Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Handbook of Mechanics of Materials الإثنين 24 أغسطس 2020, 1:07 am | |
|
أخوانى فى الله أحضرت لكم كتاب Handbook of Mechanics of Materials Chun-Hway Hsueh Editor-in-Chief Siegfried Schmauder , Chuin-Shan Chen , Krishan K. Chawla , Nikhilesh Chawla , Weiqiu Chen , Yutaka Kagawa Editors
و المحتوى كما يلي :
Contents Volume 1 Part I Nanomechanics . 1 1 Dislocation Nucleation Mediated Plasticity of FCC Nanowires . 3 Seunghwa Ryu, Jaemin Kim, and Sangryun Lee 2 Indentation Behavior of Metallic Glass Via Molecular Dynamics Simulation . 19 Chun-Yi Wu and Yun-Che Wang 3 Surface/Interface Stress and Thin Film Stress 33 Chun-Wei Pao 4 Characterizing Mechanical Properties of Polymeric Material: A Bottom-Up Approach . 57 Lik-ho Tam and Denvid Lau 5 Fracture Nanomechanics 93 Yabin Yan, Takashi Sumigawa, Licheng Guo, and Takayuki Kitamura 6 In Situ Transmission Electron Microscopy Investigation of Dislocation Interactions . 131 Josh Kacher, Ben P. Eftink, and Ian M. Robertson 7 Multiscale Modeling of Radiation Hardening . 167 Ghiath Monnet and Ludovic Vincent 8 Atomistic Simulations of Metal–Al2O3 Interfaces 199 Stephen Hocker, Alexander Bakulin, Hansj?rg Lipp, Siegfried Schmauder, and Svetlana Kulkova 9 Multiscale Simulation of Precipitation in Copper-Alloyed Pipeline Steels and in Cu-Ni-Si Alloys 241 Dennis Rapp, Seyedsaeid Sajadi, David Molnar, Peter Binkele, Ulrich Weber, Stephen Hocker, Alejandro Mora, Joerg Seeger, and Siegfried Schmauder vii10 Atomistic Simulations of Hydrogen Effects on Lattice Defects in Alpha Iron 283 Shinya Taketomi and Ryosuke Matsumoto 11 Molecular Dynamics Simulations of Nanopolycrystals 301 Christian Brandl 12 Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method 331 Sébastien Groh and Mohammad K. Nahhas 13 Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials . 357 Douglas E. Spearot, Rémi Dingreville, and Christopher J. O’Brien 14 Modeling and Simulation of Bio-inspired Nanoarmors . 391 Stefano Signetti and Nicola M. Pugno 15 Thermal Vibration of Carbon Nanostructures 421 Lifeng Wang, Haiyan Hu, and Rumeng Liu 16 Mechanics of Carbon Nanotubes and Their Composites 483 Jian Wu, Chenxi Zhang, Jizhou Song, and Keh-Chih Hwang 17 Flexoelectric Effect at the Nanoscale . 549 Lele L. Ma, Weijin J. Chen, and Yue Zheng 18 Mechanical Properties of Nanostructured Metals: Molecular Dynamics Studies 591 Haofei Zhou and Shaoxing Qu 19 Processes in Nano-Length-Scale Copper Crystal Under Dynamic Loads: A Molecular Dynamics Study . 615 I. F. Golovnev and E. I. Golovneva 20 Understanding Fracture and Fatigue at the Chemical Bond Scale: Potential of Raman Spectroscopy . 655 Philippe Colomban 21 Atomistic Modeling of Radiation Damage in Metallic Alloys . 673 Charlotte S. Becquart, Andrée De Backer, and Christophe Domain 22 Monte Carlo Simulations of Precipitation Under Irradiation 703 Charlotte S. Becquart and Frédéric Soisson 23 Mechanics of Auxetic Materials . 733 Hyeonho Cho, Dongsik Seo, and Do-Nyun Kim 24 Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation . 759 Chi-Hua Yu, Kuan-Po Lin, and Chuin-Shan Chen viii Contents25 Continuum Theory for Deformable Interfaces/Surfaces with Multi-field Coupling 795 B. Wu and W. Q. Chen Volume 2 Part II Micromechanics . 823 26 Interaction Between Stress and Diffusion in Lithium-Ion Batteries: Analysis of Diffusion-Induced Buckling of Nanowires 825 F. Q. Yang, Yan Li, B. L. Zheng, and K. Zhang 27 Dynamic Compressive Mechanical Behavior of Magnesium-Based Materials: Magnesium Single Crystal, Polycrystalline Magnesium, and Magnesium Alloy . 845 Qizhen Li 28 Micropillar Mechanics of Sn-Based Intermetallic Compounds . 873 J. J. Yu, J. Y. Wu, L. J. Yu, and C. R. Kao 29 Micro-mechanics in Electrochemical Systems 901 Giovanna Bucci and W. Craig Carter 30 Fiber Reinforced Ceramic Matrix Composites: A Probabilistic Micromechanics-Based Approach . 955 Jacques Lamon 31 Micromechanics of Polymeric Materials in Aggressive Environments . 987 Xiaohong Chen 32 Crack Paths in Graded and Layered Structures 1013 Ivar Reimanis 33 Micromechanics Modeling of Creep Fracture of High-Temperature Ceramics 1035 Chi-Hua Yu, Chang-Wei Huang, Chuin-Shan Chen, and Chun-Hway Hsueh 34 Modeling of Multilayered Disc Subjected to Biaxial Flexure Tests . 1093 Chun-Hway Hsueh 35 Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue . 1127 Behnam Anbarlooie, Javad Kadkhodapour, Hossein Hosseini Toudeshky, and Siegfried Schmauder Contents ix36 Defect Accumulation in Nanoporous Wear-Resistant Coatings Under Collective Recrystallization: Simulation by Hybrid Cellular Automaton Method 1157 Dmitry D. Moiseenko, Pavel V. Maksimov, Sergey V. Panin, Dmitriy S. Babich, and Victor E. Panin 37 Multiscale Fatigue Crack Growth Modeling for Welded Stiffened Panels 1191 ?. Bo?i?, Siegfried Schmauder, M. Mlikota, and M. Hummel 38 Dislocation Density-Based Modeling of Crystal Plasticity Finite Element Analysis . 1213 Tetsuya Ohashi 39 Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes . 1239 Wei Zhang, Yanfei Gao, and Tai-Gang Nieh 40 Multiscale Translation-Rotation Plastic Flow in Polycrystals 1255 Victor E. Panin, Valerii E. Egorushkin, Tamara F. Elsukova, Natalya S. Surikova, Yurii I. Pochivalov, and Alexey V. Panin 41 Micromechanics of Hierarchical Materials: Modeling and Perspectives . 1293 Leon Mishnaevsky Jr. 42 Modelling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches . 1311 Sergey G. Psakhie, Alexey Yu. Smolin, Evgeny V. Shilko, and Andrey V. Dimaki 43 Spectral Solvers for Crystal Plasticity and Multi-physics Simulations . 1347 Pratheek Shanthraj, Martin Diehl, Philip Eisenlohr, Franz Roters, and Dierk Raabe 44 Interface Delamination Analysis of Dissimilar Materials: Application to Thermal Barrier Coatings 1373 Yutaka Kagawa, Makoto Tanaka, and Makoto Hasegawa Volume 3 Part III Macromechanics 1413 45 Smoothed Particle Hydrodynamics for Ductile Solid Continua . 1415 Peter Eberhard and Fabian Spreng x Contents46 Simulation of Crack Propagation Under Mixed-Mode Loading 1465 Martin B?ker, Stefanie Reese, and Vadim V. Silberschmidt 47 Relaxation Element Method in Mechanics of Deformable Solid . 1503 Ye. Ye. Deryugin, G. V. Lasko, and Siegfried Schmauder 48 Damping Characteristics of Shape Memory Alloys on Their Inherent and Intrinsic Internal Friction . 1565 Shih-Hang Chang and Shyi-Kaan Wu 49 Application of Homogenization of Material Properties . 1595 Ming Dong and Siegfried Schmauder 50 Fatigue Behavior of 9–12% Cr Ferritic-Martensitic Steel . 1629 Zhen Zhang, Zhengfei Hu, and Siegfried Schmauder 51 Coupling of Discrete and Continuum Approaches in Modeling the Behavior of Materials 1675 Alexey Yu. Smolin, Igor Yu. Smolin, Evgeny V. Shilko, Yuri P. Stefanov, and Sergey G. Psakhie 52 Numerical Simulation of Material Separation Using Cohesive Zone Models 1715 Ingo Scheider 53 Current Applications of Finite Element Methods in Dentistry 1757 Noriyuki Wakabayashi, Natsuko Murakami, and Atsushi Takaichi 54 Elastic-Plastic and Quasi-Brittle Fracture . 1785 Xiaozhi Hu and Li Liang 55 Coupling Models of New Material Synthesis in Modern Technologies 1817 Anna Knyazeva, Olga Kryukova, Svetlana Sorokova, and Sergey Shanin 56 Simulation of Fracture Behavior of Weldments . 1859 Haoyun Tu, Siegfried Schmauder, and Yan Li Part IV Measurement and Applications . 1877 57 Very High Cycle Fatigue . 1879 Martina Zimmermann 58 High Temperature Mechanical Testing of Metals 1917 Birgit Skrotzki, Jürgen Olbricht, and Hans-Joachim Kühn Contents xi59 Microelectromechanical Systems (MEMS)-Based Testing of Materials . 