كتاب Handbook of Mechanics of Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Handbook of Mechanics of Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16359
التقييم : 28273
تاريخ التسجيل : 01/07/2009
العمر : 32
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Handbook of Mechanics of Materials  Empty
مُساهمةموضوع: كتاب Handbook of Mechanics of Materials    كتاب Handbook of Mechanics of Materials  Emptyالإثنين 24 أغسطس 2020, 1:07 am

أخوانى فى الله
أحضرت لكم كتاب
Handbook of Mechanics of Materials
Chun-Hway Hsueh
Editor-in-Chief
Siegfried Schmauder , Chuin-Shan Chen , Krishan K. Chawla , Nikhilesh Chawla , Weiqiu Chen , Yutaka Kagawa
Editors

كتاب Handbook of Mechanics of Materials  H_b_o_11
و المحتوى كما يلي :


Contents
Volume 1
Part I Nanomechanics . 1
1 Dislocation Nucleation Mediated Plasticity of FCC Nanowires . 3
Seunghwa Ryu, Jaemin Kim, and Sangryun Lee
2 Indentation Behavior of Metallic Glass Via Molecular
Dynamics Simulation . 19
Chun-Yi Wu and Yun-Che Wang
3 Surface/Interface Stress and Thin Film Stress 33
Chun-Wei Pao
4 Characterizing Mechanical Properties of Polymeric Material:
A Bottom-Up Approach . 57
Lik-ho Tam and Denvid Lau
5 Fracture Nanomechanics 93
Yabin Yan, Takashi Sumigawa, Licheng Guo, and Takayuki Kitamura
6 In Situ Transmission Electron Microscopy Investigation of
Dislocation Interactions . 131
Josh Kacher, Ben P. Eftink, and Ian M. Robertson
7 Multiscale Modeling of Radiation Hardening . 167
Ghiath Monnet and Ludovic Vincent
8 Atomistic Simulations of Metal–Al2O3 Interfaces 199
Stephen Hocker, Alexander Bakulin, Hansj?rg Lipp,
Siegfried Schmauder, and Svetlana Kulkova
9 Multiscale Simulation of Precipitation in Copper-Alloyed
Pipeline Steels and in Cu-Ni-Si Alloys 241
Dennis Rapp, Seyedsaeid Sajadi, David Molnar, Peter Binkele,
Ulrich Weber, Stephen Hocker, Alejandro Mora, Joerg Seeger, and
Siegfried Schmauder
vii10 Atomistic Simulations of Hydrogen Effects on Lattice Defects
in Alpha Iron 283
Shinya Taketomi and Ryosuke Matsumoto
11 Molecular Dynamics Simulations of Nanopolycrystals 301
Christian Brandl
12 Modeling Dislocation in Binary Magnesium-Based Alloys Using
Atomistic Method 331
Sébastien Groh and Mohammad K. Nahhas
13 Atomistic Simulation Techniques to Model Hydrogen Segregation
and Hydrogen Embrittlement in Metallic Materials . 357
Douglas E. Spearot, Rémi Dingreville, and Christopher J. O’Brien
14 Modeling and Simulation of Bio-inspired Nanoarmors . 391
Stefano Signetti and Nicola M. Pugno
15 Thermal Vibration of Carbon Nanostructures 421
Lifeng Wang, Haiyan Hu, and Rumeng Liu
16 Mechanics of Carbon Nanotubes and Their Composites 483
Jian Wu, Chenxi Zhang, Jizhou Song, and Keh-Chih Hwang
17 Flexoelectric Effect at the Nanoscale . 549
Lele L. Ma, Weijin J. Chen, and Yue Zheng
18 Mechanical Properties of Nanostructured Metals: Molecular
Dynamics Studies 591
Haofei Zhou and Shaoxing Qu
19 Processes in Nano-Length-Scale Copper Crystal Under
