Unidirectionally Reinforced Lamina 15, 27 - 28, 55, 70, 73, 108 See Also Orthotropic Lamina Fundamental Strengths of 88 - 102 Invariant Properties of 85 - 87 Macromechanical Behavior 55 - 119 Micromechanical Behavior 121 - 185 Representative Volume Element 124 Strength of 88 - 102, 163 - 185 Compressive 171 - 185 Tensile 164 - 171 Unsymmetric Laminate 206,214, 218 - 219, 323 - 327, 356 - 359, 362 Cross - Ply 356 - 359 Postcuring Shapes 356 - 359 - Vvan Cleave, R. R. 47 Van Hamersveld, J. 47 Variations in Displacements 506 Vasiliev, V. V. 277 Vibration 317, 381 - 382, 427 Frequencies 316 - 317, 319'.323, 327, 360 - 361 Mode Shapes 316 - 317 Vibration of Laminated Plates 277 - 279, 288, 315 - 322 Antisymmetric Angle - Ply Laminates 320 - 322 Antisymmetric Cross - Ply Laminates 318 - 320 Boundary Conditions 288 Governing Equations 288 Solution Techniques 288 - 289 Specially Orthotropic Laminates 315 - 317 Symmetric Angle - Ply Laminates 317 - 318 Unsymmetric Cross - Ply Laminates 327 Vinson, J. R. 245 - 246, 277 Viscoelastic Behavior 17, 362 Volume Fraction 123 Von Mises, R. 104 Vought a - 7 Speedbrake 40 - 41 Vought S - 3a Spoiler 42 - 43 - Wwaddoups, M. E. 99, 306, 345, 435 Wang, a. S. D. 348 Wang,j. T.s. 289 Wave Propagation 362 Weak Design Drivers 378 Weibull Distribution 169 Weight 2, 36 - 37, 424 Index 519 Weight - Sensitive Structures 386, 390 Wendt, F. W. 364, 466 Whiskers 15 Definition of 4 Properties of 4 Whitney, J.m. Wide Optimum Design 378 Wilkins, D. J. 335 Woinowsky - Krieger, S. 283, 289 Woven Lamina 15, 125 Wu, E. M. 105, 114 - 117, 339 - 340, 343 - 344 - Vyang, P. C. 355 Young's Moduli 13, 63, 84, 123, 143 Apparent 138 - 143 Apparent for a Lamina 127 - 131, 143 For Boron - Epoxy 69 Restrictions on 68 Yurenka, S. 363 - Zzhang, G. 183
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanics of Composite Materials رابط مباشر لتنزيل كتاب Mechanics of Composite Materials
|
|