1955 Jagannathan Rajagopalan 60 Nanoindentation for Testing Material Properties 1981 Yu-Lin Shen 61 3D/4D X-Ray Microtomography: Probing the Mechanical Behavior of Materials . 2013 Sudhanshu S. Singh and Nikhilesh Chawla 62 Mechanical Testing of Single Fibers 2035 Krishan K. Chawla 63 Stress Measurement in Thin Films Using Wafer Curvature: Principles and Applications 2051 Eric Chason 64 Testing of Foams . 2083 Nikhil Gupta, Steven Eric Zeltmann, Dung D. Luong, and Mrityunjay Doddamani 65 Crack-Dislocation Interactions Ahead of a Crack Tip 2123 R. Goswami and C. S. Pande 66 In-Situ Nanomechanical Testing in Electron Microscopes . 2143 Shou-Yi Chang 67 Deformation Measurement for Multiscale and Multifield Problems Using the Digital Image Correlation Method . 2189 Chien-Ching Ma and Ching-Yuan Chang 68 High Temperature Nanomechanical Testing 2219 Miguel A. Moncl?s and Jon M. Molina-Aldareguia 69 The Sliding Wear Response of High-Performance Cermets 2249 Kevin P. Plucknett, C. Jin, C. C. Onuoha, T. L. Stewart, and Z. Memarrashidi 70 Electromechanical Coupling of Botanic Cells: Theory and Applications . 2291 C. C. Chen and W. P. Shih 71 Additive Manufacturing of Multidirectional Preforms and Composites: Microstructural Design, Fabrication, and Characterization . 2353 Zhenzhen Quan and Tsu-Wei Chou Index Index A ab initio calculations, 202, 217, 230, 232, 233, 236 Abrasive wear, 2251–2253 Absorption contrast imaging, 2018 Accelerating methods, 725 Acid pretreatment, 2318–2319 Acrylonitrile-butadiene-styrene (ABS) filament, 2360 3D orthogonal preforms, 2374–2376 Activation energy, 176–178, 180, 182 of unpinning from local obstacles, 174 Actuators artificial-muscle, 2294, 2298, 2304 dielectric elastomer, 2296–2301 driving units, 2298 pneumatic, 2294, 2298 types, 2296–2299 Adaptive mesh refinement, 1492 Adatom insertion mechanism, 2065 Additive manufacturing (AM) co-extrusion process for, 2365 of multidirectional preforms for composites, 2397–2400 of reinforced composites, 2360–2367 techniques, 2359 unique characteristics of, 2356–2363 Additive technologies, 1835, 1847 Adhesive wear, 2252, 2278 Adsorption-induced dislocation emission (AIDE), 361 Ag/Al2O3 interface, 228 Al/Al2O3 interfaces, 232, 233 Alignment of the load train, 1939 All-solid state batteries, 905 mechanical degradation of, 936–939 All-solid state Li-ion batteries, mechanical reliability of, 905 Alpha-titanium alloy, 1230 c-axis, 1230 TD-split texture, 1231 T-texture, 1231 Aluminum (Al), 2006 clusters formation, 28 Ambipolar diffusion, 919–924 Amorphous films, Young’s modulus of, 24 Anharmonicity, chemical bond, 656 Anisotropy in single-crystalline Cu6Sn5, 888–889 of slip deformation, 1234 Antiferrodistortive (AFD) displacement, 558 Applied strain rate, effects of, 1072–1075 Archard equation, 2259 Artificial muscle(s), 2293 actuators, 2298, 2304 Artificial neural network (ANN), 724 Artificial stress, 1435–1437 Artificial viscosity, 1423 ASTM formulas, 1096–1097 ASTM standard testing, 2091, 2092 Atmosphere, 1952 Atomic mobility, 52 Atomic-scale finite element method, 484 Atomic structures, of jogged dislocation, 596 Atomistic kinetic Monte Carlo (AKMC), 261, 720–722 algorithms, 707–708 model, 719 for radiation damage, 714–715 simulations, 705, 706, 709, 712 of precipitation without irradiation, 712–713 Atomistic methods, 1468, 1495 to model displacement cascades, 676–681 Atomistic modelling of radiation damage, 675–696 Springer Nature Singapore Pte Ltd. 2019 C.-H. Hsueh et al. (eds.), Handbook of Mechanics of Materials, https://doi.org/10.1007/978-981-10-6884-3 2407Autonomous basin climbing (ABC), 709 Auxetic materials, 735–748 deformation mechanisms of, 735 expected properties of, 748–752 potential applications, 753–755 Average spacing of dispersed particles, 1223 See also Dislocation accumulation Axis-aligned minimum bounding box, 1444 AZ31 magnesium alloy dynamic stress-strain curves of, 856–857 maximum stress and fracture strain of, 857–860 theoretical stress-strain relations of, 861 B Back-end-of-line (BEOL) process, 877 Bailey–Hirsch model, see Critical resolved shear stress (CRSS) Ballistic mixing vs. precipitation, 715–717 Barb pullout test, 1383–1388 Barb test, 1381–1383 analysis, 1388 phase angle of, 1400 stress changes, 1393 Basquin model, 1653 Battery management systems (BMS), 2204 Bayesian model, 972–973 BCS model, 2124–2126 Lin and Thomson model, 2128 Majumdar and Burns analysis, 2126–2128 Pande, Masamura and Chou-Mode-I, 2128–2133 Pande, Masamura and Chou-Mode-III, 2133 Beach marks, 1949 Beam model, 431 Beam theory assesment, 1385 ?-distribution, 1798 Bias-induced material anisotropy, 802 Biaxial flexure tests, stress analyses for, 1094 Bifurcation, 510, 513 Binary collision approximation (BCA), 676–677, 679, 681 Binder-extrusion, 2254 Binder jetting process, 2367 Bio-based biodegradable composites, 1300 Biomimicking principles, 1294 Blanket thin films, 2163 Bonded/unbonded interface, 1770–1772 Bone, 1496 resorption, 1774 Born rule, 485 Boundary conditions, 1359–1360 Boundary element method, 1468 Bounding box, 1443 Bounding sphere, 1443 Bravais multi-lattice, 488 Bremsstrahlung radiation, 2017 Bridging rules, 989 Brittle failure, probabilistic statistical approaches to, 957–959 Broken-bond models, 710 Brownian ratchet, 422 Bulk modulus, 69, 70 Bundle model, 975–976 Burgers vector, 319, 596, 2135 See also Dislocation C CAD software, 1778 CalculiX software, 1492 Cantilever-based actuator, 2297 Cantilever euler beam, stochastic vibration of, 424–426 Capacitive tactile sensors, 2300–2306 Carbohydrate determination process, 2324 Carbon nanofiber (CNF), 2365 Carbon nanostructure, thermal vibration of, 423 Carbon nanotube (CNT), 423 continuum models for, 484 finite-deformation Shell theory for, 495–502 mechanics of, 484–514 membrane stresses and moments in, 499–502 pressure of, 505–507 tension of, 504–505 thermal vibration of, 424–431, 433 torsion of, 507–508 Carbon nanotube (CNT), instability in compression, 510–511 external pressure, 512–513 internal pressure, 511–512 in tension, 509–510 in torsion, 513–514 Carbon nanotubes-reinforced composites mechanics of, 514–544 stress-strain curve of, 540–544 Cardboard frame technique, 2038 Cauchy–Born rule, 488 Cauchy membrane stress tensor, 500 Cauchy momentum equation, 1422 Cavity growth, 1043 Cavity nucleation, 1043 2408 IndexCavity nucleation rate, effects of, 1067–1072 CdS nanospheres, 2167 Cellular automata approach, 1161–1163 Cellular materials, 2084, 2092 Center cracked tension (CCT), 1948 Centrosymmetric lattice, 551 Ceramic armors, 405 Ceramic-ceramic contiguity, 2262 Ceramic coating systems, 1379 Ceramic materials, toughness of, 1037 Cermets, 2250 damage accumulation during wear, 2276–2279 fracture resistance, 2259 fracture toughness, 2256 frictional response, 2268–2271 hardness, 2254–2257 microstructural parameters, 2261–2266 Palmqvist-type cracking behaviour, 2258 plastic deformation, 2260 quasi-static Hertzian contact stress, 2267–2268 specific wear rate, 2271–2276 sub-surface damage, 2279–2284 tribo-corrosion degradation, 2285–2286 wear mechanism, 2284–2285 Chain-of-segment model, 969–972 Charge equilibrium (QEq), 61 Charge neutrality, 919 Chemical mechanical polishing (CMP), 876 Chemical reactor, 1819 Chromium carbide, 1841 Circular single-layered graphene sheet (CSLGS), thermal vibration of, 472–475 Clamping system, 1921 cold grips, 1921 collet grips, 1921 hot grips, 1921 Classical MD (CMD), 433 Clausius-Duhem inequality, 903, 908 Closed-cell foams, 2087 Closed-loop control system, 1892 CMOS-MEMS tactile sensor, 