Dynamic Loads: A Molecular Dynamics Study . 615
I. F. Golovnev and E. I. Golovneva
20 Understanding Fracture and Fatigue at the Chemical Bond
Scale: Potential of Raman Spectroscopy . 655
Philippe Colomban
21 Atomistic Modeling of Radiation Damage in Metallic Alloys . 673
Charlotte S. Becquart, Andrée De Backer, and Christophe Domain
22 Monte Carlo Simulations of Precipitation Under Irradiation 703
Charlotte S. Becquart and Frédéric Soisson
23 Mechanics of Auxetic Materials . 733
Hyeonho Cho, Dongsik Seo, and Do-Nyun Kim
24 Nanoindentation and Indentation Size Effects: Continuum
Model and Atomistic Simulation . 759
Chi-Hua Yu, Kuan-Po Lin, and Chuin-Shan Chen
viii Contents25 Continuum Theory for Deformable Interfaces/Surfaces with
Multi-field Coupling 795
B. Wu and W. Q. Chen
Volume 2
Part II Micromechanics . 823
26 Interaction Between Stress and Diffusion in Lithium-Ion
Batteries: Analysis of Diffusion-Induced Buckling of
Nanowires 825
F. Q. Yang, Yan Li, B. L. Zheng, and K. Zhang
27 Dynamic Compressive Mechanical Behavior of Magnesium-Based
Materials: Magnesium Single Crystal, Polycrystalline
Magnesium, and Magnesium Alloy . 845
Qizhen Li
28 Micropillar Mechanics of Sn-Based Intermetallic Compounds . 873
J. J. Yu, J. Y. Wu, L. J. Yu, and C. R. Kao
29 Micro-mechanics in Electrochemical Systems 901
Giovanna Bucci and W. Craig Carter
30 Fiber Reinforced Ceramic Matrix Composites: A Probabilistic
Micromechanics-Based Approach . 955
Jacques Lamon
31 Micromechanics of Polymeric Materials in Aggressive
Environments . 987
Xiaohong Chen
32 Crack Paths in Graded and Layered Structures 1013
Ivar Reimanis
33 Micromechanics Modeling of Creep Fracture of
High-Temperature Ceramics 1035
Chi-Hua Yu, Chang-Wei Huang, Chuin-Shan Chen, and
Chun-Hway Hsueh
34 Modeling of Multilayered Disc Subjected to Biaxial Flexure
Tests . 1093
Chun-Hway Hsueh
35 Micromechanics of Dual-Phase Steels: Deformation, Damage,
and Fatigue . 1127
Behnam Anbarlooie, Javad Kadkhodapour, Hossein Hosseini
Toudeshky, and Siegfried Schmauder
Contents ix36 Defect Accumulation in Nanoporous Wear-Resistant Coatings
Under Collective Recrystallization: Simulation by Hybrid
Cellular Automaton Method 1157
Dmitry D. Moiseenko, Pavel V. Maksimov, Sergey V. Panin,
Dmitriy S. Babich, and Victor E. Panin
37 Multiscale Fatigue Crack Growth Modeling for Welded
Stiffened Panels 1191
?. Bo?i?, Siegfried Schmauder, M. Mlikota, and M. Hummel
38 Dislocation Density-Based Modeling of Crystal Plasticity
Finite Element Analysis . 1213
Tetsuya Ohashi
39 Competing Grain Boundary and Interior Deformation
Mechanisms with Varying Sizes . 1239
Wei Zhang, Yanfei Gao, and Tai-Gang Nieh
40 Multiscale Translation-Rotation Plastic Flow in Polycrystals 1255
Victor E. Panin, Valerii E. Egorushkin, Tamara F. Elsukova,
Natalya S. Surikova, Yurii I. Pochivalov, and Alexey V. Panin
41 Micromechanics of Hierarchical Materials: Modeling and
Perspectives . 1293
Leon Mishnaevsky Jr.