2303 Coalescence mechanism, 2065 Coarse-grained (CG) model, 84, 85 Coarse-structured composites continuum mechanics, 1799–1801 discrete crack growth, 1796–1799 Coating synthesis, 1847 Co-extrusion process, for additive manufacturing, 2365 Coffin–Mason model, 1653 Coherent twin boundaries, 155 Cohesion model, 678–680, 708–712 Cohesive element, 1048–1049 and surfaces, 1486 Cohesive fracture simulation, 918 Cohesive law for infinitely long multi-wall carbon nanotube, 526–535 nonlinear interface, 538–540 for SWCNT, 516–523 for two finite multi-wall carbon nanotube, 535–538 Cohesive methods, 1485, 1497 Cohesive model(s), 1469, 1480, 1483, 1484, 1488, 1490, 1493, 1495, 1497 failure, 1493 Cohesive zone constitutive theory for fracture, 918–919 Cohesive zone model (CZM), 104–106, 515, 919, 1865–1870 constitutive laws, 1725–1729 cyclic loading, 1745–1749 damage evolution, 1728, 1739, 1746 finite element method, 1718 hydrogen dependence, 1745 interface plasticity theory, 1736–1740 Kelvin–Voigt type model, 1741 mechanical preliminaries, 1719, 1721 non-monotonous loading, 1725 parameters, 1721 shapes, 1727 strip-yield model, 1717 temperature dependence, 1743–1744 time dependence, 1740 traction-separation law, 1722–1723, 1729, 1749–1751 triaxiality dependence, 1745 Cohesive zone volume elements (CZVEs), 379 Cold work, 1433 Coleman-Noll formalism, 904 Coleman-Noll procedure, 912 Common neighbor analysis (CNA) method, 308, 767 Compact tension (CT), 1948 Compliance method, 1949 Composite(s), 1495, 2253, 2354 additive manufacturing of reinforced, 2360–2367 additive manufacturing of multidirectional preforms for, 2397–2400 electrode, 936 multidirectional preforms for, 2355–2356, 2363 Index 2409Composite(s) (cont.) 3D braid preforms and, 2392–2393, 2396–2399 3D orthogonal preforms and, 2386–2391 Composite foams reinforced open/closed-cell foams, 2087–2088 syntactic foams, 2088–2089 Compression, micropillar, 880–881, 884–885 Compression testing, 2092–2093 high strain rate compression testing, 2095–2099 quasi-static compression, 2093–2095 Compressive stress generation mechanism, 49 Computational domain, 1703 Computational framework, 1050–1051 Computational solid mechanics, 1314–1316, 1319, 1333 Computer based modeling, 1992 Computer tomography, 1495 Concrete, 1497–1498 Confined layer slip (CLS) model, 593, 598 Conjugate heat exchange, 1847 Consistent valence force field (CVFF), 61, 62, 71, 74 Constitutive equation, 910–919, 1426–1428 Constitutive models, for dynamic/high strain rate behaviors of materials, 850–855 Constructing dislocation loop, 768 Continuous polycrystalline film growth adatom insertion, 49–52 molecular dynamics simulations, 46–47 morphology, 47–49 thin film stress, 49 Continuity equation, 1421–1422, 1824 Continuum mechanics, 1160, 1421 Continuum methods, 1468 Continuum stress, with band structure elliptical shape, plastic deformation, 1523–1528 field of stresses, 1528–1531 LPD, 1520–1523 qualitative and quantitative differencies, 1520 Continuum theory, 1506 Conventional manufacturing technology, 2355–2356 Conventional textile fabrication technique, 2356 Convergence criteria, 1360, 1362 Cooperative deformation, 323–324 Copper rich precipitates (CRPs), 714 Corner-crack (CC), 1948 Corrosion, 2018, 2021, 2027 Coupled multidisciplinary approach energy balance equation, 991 entropy production inequality, 992 mass balance equations, 990 nonlinear chemo-thermo-viscoelasticity, 996–998 nonlinear hygro-thermo-viscoelasticity, 992–996 thermodynamic potentials, 992 Coupling models, materials synthesis coating composition formation, 1835–1847 electron-beam surface treatment, 1826–1835 synthesis on substrate, 1847–1855 Courant–Friedrichs–Lewy condition, 1446 Courant number, 1446 Crack branching, 1488 deflection angle, 1020, 1030 detection, 1466 displacement field, 1472, 1473, 1476, 1478 formation and propagation, 1468 growth-rate curve, 1486, 1487 kink, 1016 modes, 1467, 1472, 1477, 1479, 1487 stress field, 1468, 1472, 1473, 1476, 1478, 1480, 1492 Crack model ?-parameteris, 1560 profiles ?y, 1561 Crack modelling techniques, 1496 Crack opening displacement (COD), 1872 Crack propagation, 1467, 1468, 1470, 1476, 1489, 1490, 1497 cohesive models, 1480, 1483, 1488, 1490, 1493, 1495, 1497 cohesive stress, 1870 cohesive zone model, 1873 C(T)-BM and C(T)-HAZ, 1872 C(T) specimens, 1871 ductile fracture behavior, 1872 dynamic, 1488, 1490 element removal, 1469, 1490, 1492, 1495 experimental and numerical force vs. cross section, 1865, 1866 finite element mesh, 1867 GTN parameter, 1868 implementation, 1469 inhomogeneous welded joints, 1872 initial crack position, 1872 material properties, 1874 mesh and boundary conditions, 1869 in nanotwinned metals, 600 node release, 1469, 1490, 1491 2410 Indexremeshing, 1469, 1474, 1485, 1490, 1491, 1495, 1496 S355 base material, 1868 trapezoidal TSL, 1874 XFEM, 1493 Crack propagation analysis, 1466 during bone fracture, 1496 complex materials, 1494 composite materials, 1495, 1496 in concrete structures, 1497, 1498 criteria, 1480 in finite element simulation, 1469 implementation, 1489 in microstructural simulations, 1495 stress and strain fields, 1474 Crack propagation criteria, 1472, 1476, 1479, 1480, 1490, 1492 Crack propagation criterion, 1468 Crack propagation in fatigue loading, 1486 Crack propagation period, 1192 Crack representation, 1476 mesh conforming, 1469, 1490 XFEM, 1470, 1493 Crack tip dislocations BCS model (see BCS model) behavior, 2124 dislocation free zone (DFZ), 2127 distribution, 2135 symmetric dislocation arrays, 2129 TEM image, 2134, 2135, 2139 TEM studies, 2133–2137 Crack tip displacements, 1474, 1475 Crack tip opening angle (CTOA), 1482 Crack tip opening displacement (CTOD), 1482 Crack-tip plastic zone, 1791 Crack velocity, 1487, 1489 Creep, 1257, 1275, 1276, 1478, 1479, 1779, 1930–1936 rate, 1933 rupture, 1933–1935 strain, 1933 testing, 2240–2242 Creep fracture, 1037 benchmark data, 1064 grain boundary, 1062 micromechanics mechanism study, 1063 numerical examination, 1065–1068 Critical resolved shear stress (CRSS), 1193, 1226 interaction matrix between slip systems, 1227 modified Bailey–Hirsch model, 1227 reactions of dislocations, 1227 Cross-size influence, nanostructures, 642–649 CRSS, see Critical resolved shear stress (CRSS) Crystal lattice curvature (CLC), 1257, 1260, 1262, 1267, 1270, 1271, 1273, 1274 Crystal plasticity, 323 Crystal structure evolution, 624–628 CT-based model, 1777–1779 Ct-integral, 1478 Cu-Al-Ni, 1585–1587 Cu/Al2O3 interface, 202 Cubic boron nitride, 2223 Curtin’s model, 978–979 Curvature measurements, 2079 Cutting, 2253 Cu-Zr-Al metallic glass, 20, 21, 28 thin film, 26, 30 Cu-Zr-Al models, 24 Cyclic deformation behavior, 1938 Cyclic hardening, 1941 Cyclic loading, untreated Ti samples, 1265 Cyclic softening, 1941 annihilation process, 1637 constant life curves, 1643 cyclic stress-strain relationship, 1649 dislocation density, 1639 DSA, 1639 Goodman and Gerber model, 1643 mean stress, 1641, 1642 microcrack nucleation, 1641 monotonic stress-strain curve, 1640 strain amplitude, 1640 strain-controlled fatigue test, 1641 Cylindrical coordinate system, 1467 D Damage, 1129, 1133 and high cycle fatigue (HCF), 1148 micro, 1140–1144 Damage-mechanics, 1357–1358 polycrystalline fracture, 1365–1368 Damage mechanisms, 1885–1890 Damage models, 1468, 1489, 1493 See also Cohesive models Damage monitoring, 1902 Damage occurs, 1485 Damping parameter, 2105, 2110 Debonding, 1771 Deep reactive ion etch (DRIE), 875 Defect-driven deformation, 2174 Defect strength, 171, 172, 177 Index 2411Deformation, 602 in dual-phase