42 Modelling the Behavior of Complex Media by Jointly Using
Discrete and Continuum Approaches . 1311
Sergey G. Psakhie, Alexey Yu. Smolin, Evgeny V. Shilko, and
Andrey V. Dimaki
43 Spectral Solvers for Crystal Plasticity and Multi-physics
Simulations . 1347
Pratheek Shanthraj, Martin Diehl, Philip Eisenlohr, Franz Roters, and
Dierk Raabe
44 Interface Delamination Analysis of Dissimilar Materials:
Application to Thermal Barrier Coatings 1373
Yutaka Kagawa, Makoto Tanaka, and Makoto Hasegawa
Volume 3
Part III Macromechanics 1413
45 Smoothed Particle Hydrodynamics for Ductile Solid Continua . 1415
Peter Eberhard and Fabian Spreng
x Contents46 Simulation of Crack Propagation Under Mixed-Mode
Loading 1465
Martin B?ker, Stefanie Reese, and Vadim V. Silberschmidt
47 Relaxation Element Method in Mechanics of Deformable
Solid . 1503
Ye. Ye. Deryugin, G. V. Lasko, and Siegfried Schmauder
48 Damping Characteristics of Shape Memory Alloys on Their
Inherent and Intrinsic Internal Friction . 1565
Shih-Hang Chang and Shyi-Kaan Wu
49 Application of Homogenization of Material Properties . 1595
Ming Dong and Siegfried Schmauder
50 Fatigue Behavior of 9–12% Cr Ferritic-Martensitic Steel . 1629
Zhen Zhang, Zhengfei Hu, and Siegfried Schmauder
51 Coupling of Discrete and Continuum Approaches in Modeling
the Behavior of Materials 1675
Alexey Yu. Smolin, Igor Yu. Smolin, Evgeny V. Shilko,
Yuri P. Stefanov, and Sergey G. Psakhie
52 Numerical Simulation of Material Separation Using Cohesive
Zone Models 1715
Ingo Scheider
53 Current Applications of Finite Element Methods in Dentistry 1757
Noriyuki Wakabayashi, Natsuko Murakami, and Atsushi Takaichi
54 Elastic-Plastic and Quasi-Brittle Fracture . 1785
Xiaozhi Hu and Li Liang
55 Coupling Models of New Material Synthesis in Modern
Technologies 1817
Anna Knyazeva, Olga Kryukova, Svetlana Sorokova, and Sergey
Shanin
56 Simulation of Fracture Behavior of Weldments . 1859
Haoyun Tu, Siegfried Schmauder, and Yan Li
Part IV Measurement and Applications . 1877
57 Very High Cycle Fatigue . 1879
Martina Zimmermann
58 High Temperature Mechanical Testing of Metals 1917
Birgit Skrotzki, Jürgen Olbricht, and Hans-Joachim Kühn
Contents xi59 Microelectromechanical Systems (MEMS)-Based Testing of
Materials . 1955
Jagannathan Rajagopalan
60 Nanoindentation for Testing Material Properties 1981
Yu-Lin Shen
61 3D/4D X-Ray Microtomography: Probing the Mechanical
Behavior of Materials . 2013
Sudhanshu S. Singh and Nikhilesh Chawla
62 Mechanical Testing of Single Fibers 2035
Krishan K. Chawla
63 Stress Measurement in Thin Films Using Wafer Curvature:
Principles and Applications 2051
Eric Chason
64 Testing of Foams . 2083
Nikhil Gupta, Steven Eric Zeltmann, Dung D. Luong, and
Mrityunjay Doddamani
65 Crack-Dislocation Interactions Ahead of a Crack Tip 2123
R. Goswami and C. S. Pande
66 In-Situ Nanomechanical Testing in Electron Microscopes . 2143
Shou-Yi Chang
67 Deformation Measurement for Multiscale and Multifield
Problems Using the Digital Image Correlation Method . 2189
Chien-Ching Ma and Ching-Yuan Chang
68 High Temperature Nanomechanical Testing 2219
Miguel A. Moncl?s and Jon M. Molina-Aldareguia
69 The Sliding Wear Response of High-Performance Cermets 2249
Kevin P. Plucknett, C. Jin, C. C. Onuoha, T. L. Stewart, and
Z. Memarrashidi
70 Electromechanical Coupling of Botanic Cells: Theory and
Applications . 2291
C. C. Chen and W. P. Shih
71 Additive Manufacturing of Multidirectional Preforms and
Composites: Microstructural Design, Fabrication, and
Characterization . 2353
Zhenzhen Quan and Tsu-Wei Chou
Index
Index
A
ab initio calculations, 202, 217, 230, 232,
233, 236
Abrasive wear, 2251–2253
Absorption contrast imaging, 2018
Accelerating methods, 725
Acid pretreatment, 2318–2319
Acrylonitrile-butadiene-styrene (ABS)
filament, 2360
3D orthogonal preforms, 2374–2376
Activation energy, 176–178, 180, 182
of unpinning from local obstacles, 174
Actuators
artificial-muscle, 2294, 2298, 2304
dielectric elastomer, 2296–2301
driving units, 2298
pneumatic, 2294, 2298
types, 2296–2299
Adaptive mesh refinement, 1492
Adatom insertion mechanism, 2065
Additive manufacturing (AM)
co-extrusion process for, 2365
of multidirectional preforms for composites,
2397–2400
of reinforced composites, 2360–2367
techniques, 2359
unique characteristics of, 2356–2363
Additive technologies, 1835, 1847
Adhesive wear, 2252, 2278
Adsorption-induced dislocation emission
(AIDE), 361
Ag/Al2O3 interface, 228
Al/Al2O3 interfaces, 232, 233
Alignment of the load train, 1939
All-solid state batteries, 905
mechanical degradation of, 936–939
All-solid state Li-ion batteries, mechanical
reliability of, 905
Alpha-titanium alloy, 1230
c-axis, 1230
TD-split texture, 1231
T-texture, 1231
Aluminum (Al), 2006
clusters formation, 28
Ambipolar diffusion, 919–924
Amorphous films, Young’s modulus of, 24
Anharmonicity, chemical bond, 656
Anisotropy
in single-crystalline Cu6Sn5, 888–889
of slip deformation, 1234
Antiferrodistortive (AFD) displacement, 558
Applied strain rate, effects of, 1072–1075
Archard equation, 2259
Artificial muscle(s), 2293
actuators, 2298, 2304
Artificial neural network (ANN), 724
Artificial stress, 1435–1437
Artificial viscosity, 1423
ASTM formulas, 1096–1097
ASTM standard testing, 2091, 2092
Atmosphere, 1952
Atomic mobility, 52
Atomic-scale finite element method, 484
Atomic structures, of jogged dislocation, 596
Atomistic kinetic Monte Carlo (AKMC), 261,
720–722
algorithms, 707–708
model, 719
for radiation damage, 714–715
simulations, 705, 706, 709, 712
of precipitation without irradiation,
712–713
Atomistic methods, 1468, 1495
to model displacement cascades, 676–681
Atomistic modelling of radiation damage,
675–696
© Springer Nature Singapore Pte Ltd. 2019
C.-H. Hsueh et al. (eds.), Handbook of Mechanics of Materials,
https://doi.org/10.1007/978-981-10-6884-3
2407Autonomous basin climbing (ABC), 709
Auxetic materials, 735–748
deformation mechanisms of, 735
expected properties of, 748–752
potential applications, 753–755
Average spacing of dispersed particles, 1223
See also Dislocation accumulation
Axis-aligned minimum bounding box, 1444
AZ31 magnesium alloy
dynamic stress-strain curves of, 856–857
maximum stress and fracture strain of,
857–860
theoretical stress-strain relations of, 861
B
Back-end-of-line (BEOL) process, 877
Bailey–Hirsch model, see Critical resolved
shear stress (CRSS)
Ballistic mixing vs. precipitation, 715–717
Barb pullout test, 1383–1388
Barb test, 1381–1383
analysis, 1388
phase angle of, 1400
stress changes, 1393
Basquin model, 1653
Battery management systems (BMS), 2204
Bayesian model, 972–973
BCS model, 2124–2126
Lin and Thomson model, 2128
Majumdar and Burns analysis, 2126–2128
Pande, Masamura and Chou-Mode-I,
2128–2133
Pande, Masamura and Chou-Mode-III, 2133
Beach marks, 1949
Beam model, 431
Beam theory assesment, 1385
?-distribution, 1798
Bias-induced material anisotropy, 802
Biaxial flexure tests, stress analyses for, 1094
Bifurcation, 510, 513
Binary collision approximation (BCA),
676–677, 679, 681
Binder-extrusion, 2254
Binder jetting process, 2367
Bio-based biodegradable composites, 1300
Biomimicking principles, 1294
Blanket thin films, 2163
Bonded/unbonded interface, 1770–1772
Bone, 1496
resorption, 1774
Born rule, 485
Boundary conditions, 1359–1360
Boundary element method, 1468
Bounding box, 1443
Bounding sphere, 1443
Bravais multi-lattice, 488
Bremsstrahlung radiation, 2017
Bridging rules, 989
Brittle failure, probabilistic statistical
approaches to, 957–959
Broken-bond models, 710
Brownian ratchet, 422
Bulk modulus, 69, 70
Bundle model, 975–976
Burgers vector, 319, 596, 2135
See also Dislocation
C
CAD software, 1778
CalculiX software, 1492
Cantilever-based actuator, 2297