steels, 1129 of elastic nanowire, 832 indenting, 2149–2151 in metals, 1130 micro, 1130–1135 microstructural boundaries, 2171–2177 in nanotwinned metals, 602 plastic, 1143 plastic deformation of bulk materials and blanket thin films, 2162–2165 of single wall carbon nanotube, 498–499 Deformation mechanism, 735, 1245 of auxetic materials, 735–748 map, 1241, 1246, 1251, 1252 Deformation processes, 69 Dejonghe’s model, 1571 Delamination, 1495 Delamination toughness, 1377 mode II, 1379 De-lithiation, 826 Density functional theory (DFT), 286, 343, 398–399, 709 Density functional tight binding (DFTB), 399 Dental implants, 1772 Deposition flux, 35 Detwinning, twist-induced, 606 Deviatoric stress, 1426 Diamond, 2223 Dielectric elastomer actuator, 2295–2301 bending of, 2307 contraction of, 2307 Diffusion ambipolar, 919–924 mechanically driven, 932–936 model, 708–712 potential, 948–949 Diffusion problem, time discretization of, 946–947 Diffusion-reaction equations, 990 Digital image correlation (DIC), 2190 battery deformation problem, 2204–2207 components of, 2191 deformation problem in micro-scale, 2207–2209, 2212 dynamic response, 2191–2193 large deformation problem, 2193–2197 setup of, 2190 stereo, 2209–2217 technique, 1921 thermal deformation problem, 2197–2202 uses, 2190 Diglycidyl ether of bisphenol A (DGEBA), 62, 81 Dirac delta function, 1418, 1827 Direct ink writing (DIW), 2363 Direct resistance heating, 1922 Discrete-continuum approaches, 1314, 1316, 1319 application, 1697 boundary nodes, 1691 calculation algorithm, 1693 continuum region motion, 1691 finite-difference method, 1679–1681 interpretation, 1692 ??? region motion, 1693 testing, 1694–1697 Discrete crack models, 1497 Discrete dislocation dynamics, 1495 simulations, 294, 1216 Discrete form equations in, 948–949 incremental boundary value problem in, 942–949 Dislocation, 1214 configurations, 2138, 2140 creep, 1244 density of dislocations, 1214 development, 1192, 1195 dipoles, 1198 dislocation loops, 1215 dislocation segments, 1215 edge dislocations, 1224 loops, 146–147, 769 mean free path (see Statistically stored dislocations) movement of dislocations, 1214 multiplication, 138–140 nucleation, 1197 plastic shear strain, 1214–1218 propagation, 136–137 screw dislocations, 1224 strengthening, 1637 structures, 594, 595 three-dimensional network, 1215 velocity of, 1242 Dislocation accumulation, 1219 dislocation annihilation, 1221 dislocation mean free path, 1220 dislocation reaction, 1222 due to plastic slip, 1219–1226 effective average spacing of accumulated dislocations, 1222 equilibrium density of SS dislocations, 1230 2412 Indexgeometrically necessary dislocations, 1222, 1223 long-range stress field, 1221 net Burgers vector, 1221 recovery, 1221 velocities of edge and screw dislocations, 1220 weighted sum of dislocation densities, 1223 Dislocation density, 769, 777 by length/volume, 778 by number/surface area, 771, 779 Dislocation density-based numerical models, 1214 Dislocation dynamics (DD), 250–251 particle strengthening, 256–258 Dislocation extraction algorithm (DXA), 767 Dislocation-free zone (DFZ), 2125–2127, 2130, 2134, 2136 Dislocation interactions grain boundary, 150–163 with defect fields, 140–146 with isolated obstacles, 146–150 Dislocation mechanism, twin-size induced transition in, 597 Dislocation mediated mechanisms absorption, 319–321 FCC crystal, 316 lifetime of, 322 nucleation, 316–318 propagation, 319–320 Dislocation nucleation, 133–136 exceptional deformation mechanisms, 14–15 FCC-crystalline metals nanowire deformation, 7 Schmid factors, 8 slip systems, 5 onset of plasticity, 9–12 penta-twinned silver nanowires, 12–14 Dislocation-nucleation-governed softening mechanism, 592 Displacement cascades, 675 atomistic methods to model, 676–681 energetic particle to, 676 on pre-existing defects, 691–692 Displacement correlation method, 1476, 1497 Displacement field, see Crack, displacement field Displacements per atom (dpa), 680 primary damage and, 688–689 Dissipation, 1483, 1488, 1489 Dissipation-rate density, 903 Domain integral method, 1870 Double cantilever beam (DCB) testing geometry, 2261 Dreiding force field, 61, 71 Dual phase steels, 1133 cubic RVEs of, 1140 deformation field in, 1129 martensite and ferrite, 1137 micromechanical modeling of, 1137 uniform and homogenous deformation mode, 1130 Dual-spindle rotating bending machine, 1891 Ductile solid, 1428 Düsseldorf Advanced Materials Simulation Kit (DAMASK), 1349, 1353, 1360, 1368 Duva’s model, 1598, 1610, 1611 Dynamic compression testing, 849 Dynamic crack propagation, 1488, 1490 Dynamic (inertia) effects, crack propagation, 1488, 1489 Dynamic elastic modulus, single fibres, 2041 Dynamic/high strain rate behaviors of materials, 850–855 Dynamic load, 616–653 Dynamic mechanical analysis (DMA), 2104–2105 elastic modulus at various strain rates, 2107–2109 storage and loss moduli, 2105–2106 Dynamic mechanical analyzer, 1568 Dynamic mechanical behavior, of magnesium, 848, 861, 864, 869 Dynamic strain aging (DSA), 1635 Dynamic stress-strain curves, of magnesium single crystal, 856–857 Dynamic tests for magnesium, 862, 863 E EB-PVD TBC system, 1402 Effective boundary conditions, 797, 813, 817 Elastic and Plastic Fracture Mechanics (EPFM) aluminum alloy, 6061, 1788 characteristic crack, 1787, 1790 crack-tip plastic zone, 1790–1793 critical stress intensity factor, 1789 LEFM, 1789 linear curve-fitting, 1794 pre-existing crack, 1793 quasi-brittle fracture models, 1801–1811 safe design diagram, 1790 Index 2413Elastic and Plastic Fracture Mechanics (EPFM) (cont.) safe design stress level, 1787, 1788 SENT, 1795 structural behavior PY, 1793 structural yielding load PY, 1793 Elastic anisotropy, 1231 Elastic compliance tensor, 1229 Elasticity modulus, 1831 Elasticity tensor, 1427 Elastic lattice material, 910–913 Elastic nanowire, deformation of, 832 Elastic-plastic model, 1685–1688 Elastic precursor, 625 Elastic strain, 723–724 Elastic stress relaxation, 1508 Electrochemical actuation, 2293 Electro-chemo-mechanics, 904, 912 Electro-elasticity, 904 Electromagnetic fields, 1925 Electromechanical coupling, 907 Electromechanical equivalent model of capacitive tactile sensor, 2342 Electron back-scattered diffraction (EBSD), 119, 881, 882 Electron-beam physical vapor deposition (EB-PVD), 1375 Electronic artificial skin, 2302 Electronic excitations, radiation damage, 690 Electron microscopes, in-situ nanomechanical testing, see In-situ nanomechanical testing Electron phonon coupling (EPC), 690 Electrostatic forces, 907, 917 Element removal, 1469, 1490, 1495 techniques, 1492–1493 Elevated temperature tensile tests, 1927–1930 Embedded atom method (EAM), 22, 679 Energetic particle, to displacement cascades, 676 Energy absorption, by nanostructure, 620–624 Energy equation, 1423–1425 Energy release rate, 1472, 1473, 1475, 1476, 1481, 1483, 1484, 1488, 1492, 1496 Engineering safety, 1466 Enrichment function, 1470, 1471, 1474, 1475, 1493 Epoxy-based materials, 60 Epoxy molecules dimension, 80 Euler beam model, 435 Eulerian orientation, 1171 Euler time discretization, 1356, 1357 Evans–Polanyi equation, 1820 Event-kinetic Monte Carlo (EKMC), 720–722 simulations, 705, 706 Exceptional deformation mechanisms, 14 Exponential convergence, 1349 Extended finite element method (XFEM), 1470, 1471, 1473–1476, 1489, 1493, 1494, 1496, 1498, 1765 Extensometer, 1921, 2039 gauge length, 1929 laser, 1921 video, 1921 Eyring and Cozman equation, 1821 F Fabrication, 2374 Face-centered cubic (FCC)-crystalline metals, 887 nanowire deformation, 7–9 Schmid factors, 8 slip systems, 5–7 Face centered cubic materials (fcc), 675 Factors, 1487 Fastest Fourier Transform in the West (FFTW), 1358 Fast Fourier transforms (FFT), 458, 1353, 1358 Fatigue, 1486, 1488, 1489, 2137 behavior analyses, 1130 crack growth, 2138 dislocation knitting, 2139 micro, 1146–1151 Fatigue behavior, 667 Al-SiC composite, 2024–2026 Fatigue corrosion, Al 7075 alloys, 2028 Fatigue crack growth, 1658–1664, 2138 laws, 1487 rate, 1193, 1200, 1202, 1206, 1208 Fatigue crack nucleation, 1655–1657 Fatigue crack propagation, 1947–1950 Fatigue failure, in finite element simulation, 1486 Fatigue fracture, of commercially pure titanium, 1258–1260 Fatigue lifetime, 1939 Fatigue loading, 1486, 1487 Fatigue mechanism, of nanoscale components, 121–122 Ferroelectric(s), 552 capacitor, 572 nanocapacitor, 572 nanofilms, imprint behaviors in, 571–573 thin films, polarization in, 573–575 2414 IndexFiber, 657, 658, 660, 667 matrix suspension, 2360 reinforced composites, cracking in continuous, 966–974 Fiber-reinforced polymers, 1495 Fibrous/high-aspect-ratio fillers, 2364 Field emission scanning electron microscope (FE SEM), 2376 Film(s) pair distribution function of, 23 stress generation mechanisms, 35 Finite-deformation shell theory, for carbon nanotube, 495–502 Finite-difference method, 1679–1681 Finite element analysis (FEA), 989 Finite element method (FEM), 251–253, 401–404, 902, 1214, 1468, 1599 analysis, 1389 ansatz functions, 1349 baseline papers, 1760 contact analysis, 1767–1773 CT-based models, 1777–1779 dental and biomaterial problems, 1759 dental research areas, 1761 dentistry, 1760–1764 from 2D to 3D modeling, 1764–1766 h-refinement, 1349 large deformation, 1780 low-order shape functions, 1349 macroscopic damage mechanics, 258 model, 119 nonlinear contact analyses, 1763 nonlinear solution, 1766–1769 percentage, 1761 plasticity, 1779 p-refinement, 1349 PubMed search, 1759 r-refinement, 1349 of stress-strain relations of magnesium, 864–869 stress thresholds, 1774 thermal analysis, 1775–1777 visco-elastic analyses, 1779 Finite element simulation, 1469 Finite polymer matrix, 520–523 Finite strain framework, 1350–1353 constitutive modeling, 1351–1353 current configuration, 1350 reference configuration, 1350, 1351 Flaw strength distributions, 960–961 Flexoelectric coefficients, 552 experimental determination of, 563–569 theoretical calculations of, 561–562 Flexoelectric effect applications of, 584–587 microscopic theory of, 559–561 at nanoscale, 550 novel domain wall properties resulted by, 580 in solids, 551 Flexoelectricity, 551, 552 induced novel phenomena in nanoferroelectrics, 569–583 influence of, 575, 577 thermodynamic model of ferroelectrics with, 553–559 Flexoelectricity-based piezoelectric composite, 551 Flexoelectric response, size effect of, 562–563 Flexoelectric-type piezoelectric composite, 584 Flexural modes, in thermal vibration of SWCNTs, 455–461 Flow rule, 1429–1430 Fluid pressure, 1332 Fluid-saturated media, 1314–1331 Flux coupling, 717–719 Foams, 2117 applications, 2089–2091 ASTM standard testing, 2091 characteristics, 2084 classification, 2085 compression testing, 2092 dynamic mechanical analysis (DMA), 2104–2109 imaging, 2112–2116 impact testing, 2100, 2101 vibration methods, 2110–2112 Focused ion beam (FIB), 96, 880, 882, 1495, 2220, 2232 milling technique, 2159 Formulation/solution strategy, 1352–1358 damage-mechanics, 1357–1358 mechanics, 1354–1355 thermo-mechanics, 1355–1356 Fourier space, 1357 Fractal bone model, 1296 Fracture, 1313, 1314, 1316, 1333, 1334, 1338 cohesive zone constitutive theory for, 918–919 resistance, 2259 Fracture mechanics, 1497 parameters, 1473, 1475–1479 theory, 95 Fracture nanomechanics, crack initiation at interface edge experimental method and apparatus, 96–97 Index 2415Fracture nanomechanics, crack initiation at interface edge (cont.) free edge of interface, 96–100 Fragment dichotomy model, 969–972, 976–977 FRANC3D software, 1476, 1492 Frank–Read mechanism, 1216 Frank–Read source, 1216 optimum size of FR source, 1218 Frank-van der Merwe (FM) growth mode, 34 Free body diagram, 2310 Free boundary condition, 773 Freeform fabrication, 2356–2363 Freeze-drying, 2316–2320 Frenkel pairs (FP), 675 Friction, 1701–1711, 1773 stir welding, 1447–1454 Front-end-of-line (FEOL) processing, 875 Functionally graded materials, 1496, 1497 Function convolution, 1418 Fused deposition modeling (FDM), 2358, 2365 process, 2360 Fusion reactor, 675 G Galactose, 2325 Gauge theory, 1260–1264 Gaussian probability density function, 965 Gauss quadrature, 1494 Generalized particle algorithm (GPA), 1698 Generalized stacking fault energy (GSFE) density, 317 Geometrically necessary dislocation (GND), 761 character of the GNDs, 1226 (see also Dislocation accumulation) density, 761, 779 norm of the GND density, 1226 Geometric nonlinearity, 455 Geometry of pillar, 893–894 Gibbs phenomenon, 1358 Gibbs–Thompson effect, 37 Global ansatz functions, 1349 Glucose, 2326 GND, see Geometrically necessary dislocation Governing equation in large deformed solid, 827 in small deformed solid, 831 Gradients calculation of, 1358–1359 deformation, 1351 inelastic deformation, 1353 inelastic velocity, 1356 plastic deformation, 1352 plastic velocity, 1352 spatial, 1351 velocity, 1351 Grain boundary (GB), 592, 2171 bi-crystal with, 1050 cavitation, 1041 characteristics, 152–153 coherent twin, 155–157 confined microstructure, 161–163 deformation processes, 1240, 1241, 1243, 1246, 1248, 1250, 1251 diffusivity, 1070–1073 heterogeneity, 1039 insertion model, 49, 51 mediated mechanisms, 311–315 model, 378 morphology, 303 propagation limited systems, 158–161 sliding, 1041 temperature effects, 153–154 See also Grain boundary plane Grain boundary plane, 1231 grain boundary triple junction, 1231 quadruple point, 1231 Grain shape, see Dislocation accumulation Grain size, see Hall-Petch effect Graphene, 484, 521, 524, 526 bending rigidity of, 502–504 plate theory for, 487–495 sheet, 484, 485, 489 Graphene oxide (GO) powders, 2364 Green–Lagrange strain, 1352 Griffith criterion, 1472 Gurson model, 1862, 1865 Gurson-Tveergard-Needleman damage model, 1489 Gurson-Tvergaard-Needleman (GTN) model, 1862–1863 H Hall–Petch effect, 1556 and breakdown, 1251 See also Grain size Hall–Petch law, 1556 Hall–Petch plot, 1249 Hall–Petch relationship, 1299, 2173 Hall–Petch strengthening mechanism, 592 Halpin–Tsai equations, 1298 Hardening law, 1430–1433 Hardmetals, 2250, 2254, 2272, 2286 Hardness, 761, 2255–2257 2416 Indexfrom atomistic information, 775 comparison, 775, 777, 778 from loading process, 764, 765 from Oliver–Pharr method, 765, 767 from Taylor dislocation theory, 767 Harmonic transition state theory, 708 Heat capacity, 1822 Heat equation, 1425–1426 Heating methods, 1922–1924 Heat transfer, in porous body, 1168–1171 Heat transfer simulation accuracy, 1165–1168 method, 1163–1164 Hemicellulose, 2319–2321 Hertzian contact stresses, 2268 Hertzian cracks, 2281 Hexagonal close packed (HCP) crystal structure, 1230 Hierarchical fiber bundle model (HFBM), 400 Hierarchical lattice spring model (HLSM), 400 High-frequency fatigue testing, 1902–1906 High strain rate, 846–848 behaviors of materials, 850–855 compression testing of magnesium, 866, 867 compressive, 855 fracture strains for, 860 plastic deforamtion during, 867 High temperature nanomechanical testing ceramics, 2231 constant strain rate tests, 2236–2237 creep testing, 2240–2242 future research in, 2242 issues for, 2221–2226 metals and semi-metals, 2229–2231 micropillar compression, 2232–2234 strain rate jump tests, 2238–2240 High-temperature