Cantilever euler beam, stochastic vibration of,
424–426
Capacitive tactile sensors, 2300–2306
Carbohydrate determination process, 2324
Carbon nanofiber (CNF), 2365
Carbon nanostructure, thermal
vibration of, 423
Carbon nanotube (CNT), 423
continuum models for, 484
finite-deformation Shell theory
for, 495–502
mechanics of, 484–514
membrane stresses and moments in,
499–502
pressure of, 505–507
tension of, 504–505
thermal vibration of, 424–431, 433
torsion of, 507–508
Carbon nanotube (CNT), instability
in compression, 510–511
external pressure, 512–513
internal pressure, 511–512
in tension, 509–510
in torsion, 513–514
Carbon nanotubes-reinforced composites
mechanics of, 514–544
stress-strain curve of, 540–544
Cardboard frame technique, 2038
Cauchy–Born rule, 488
Cauchy membrane stress tensor, 500
Cauchy momentum equation, 1422
Cavity growth, 1043
Cavity nucleation, 1043
2408 IndexCavity nucleation rate, effects of, 1067–1072
CdS nanospheres, 2167
Cellular automata approach, 1161–1163
Cellular materials, 2084, 2092
Center cracked tension (CCT), 1948
Centrosymmetric lattice, 551
Ceramic armors, 405
Ceramic-ceramic contiguity, 2262
Ceramic coating systems, 1379
Ceramic materials, toughness of, 1037
Cermets, 2250
damage accumulation during wear,
2276–2279
fracture resistance, 2259
fracture toughness, 2256
frictional response, 2268–2271
hardness, 2254–2257
microstructural parameters, 2261–2266
Palmqvist-type cracking behaviour, 2258
plastic deformation, 2260
quasi-static Hertzian contact stress,
2267–2268
specific wear rate, 2271–2276
sub-surface damage, 2279–2284
tribo-corrosion degradation, 2285–2286
wear mechanism, 2284–2285
Chain-of-segment model, 969–972
Charge equilibrium (QEq), 61
Charge neutrality, 919
Chemical mechanical polishing (CMP), 876
Chemical reactor, 1819
Chromium carbide, 1841
Circular single-layered graphene sheet
(CSLGS), thermal vibration of,
472–475
Clamping system, 1921
cold grips, 1921
collet grips, 1921
hot grips, 1921
Classical MD (CMD), 433
Clausius-Duhem inequality, 903, 908
Closed-cell foams, 2087
Closed-loop control system, 1892
CMOS-MEMS tactile sensor, 2303
Coalescence mechanism, 2065
Coarse-grained (CG) model, 84, 85
Coarse-structured composites
continuum mechanics, 1799–1801
discrete crack growth, 1796–1799
Coating synthesis, 1847
Co-extrusion process, for additive
manufacturing, 2365
Coffin–Mason model, 1653
Coherent twin boundaries, 155
Cohesion model, 678–680, 708–712
Cohesive element, 1048–1049
and surfaces, 1486
Cohesive fracture simulation, 918
Cohesive law
for infinitely long multi-wall carbon
nanotube, 526–535
nonlinear interface, 538–540
for SWCNT, 516–523
for two finite multi-wall carbon nanotube,
535–538
Cohesive methods, 1485, 1497
Cohesive model(s), 1469, 1480, 1483, 1484,
1488, 1490, 1493, 1495, 1497
failure, 1493
Cohesive zone constitutive theory for fracture,
918–919
Cohesive zone model (CZM), 104–106, 515,
919, 1865–1870
constitutive laws, 1725–1729
cyclic loading, 1745–1749
damage evolution, 1728, 1739, 1746
finite element method, 1718
hydrogen dependence, 1745
interface plasticity theory, 1736–1740
Kelvin–Voigt type model, 1741
mechanical preliminaries, 1719, 1721
non-monotonous loading, 1725
parameters, 1721
shapes, 1727
strip-yield model, 1717
temperature dependence, 1743–1744
time dependence, 1740
traction-separation law, 1722–1723, 1729,
1749–1751
triaxiality dependence, 1745
Cohesive zone volume elements (CZVEs), 379
Cold work, 1433
Coleman-Noll formalism, 904
Coleman-Noll procedure, 912
Common neighbor analysis (CNA) method,
308, 767
Compact tension (CT), 1948
Compliance method, 1949
Composite(s), 1495, 2253, 2354
additive manufacturing of reinforced,
2360–2367
additive manufacturing of multidirectional
preforms for, 2397–2400
electrode, 936
multidirectional preforms for, 2355–2356,
2363
Index 2409Composite(s) (cont.)