polymer-matrix composites (HTPMC), 996 High temperature tests, 1950 Hoffmann–Nix model, 37 Hollow-cylindrical-joint honeycombs, 410–415 Hookean elasticity, 1352 Hooke’s law, 850 Hot tensile tests, 1927–1930 Hsueh et al.’s rigorous formulas bilayered systems, 1103–1104 conversion, 1103 correlation, 1099–1103 Hsueh et al.’s simplified formula, 1104–1107 Hybrid algorithm, 39 Hydrogen embrittlement (HE), 284, 358 AIDE, 361 atomistic simulations, 362, 363, 365, 370 combination, 362 grain boundary decohesion, 381 dislocation nucleation during crack propagation, 381 influence of hydrogen, 383 HELP, 361 HID and HEDE, 360 hydride formation and cracking, 359 hydrogen effects on lattice defects cohesive energy of grain boundary, 293 cracks and dislocations, 294 dislocation mobility, 293 lattice defect energy, 296 occupancy at trap sites, 290 vacancy, 292, 295 hydrogen trap energy dislocations, 288 elastic strain, 287 free surface, 289 grain boundary, 288 stacking faults, 288 vacancy, 287 industrial applications, 358 mechanisms, 284, 359–362 segregation at grain boundaries, 371 site-energy selection technique, 372 statistical mechanics techniques, 374 steady-state crack propagation, 377 cohesive zone volume elements, 379 grain boundary model, 378 hydrogenated grain boundary creation, 377 Hydrogen-enhanced decohesion (HEDE), 284, 360 Hydrogen-enhanced localized plasticity (HELP), 284, 361 Hydrogen-induced decohesion (HID), 360 Hydrostatic stress, 1426 Hysteresis curve, 1938 I Imaging techniques, 2112 microCT-scan, 2115–2117 ultrasonic imaging, 2113–2114 Impact testing, 2101 drop weight impact, 2102–2104 pendulum impact, 2100–2102 Imprint behaviors, in ferroelectric nanofilms, 571 Incoherent precipitation, 724 Incremental boundary value problem, 942–949 diffusion problem, 945–947 static problem, 942–945 Index 2417Indentation mechanical properties from, 22 process, 774, 782–784 simulation at room temperature, 23–27 Indentation fracture resistance (IFR), 2256–2259 Indentation size effect (ISE), 761, 2230 dislocation density, 786–788 hardness, 786–791 Indenter repulsive potential, 763–764 Induction heater, 1922 Inelastic deformation gradient, 1353 Inelastic velocity gradient, 1353 Inexact Newton-GMRES method, 1361 Infinite polymer matrix, 516–520 Infrared spectroscopy, 657, 663 Inherent and intrinsic internal friction Cu-Al-Ni, 1586–1587 Ni2MnGa, 1581–1582 Ni-Mn-Ti alloys, 1584 Ti50Ni50, 1571–1572 Ti50Ni50-xCux, 1574–1576 Ti50Ni50-xFex, 1578–1580 Initial conditions, 1359 In situ deformation, 141, 142, 163 In situ mechanical testing, in corrosive environments, 2026–2031 In-situ nanomechanical testing, 2153–2157 bending fracture of micro/nano beam, 2175 complementary and functional components of tools, 2159–2162 compression and dislocation of micro/nano pillars, 2169–2171 deformation and fracture of hard biological nanostructures, 2180 electron microscopes, 2182 inaccuracies and limitations, 2183–2184 indentation/compression of nanowires and nanoparticles, 2166–2169 mechanical stress-induced phase transformations, 2177–2178 microstructural boundaries, 2171–2177 plastic deformation of bulk materials and blanket thin films, 2162–2165 sample preparation, 2157–2159 In situ tensile experiment, of single crystalline nanorod, 122–124 Instrumented nanoindentation, 2147–2149 Instrument stability, 2221 Interaction integral method, 1479, 1497 Interactions, 1444–1445 Interatomic forces, 431 Interatomic potentials, 486–487, 709–710 plate theory for graphene based on, 487–495 Interface piezoelectricity, 814, 817, 819 Interface toughness, 1407 Intermetallics (IMCs), 877, 878, 887 plastic deformation in, 887 preparation and orientation determination, 883 Interphase layer model, 797 Inverse compositional Gauss–Newton (IC-GN) method, 2210 Ion-bombardment, damaged layer caused by, 892–893 Ionic species, state functions for transport of multiple, 916–918 Ion implantation, 692 Ion-plasma coating deposition, 1835 Irradiated alloys, 705 Irradiation AKMC simulations of precipitation without, 712–713 effect, 712 Monte–Carlo simulations of precipitation under, 705–727 Irradiation-induced defects, 145–146 IR spectroscopy, 663 Island growth morphology, 41, 42 simulation methods, 39–41 stress–thickness ?h vs. number of adatoms N, 42, 43 surface or interface stresses, 43, 45 wafer curvature experiment, 45 Isothermal treatment, 1568, 1571 Izod testing, 2101, 2102 J Jaumann stress rate, 1427 J-integral, 1473, 1474, 1476, 1478, 1480, 1481, 1488, 1490, 1497 approach, 1808 function, 1478, 1479 Jogged dislocation atomic structures of, 596 in nanotwinned metals, 595–597 Johnson–Cook cumulative-damage fracture model, 1433–1434 Johnson–Cook flow stress model, 1431 Johnson–Cook model, 852, 862 K Kernel function, 1419–1420 renormalization, 1441 Kernel support incompleteness, 1441 2418 IndexKevlar aramid fiber, 2040 Kinetic demixing, 904, 925–932 Kinetic Monte–Carlo (KMC) method, 247–248, 676 obstacle strength, 254–255 simulations, 705 Kinetics of precipitation, 712 Kink angle, 1480, 1481, 1489 L Lab-scale microtomography, 2016–2018 Lagrangian incremental deformation gradient tensor, 800 Lamp furnace, 1922 quartz lamps, 1922 Langevin dynamics, 422 Langevin equation, 440 Larché and Cahn model, 910 Large deformation, 1779 Large-scale atomic/molecular massively parallel simulator (LAMMPS), 61, 772 Laser diffraction technique, 2039 Laser Doppler vibrometer, 118 Laser sintering (LS), 2364 Lattice free and on-the-fly methods, 723–724 Layer-wise fabrication, stair-step effect, 2358 Leapfrog method, 1445 Lennard–Jones EAM (LJ-EAM) potential, 40 Lennard–Jones potential, 1444 Lennard–Jones (LJ) type film, 22 Level-set functions, 1471, 1493 Level set method, 1470 Light-weight structural materials, 846 Li-ion batteries, 902 Lin and Thomson model, 2128 Linear-elastic, 1467 fracture mechanics, 1472, 1473, 1477, 1479, 1481, 1498 regime, 919 Linear elasticity theory, 74 Linear intercept method, 2262 Linear static model, 1770 Linear thermoelasticity, 1425 Linear Voce hardening law, 854 Linked linear list, 1443 Liquidus temperature, 1831 Lithiation, 826, 827 induced buckling of elastic-perfectly plastic nanowire, 838–841 induced buckling of nanowire, 832–838 of Si, 837 Load cases, 1467 Load sharing, and multiscale computation techniques, 1295 Localized plastic deformation (LPD) construction, 1521 form, 1507 Long stress-plateau, 2094 Loop test, single fibres, 2040–2041 Lorentz–Berthelot rules, 21 Loss factor, 2000 Low-angle boundaries (LABs), 1664 Low cycle fatigue (LCF), 1938–1942 Low cycle property cyclic softening, 1637–1643 cyclic stress-strain relationship, 1647 hysteresis loops, 1644–1648 Lüders band initiation geometrical parameters, 1550 Hall–Petch effect, 1556 hyperbolas, 1548, 1549 profiles, 1555 relaxation value, 1548 semiaxis of fictitous ellipses, 1555 ? y-component, 1554 tangent of ellipse, 1546 tripple grain junction, 1555 zones, 1551 Lumped model, 2313, 2314 M Machining tools, productivity and wear resistance of, 1302 Macromechanical behavior, 665 Macropores, 1327 Macroscopic models, 902 Macroscopic strain hardening ratio, see Dislocation accumulation Magnesium (Mg), 846, 855 <001> dislocation, 349–350 dynamic mechanical behavior of, 848, 861, 864, 869 extensive research, 332 high concentration of alloying element, 346–348 low concentration of solute elements, 337 manufacture routes, 332 medical field, 332 semi-empirical potentials, 333–335 solute element and dislocations interaction, 343–346 stacking fault energy surface, 337–343 structural defects, 335–337 ?-surface in B2-structure, 348–349 Index 2419Magnesium single crystal dynamic stress-strain curves of, 856–857 FEM of stress-strain relations of, 864–869 maximum stress and fracture strain of, 857–860 theoretical stress-strain relations of, 861 Majumdar and Burns analysis, 2126–2128 Mandel stress, 1353 Martensite lath boundaries (MLB), 1634 Martensitic transformations Ni2MnGa, 1581–1582 Ni-Mn-Ti alloys, 1583, 1584 Ti50Ni50, 1569–1572 Ti50Ni50-xCux, 1573–1576 Ti50Ni50-xFex, 1577–1580 Mason–Coffin model, 1632 Mass action law, 1820 Mass attenuation coefficients, 2018 Mass concentrations, 1830 Mass density, 1356 Material degradation and damage, 1468 Material derivative, 1421 Material equation of state, 1426 Material properties, 1920 Material velocity field, 1351 MATLAB functions, 2210 Matricity model adjusting matricity, 1619 cluster parameter r, 1623 definition, 1617, 1618 embedded cell model, 1618, 1619 mechanical constants, 1622, 1623 microstructures, 1624, 1625 stress-strain curves, 1621, 1623, 1626 weighting factors, 1620, 1621 yield stress, 1622, 1625, 1626 Matter flux velocity, 1176 Maximum circumferential stress criterion, 1480, 1488 Maximum energy release rate, 1481 Maxwell stress, 2302 effect, 2307 Me/Al2O3 interfaces, 203, 221 Mean field rate theory (MFRT), 676, 693 Mean square displacement (MSD), 691 Mechanical annealing, 2169 Mechanical behavior, 1597, 1598 matricity (see Matricity model) Mechanical energy transfer simulation method, 1171–1175 Mechanical properties, 735, 743, 747, 753 polymeric materials, 58–60 Mechanical testing, 1957, 1961, 1971 Mechanical threshold stress (MTS) model, 853–854 Mechanics, 658, 1354–1355 damage-mechanics, 1357–1358, 1365–1368 Kirsch’s plate, 1363 thermo-mechanics, 1355–1356, 1363–1365 Mechanics of deformed solid (MDS), inverse problems, 1542 Mechanostat theory, 1774 Membrane strain tensor, 499 Membrane stresses and moments, 499–502 equilibrium equations for, 500–502 Mesh-conforming cracks cohesive model failure, 1493 element removal technique, 1492 node release, 1490 remeshing, 1492 representation, 1469, 1470 Mesh-free methods, 404, 1468 Mesio-occlusal-distal (MOD) restorations, 1770 Mesoanalysis, 618, 619 Mesocell, 619, 626 Meso-micro-and nano-scales, 1677 Mesovolume, 629, 630 formation, 619 Metal-Al2O3 interface, 202, 235 Metallic alloys non-localized deformation in, 610–612 radiation damage in, 675–696 Metallic glasses (MGs), 20 Cu-Zr-Al, 20, 28 plastic deformation in, 607 thin films, 25 Metallic materials, 1214 Metal matrix composites (MMCs) axisymmetric cell model, 1613 composite strengthening, 1611, 1612 damage evolution, 2023 definition, 1597 different matrix shapes, 1608 Duva model, 1611 experiment, 1605–1607 fiber and particle arrangement, 1607 fiber shape and clustering, 1597 geometrical shape, 1607 inclusion volume fraction, 1607, 1610 iterative modeling procedure, 1604–1606 low matrix strain-hardening ability, 1613 low particle volume fractions, 1613 mechanical behavior, 1598 model formulation, 1599–1601 2420 IndexOldroyd model, 1611 strengthening model, 1614 stress-strain curves, 1608, 1609 2D embedded cell model, 1603–1604 transverse mechanical behavior, 1597 3D embedded cell model, 1603–1604 unit cell models, 1601–1603 Metal microstructures, 1214 Metal nanostructure, 653 Metal nanowires, 4 Metropolis algorithm, 707 Microbalance, 2334 Microbump(s) formation and joining, 877–878 potential structure material in, 890–892 Micro-cracks, 1497, 1771, 2255 MicroCT-scan, 2090, 2115–2117 Micro-electromechanical systems (MEMS), 60, 760, 1957, 1958, 1961, 1962, 1964, 1965, 1968 Micrographs, 1495 Micromachining process, 2297 Micromechanical approach, 1597 Micromechanical behavior, of single-crystalline Cu6Sn5, 885–887 Micromechanics model for nanocomposites, 538–540 Norton type creep, 1040–1041 rate dependent cohesive zone model, 1041–1044 Micro-mechanics of failure (MMF) theory, 956 Micropillar compression, 880–881, 884–885, 2226, 2228 issues in, 892–895 of single-crystalline Cu6Sn5, 885–889 of single-crystalline Ni3Sn4, 889–892 Micropillar fabrication, 882–884 synthesis of Sn-based intermetallic compound, 882–883 Micropores, 1327 Micro Raman strain measurement, 2045–2047 Micro scale, 1129, 1148, 1151 models, 1496 Microscopic structural voids, 59 Microscopic theory, of flexoelectric effect, 559–561 Microstructural crack nucleation, 1197–1208 Microstructurally small cracks, 1192, 1193, 1198 Micro-structural parameters, 2354 Microstructural simulations of crack propagation, 1495 Microstructure, 1495, 1497, 2015, 2020, 2024 length scale, 1222 temperature effects on, 27–29 Microstructure-based finite element method, 1241, 1248 Mie–Grüneisen EoS, 1426 Mindlin’s analysis, 797 Mises–Schleicher yield criterion, 1321 Mixed-mode cracks, 1467, 1473, 1483, 1484, 1487, 1496 Mixed-mode loading, 1484, 1487 Mixed-mode situation, 1485 Modeling, 2125, 2133 cracks, 1468 Moisture, 58–59, 67, 76–77 Molecular beam epitaxy (MBE), 35 Molecular dynamics (MD), 296, 397, 422, 465, 617, 761, 1468, 1495 deformation mechanism atomic shear strain distribution, 310 dislocation mediated mechanisms, 316–322 grain boundary mediated mechanisms, 311–315 in NC metals, 311 grain boundaries, 302 mechanical behavior, 308–310 methodology atomic structure analysis, 306–307 interatomic potential, 306 nanocrystalline sample construction, 303–304 time and length scale restrictions, 305 models, 21–23, 442 NC metals, mechanical properties, 302 numerical simulation, 618–619 obstacle strength, 254–255 physical model, 617 polycrystalline metals, 302 for quasi-static loading, 763 radiation damage, 678 simulations, 20–22, 59–60, 217, 232, 249–250, 705, 1195–1197 Monte Carlo model, 375 Monte-Carlo simulations dynamical interpretation of, 706–708 of precipitation under irradiation, 705–727 Moore, Gordon E., 874–876 More-than-Moore, 874–876 Mori–Tanaka scheme, 1297 Movable Cellular Automaton (MCA) method, 1315, 1678 elastic-plastic model, 1685–1688 fracture model and criteria, 1688–1690 general statements, 1681–1685 high-rate processes, 1699–1700 Index 2421Multi-axial elemental strength model, 958 Multi-field coupling, 797 Multi-filaments tows, 974 Multilayer coatings, 1836 Multilayered disc ASTM formulas, 1096–1097 biaxial stress, 1096 Hsueh et al.’s rigorous formulas bilayered systems, 1103–1104 conversion, 1103 correlation, 1099–1103 Hsueh et al.’s simplified formula, 1104–1107 Roark’s formulas, 1097–1099 Multiphase and multicomponent materials, 1822–1824 Multi-physics coupling approach, algorithm for, 1361, 1362 Multi-scale modeling, 187 Multi-wall carbon nanotubes (MWCNTs), 515, 533 cohesive law for infinitely long, 526–535 cohesive law for two finite, 535–538 N Nabarro–Herring creep, 1251 Nacre structure, 1304 Nano-beam, vibration amplitude of, 423 Nano-cantilever torsion, 103 Nanocellulose reinforcement, 1301 Nanocomposites, micromechanics model for, 538–540 Nanoindentation, 760, 878–879, 2226 adhesion, 2004, 2005 Al/SiC multilayer thin films, 2006 axisymmetric process, 1988 Berkovich indenter, 1986 circular contact edge, 1983 contact stiffness, 1989 creep parameters, 1997–2000 elastic analysis of loading, 1984 elastic solutions, 1985 fracture toughness, 2003, 2004 hardness and elastic modulus, 1987–1989 heterogeneous materials, 2006–2010 hydrostatic stress, 1996 indentation displacement, 1983 indentation load-displacement response, 1998 indentation strain rate, 1999 indenter material, 2223 load-displacement curve, 1988 nanotwinned metals under, 598 nominal geometric relations and parameters, 1987 numerical modeling, 1992–1996 Poisson’s ratio, 1985 projected contact area, 1990 raw measurements, 1990–1991 