3D braid preforms and, 2392–2393,
2396–2399
3D orthogonal preforms and, 2386–2391
Composite foams
reinforced open/closed-cell foams,
2087–2088
syntactic foams, 2088–2089
Compression, micropillar, 880–881, 884–885
Compression testing, 2092–2093
high strain rate compression testing,
2095–2099
quasi-static compression, 2093–2095
Compressive stress generation mechanism, 49
Computational domain, 1703
Computational framework, 1050–1051
Computational solid mechanics, 1314–1316,
1319, 1333
Computer based modeling, 1992
Computer tomography, 1495
Concrete, 1497–1498
Confined layer slip (CLS) model, 593, 598
Conjugate heat exchange, 1847
Consistent valence force field (CVFF), 61, 62,
71, 74
Constitutive equation, 910–919, 1426–1428
Constitutive models, for dynamic/high strain
rate behaviors of materials, 850–855
Constructing dislocation loop, 768
Continuous polycrystalline film growth
adatom insertion, 49–52
molecular dynamics simulations, 46–47
morphology, 47–49
thin film stress, 49
Continuity equation, 1421–1422, 1824
Continuum mechanics, 1160, 1421
Continuum methods, 1468
Continuum stress, with band structure
elliptical shape, plastic deformation,
1523–1528
field of stresses, 1528–1531
LPD, 1520–1523
qualitative and quantitative differencies,
1520
Continuum theory, 1506
Conventional manufacturing technology,
2355–2356
Conventional textile fabrication technique, 2356
Convergence criteria, 1360, 1362
Cooperative deformation, 323–324
Copper rich precipitates (CRPs), 714
Corner-crack (CC), 1948
Corrosion, 2018, 2021, 2027
Coupled multidisciplinary approach
energy balance equation, 991
entropy production inequality, 992
mass balance equations, 990
nonlinear chemo-thermo-viscoelasticity,
996–998
nonlinear hygro-thermo-viscoelasticity,
992–996
thermodynamic potentials, 992
Coupling models, materials synthesis
coating composition formation, 1835–1847
electron-beam surface treatment, 1826–1835
synthesis on substrate, 1847–1855
Courant–Friedrichs–Lewy condition, 1446
Courant number, 1446
Crack
branching, 1488
deflection angle, 1020, 1030
detection, 1466
displacement field, 1472, 1473, 1476, 1478
formation and propagation, 1468
growth-rate curve, 1486, 1487
kink, 1016
modes, 1467, 1472, 1477, 1479, 1487
stress field, 1468, 1472, 1473, 1476, 1478,
1480, 1492
Crack model
?-parameteris, 1560
profiles ?y, 1561
Crack modelling techniques, 1496
Crack opening displacement (COD), 1872
Crack propagation, 1467, 1468, 1470, 1476,
1489, 1490, 1497
cohesive models, 1480, 1483, 1488, 1490,
1493, 1495, 1497
cohesive stress, 1870
cohesive zone model, 1873
C(T)-BM and C(T)-HAZ, 1872
C(T) specimens, 1871
ductile fracture behavior, 1872
dynamic, 1488, 1490
element removal, 1469, 1490, 1492, 1495
experimental and numerical force vs. cross
section, 1865, 1866
finite element mesh, 1867
GTN parameter, 1868
implementation, 1469
inhomogeneous welded joints, 1872
initial crack position, 1872
material properties, 1874
mesh and boundary conditions, 1869
in nanotwinned metals, 600
node release, 1469, 1490, 1491
2410 Indexremeshing, 1469, 1474, 1485, 1490, 1491,
1495, 1496
S355 base material, 1868
trapezoidal TSL, 1874
XFEM, 1493
Crack propagation analysis, 1466
during bone fracture, 1496
complex materials, 1494
composite materials, 1495, 1496
in concrete structures, 1497, 1498
criteria, 1480
in finite element simulation, 1469
implementation, 1489
in microstructural simulations, 1495
stress and strain fields, 1474
Crack propagation criteria, 1472, 1476, 1479,
1480, 1490, 1492
Crack propagation criterion, 1468
Crack propagation in fatigue loading, 1486
Crack propagation period, 1192
Crack representation, 1476
mesh conforming, 1469, 1490
XFEM, 1470, 1493
Crack tip dislocations
BCS model (see BCS model)
behavior, 2124
dislocation free zone (DFZ), 2127
distribution, 2135
symmetric dislocation arrays, 2129
TEM image, 2134, 2135, 2139
TEM studies, 2133–2137
Crack tip displacements, 1474, 1475
Crack tip opening angle (CTOA), 1482
Crack tip opening displacement (CTOD), 1482
Crack-tip plastic zone, 1791
Crack velocity, 1487, 1489
Creep, 1257, 1275, 1276, 1478, 1479, 1779,
1930–1936
rate, 1933
rupture, 1933–1935
strain, 1933
testing, 2240–2242
Creep fracture, 1037
benchmark data, 1064
grain boundary, 1062
micromechanics mechanism study, 1063
numerical examination, 1065–1068
Critical resolved shear stress (CRSS), 1193,
1226
interaction matrix between slip systems,
1227
modified Bailey–Hirsch model, 1227
reactions of dislocations, 1227
Cross-size influence, nanostructures, 642–649
CRSS, see Critical resolved shear
stress (CRSS)
Crystal lattice curvature (CLC), 1257,
1260, 1262, 1267, 1270, 1271,
1273, 1274
Crystal plasticity, 323
Crystal structure evolution, 624–628
CT-based model, 1777–1779
Ct-integral, 1478
Cu-Al-Ni, 1585–1587
Cu/Al2O3 interface, 202
Cubic boron nitride, 2223
Curtin’s model, 978–979
Curvature measurements, 2079
Cutting, 2253
Cu-Zr-Al metallic glass, 20, 21, 28
thin film, 26, 30
Cu-Zr-Al models, 24
Cyclic deformation behavior, 1938
Cyclic hardening, 1941
Cyclic loading, untreated Ti samples, 1265
Cyclic softening, 1941
annihilation process, 1637
constant life curves, 1643
cyclic stress-strain relationship, 1649
dislocation density, 1639
DSA, 1639
Goodman and Gerber model, 1643
mean stress, 1641, 1642
microcrack nucleation, 1641
monotonic stress-strain curve, 1640
strain amplitude, 1640
strain-controlled fatigue test, 1641
Cylindrical coordinate system, 1467
D
Damage, 1129, 1133
and high cycle fatigue (HCF), 1148
micro, 1140–1144
Damage-mechanics, 1357–1358
polycrystalline fracture, 1365–1368
Damage mechanisms, 1885–1890
Damage models, 1468, 1489, 1493
See also Cohesive models
Damage monitoring, 1902
Damage occurs, 1485
Damping parameter, 2105, 2110
Debonding, 1771
Deep reactive ion etch (DRIE), 875
Defect-driven deformation, 2174
Defect strength, 171, 172, 177
Index 2411Deformation, 602
in dual-phase steels, 1129
of elastic nanowire, 832
indenting, 2149–2151
in metals, 1130
micro, 1130–1135
microstructural boundaries, 2171–2177
in nanotwinned metals, 602
plastic, 1143
plastic deformation of bulk materials and
blanket thin films, 2162–2165
of single wall carbon nanotube, 498–499
Deformation mechanism, 735, 1245
of auxetic materials, 735–748
map, 1241, 1246, 1251, 1252
Deformation processes, 69
Dejonghe’s model, 1571
Delamination, 1495
Delamination toughness, 1377
mode II, 1379
De-lithiation, 826
Density functional theory (DFT), 286, 343,
398–399, 709
Density functional tight binding (DFTB), 399
Dental implants, 1772
Deposition flux, 35
Detwinning, twist-induced, 606
Deviatoric stress, 1426
Diamond, 2223
Dielectric elastomer actuator, 2295–2301
bending of, 2307
contraction of, 2307
Diffusion
ambipolar, 919–924
mechanically driven, 932–936
model, 708–712
potential, 948–949
Diffusion problem, time discretization of,
946–947
Diffusion-reaction equations, 990
Digital image correlation (DIC), 2190
battery deformation problem, 2204–2207
components of, 2191
deformation problem in micro-scale,
2207–2209, 2212
dynamic response, 2191–2193
large deformation problem, 2193–2197
setup of, 2190
stereo, 2209–2217
technique, 1921
thermal deformation problem, 2197–2202
uses, 2190
Diglycidyl ether of bisphenol A
(DGEBA), 62, 81
Dirac delta function, 1418, 1827
Direct ink writing (DIW), 2363
Direct resistance heating, 1922
Discrete-continuum approaches, 1314, 1316,
1319
application, 1697
boundary nodes, 1691
calculation algorithm, 1693
continuum region motion, 1691
finite-difference method, 1679–1681
interpretation, 1692
??? region motion, 1693
testing, 1694–1697
Discrete crack models, 1497
Discrete dislocation dynamics, 1495
simulations, 294, 1216
Discrete form
equations in, 948–949
incremental boundary value problem in,
942–949
Dislocation, 1214
configurations, 2138, 2140
creep, 1244
density of dislocations, 1214
development, 1192, 1195
dipoles, 1198
dislocation loops, 1215
dislocation segments, 1215
edge dislocations, 1224
loops, 146–147, 769
mean free path (see Statistically stored
dislocations)
movement of dislocations, 1214
multiplication, 138–140
nucleation, 1197
plastic shear strain, 1214–1218
propagation, 136–137
screw dislocations, 1224
strengthening, 1637
structures, 594, 595
three-dimensional network, 1215