residual stresses, 2000–2003 size effect, 763, 770 Sneddon’s analyses, 1984 Sneddon’s solutions, 1984 spherical indentation, 2001 tests, 1986 thermal drift, 2221 thin films, 1991, 1992 time-dependent deformation, 1996 Vickers indentation, 2004 viscoelastic deformation, 2000 Nanoindenter, 878, 880 Nanolayered metallic composites, 593 Nanoscale flexoelectric effect at, 550 single crystalline Si in, 124–126 Nanoscale components cracking criterion simplification, 102–106 creep cracking of interface in, 109–113 fatigue fracture of interface, 113–117 high-cycle fatigue fatigue fracture in, 118–121 fatigue mechanism of, 121–122 resonant vibration, 117–118 interface cracking in crack initiation at interface, 107–108 plastic deformation, 107, 108 specimen design, 106–107 modulation of location for crack initiation, 98–102 modulation of mode mixity for mixed-mode interface cracking, 102–103 Nanoscale ferroelectrics dielectric and mechanical response of, 569–570 impacts on domain patterns of, 575–580 Nanoscale materials, 2145, 2147, 2161 Nanoscale single crystalline materials, fracture of, 122–127 Nanoscale twin boundaries (TBs) strengthening by, 592–593 toughening by, 599–602 Nanostructure, 665 cross-size influence, 642–649 energy absorption by, 620–624 2422 Indexmetal, 653 rotary field in, 616, 632–642 wave process in, 617 Nanostructured metals, mechanical properties of, 593–595 Nanotwinned metals, 593 continuous strengthening in, 597–598 crack propagation in, 600 delocalized deformation in, 602–606 Jogged dislocation in, 595 under nanoindentation, 598–599 threading dislocation in, 593 Nanotwinned nanorods physical origin of torsional detwinning domino in, 604–606 torsion of, 602–604 Nanowires, 1957, 1961, 1963, 1966–1968, 1970, 1971, 1973–1977 lithiation induced buckling of, 832–838 Nature microstructure, 2302 Nb/Al2O3 interfaces, 210 Negative Poisson’s ratio, 735, 755 Neighborhood search, 1443 Nernst-Planck equation, 917 Neutral species, state functions for transport of, 913–916 Newton–Euler motion equations, 1681 Newton–Raphson algorithm, 948 Ni/Al2O3 interface, 202 Nickel-titanium alloy, 1780 Nikolaevsky’s model, 1321 9-12%Cr ferritic-martensitic steel chemical composition and microstructure, 1632–1634 efficiency and steam parameters, 1631 fatigue crack growth, 1658–1664 fatigue crack nucleation, 1655–1657 fatigue damage accumulation, 1650, 1651 fatigue life, 1654 life prediction, 1650–1654 microstructure evolution, 1664–1671 strengthening mechanism, 1634–1637 USC unit generator, 1630, 1631 Nitride coating, 1845 Nix and Gao model, 761 Node-release, 1491 scheme, 1469, 1490 technique, 1490, 1491 Node separation/element removal techniques, 1493 Nominal stress, 1793 Non-contact measurements, 1925 Non-equilibrium interstitial structural states, 1266 Non-linear GMRES method, 1360 Nonlinear interface cohesive law, 538–540 Nonlinearity, geometric, 455 Nonlinear piezoelectricity, 799 Non-linear Richardson method, 1360 Nonlinear thermal vibration, of SWCNTs, 444–461 Nonlinear wave theory, 616 Nonlocal elastic plate model, RMS amplitude of RSLGS via, 462–464 Nonlocal piezoelectric effect, 551 Non-planar nonlinear beam model, thermal vibration via, 449–455 Norgett, Robinson, and Torrens (NRT), 688 Normal distribution, 965–966 Normality condition, 1429 Normalization condition, 1440 Norton’s power law, 111 Norton type creep, 1040–1041 Nosé–Hoover thermostat, 458 Nuclear power plant, 674 Nucleating fracture, 918 Numerical fracture, 1437 Numerical simulation, 1019, 1022, 1028, 1031 Numerical time integration, 1445–1446 O Object kinetic Monte Carlo (OKMC), 720–722 simulations, 705, 706 Observed cyclic nature, 50 Occlusal Fingerprint Analyser software (OFA), 1770 Oldroyd model, 1598, 1610, 1611 Oliver–Pharr method, 24, 27, 879 1D composite and minicomposite, matrix fragmentation in, 967–974 Onion actuator demonstration of, 2335–2339 electrode design, 2320–2322 epidermal cell layer, 2315–2317 freeze-drying, 2316–2320 measurement of, 2329–2336 operation of, 2303–2309 with bending actuation, 2307–2315 Onion epidermal cell, 2315–2317 acid pretreatment, 2318–2319 cell orientation, 2321–2323 phenol-sulfuric method, 2322–2327 test of modulus of elasticity, 2327–2331 X-ray diffractometer, 2326–2328 Index 2423Onion tactile sensor demonstration, 2346–2348 design, 2340–2341 electrode design, 2342–2344 measurement, 2343–2346 sensing mechanisms, 2340–2343 Open-cell foams, 2086–2087 Optical profilometry, 2271 Oriented minimum bounding box, 1444 Orowan equation, 1215 Orowan stress, 1216, 1218, 1228 Orthodontics, 1763 Orthogonal metal cutting, 1454–1459 Osteons, 1496 Oxide dispersion strengthened (ODS) alloys, 720 materials, 142–145 steels, 1637 P Pair distribution function (PDF), of films, 23 Palmgreen–Miner law, 1650 Pande, Masamura and Chou-Mode-I, 2128–2133 Pande, Masamura and Chou-Mode-III, 2133 Parallelization, 726 Paris law, 1486, 1487 Partial differential equations (PDEs), 1349, 1353 Peach–Koehler force, 598 Peierls–Nabarro stress, 1226 Peierls stress, 2173 Penetration, 1697 Penta-twinned silver nanowire, 12–14 Peridynamics, 404 Periodic boundary condition, 773 Persistent slip band (PSB), 1655, 2138 Phantom node technique, 1494 Phase contrast imaging, 2018 Phase-field method (PFM), 248–249, 1468, 1822 obstacle strength, 254–255 Phenol-sulfuric acid method, 2322–2327 Physical mesomechanics, 1160 Piezoresistive sensing mechanism, 2298 Piola–Kirchhoff membrane stress tensor, 499, 908 Piola–Kirchhoff stress tensor, 815 Planar nonlinear beam model, thermal vibration via, 445–448 Plane strain, 1467, 1481 Plane stress, 1467, 1481 Plastic deformation, 107, 595, 603, 1214, 1242, 1941 different strain state, 1507 edge effects, 1537–1539 elastically deformed matrix, 1511 gradient, 1352 jump-like propagation, 1539–1542 Kirsch’s solution, 1511 Lüders band initiation (see Lüders band initiation) mesoscopic scale, 1507 in metallic glass matrix composites, 607–609 non-homogeneous distribution, 1505 in polycrystals, 1542–1545 qualitative and quantitative discrepancies, 1515 RE with gradients, 1515–1520 simulation, 1531–1532 stress relaxation of pure shear, 1514 stress strain state, 1511 testing device, 1534–1537 with tensor of stress relaxation, 1509–1511 Plastic grooving model, 2260 Plasticity, 133, 1428 effects of, 1026–1030 high temperature, 1245 model, 1428–1433 Plastic nanowire, lithiation induced buckling of elastic-perfectly, 838–841 Plastic shear strain, 1214, 1224 Plastic zone size, 2130 Plate model, with initial stress, 469 Plate theory, for graphene based on interatomic potential, 487–495 Platic deformation, localization modelling, 1532–1534 Ploughing deformation, 2277 Poisson’s ratio, 69, 1467 Polarization, in ferroelectric thin films, 573–575 Polycrystal ? cr, 1545 ? maxdefines, 1543 with regular hexagonal grains, 1056–1061 Polycrystalline ceramic, creep fracture, 1038 Polycrystalline magnesium, 346 AZ31 magnesium alloy, 864–869 FEM of stress-strain relations of, 864–869 maximum stress and fracture strain of, 857–860 stress-strain curves of, 856–857 theoretical stress-strain relations of, 861 2424 IndexPolycrystalline model, 1077–1079 creep competing mechanism, 1081–1083 diffusion mechanism, 1082–1085 grain boundary sliding, 1084–1088 Poly-lactic acid (PLA) composites, 2363 Polymer, 988 degradation, 989 foams, 2084 materials, 662 surface roughness, 523–526 Polymer consistent force field (PCFF),
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم
رابط من موقع عالم الكتب لتنزيل كتاب Handbook of Mechanics of Materials رابط مباشر لتنزيل كتاب Handbook of Mechanics of Materials
|
|