velocity of, 1242
Dislocation accumulation, 1219
dislocation annihilation, 1221
dislocation mean free path, 1220
dislocation reaction, 1222
due to plastic slip, 1219–1226
effective average spacing of accumulated
dislocations, 1222
equilibrium density of SS dislocations, 1230
2412 Indexgeometrically necessary dislocations,
1222, 1223
long-range stress field, 1221
net Burgers vector, 1221
recovery, 1221
velocities of edge and screw
dislocations, 1220
weighted sum of dislocation
densities, 1223
Dislocation density, 769, 777
by length/volume, 778
by number/surface area, 771, 779
Dislocation density-based numerical
models, 1214
Dislocation dynamics (DD), 250–251
particle strengthening, 256–258
Dislocation extraction algorithm (DXA), 767
Dislocation-free zone (DFZ), 2125–2127, 2130,
2134, 2136
Dislocation interactions
grain boundary, 150–163
with defect fields, 140–146
with isolated obstacles, 146–150
Dislocation mechanism, twin-size induced
transition in, 597
Dislocation mediated mechanisms
absorption, 319–321
FCC crystal, 316
lifetime of, 322
nucleation, 316–318
propagation, 319–320
Dislocation nucleation, 133–136
exceptional deformation mechanisms, 14–15
FCC-crystalline metals
nanowire deformation, 7
Schmid factors, 8
slip systems, 5
onset of plasticity, 9–12
penta-twinned silver nanowires, 12–14
Dislocation-nucleation-governed softening
mechanism, 592
Displacement cascades, 675
atomistic methods to model, 676–681
energetic particle to, 676
on pre-existing defects, 691–692
Displacement correlation method, 1476, 1497
Displacement field, see Crack, displacement
field
Displacements per atom (dpa), 680
primary damage and, 688–689
Dissipation, 1483, 1488, 1489
Dissipation-rate density, 903
Domain integral method, 1870
Double cantilever beam (DCB) testing
geometry, 2261
Dreiding force field, 61, 71
Dual phase steels, 1133
cubic RVEs of, 1140
deformation field in, 1129
martensite and ferrite, 1137
micromechanical modeling of, 1137
uniform and homogenous deformation
mode, 1130
Dual-spindle rotating bending machine, 1891
Ductile solid, 1428
Düsseldorf Advanced Materials Simulation
Kit (DAMASK), 1349, 1353,
1360, 1368
Duva’s model, 1598, 1610, 1611
Dynamic compression testing, 849
Dynamic crack propagation, 1488, 1490
Dynamic (inertia) effects, crack propagation,
1488, 1489
Dynamic elastic modulus, single fibres, 2041
Dynamic/high strain rate behaviors of
materials, 850–855
Dynamic load, 616–653
Dynamic mechanical analysis (DMA),
2104–2105
elastic modulus at various strain rates,
2107–2109
storage and loss moduli, 2105–2106
Dynamic mechanical analyzer, 1568
Dynamic mechanical behavior, of magnesium,
848, 861, 864, 869
Dynamic strain aging (DSA), 1635
Dynamic stress-strain curves, of magnesium
single crystal, 856–857
Dynamic tests for magnesium, 862, 863
E
EB-PVD TBC system, 1402
Effective boundary conditions, 797, 813, 817
Elastic and Plastic Fracture Mechanics (EPFM)
aluminum alloy, 6061, 1788
characteristic crack, 1787, 1790
crack-tip plastic zone, 1790–1793
critical stress intensity factor, 1789
LEFM, 1789
linear curve-fitting, 1794
pre-existing crack, 1793
quasi-brittle fracture models, 1801–1811
safe design diagram, 1790
Index 2413Elastic and Plastic Fracture Mechanics (EPFM)
(cont.)
safe design stress level, 1787, 1788
SENT, 1795
structural behavior PY, 1793
structural yielding load PY, 1793
Elastic anisotropy, 1231
Elastic compliance tensor, 1229
Elasticity modulus, 1831
Elasticity tensor, 1427
Elastic lattice material, 910–913
Elastic nanowire, deformation of, 832
Elastic-plastic model, 1685–1688
Elastic precursor, 625
Elastic strain, 723–724
Elastic stress relaxation, 1508
Electrochemical actuation, 2293
Electro-chemo-mechanics, 904, 912
Electro-elasticity, 904
Electromagnetic fields, 1925
Electromechanical coupling, 907
Electromechanical equivalent model of
capacitive tactile sensor, 2342
Electron back-scattered diffraction (EBSD),
119, 881, 882
Electron-beam physical vapor deposition
(EB-PVD), 1375
Electronic artificial skin, 2302
Electronic excitations, radiation damage, 690
Electron microscopes, in-situ nanomechanical
testing, see In-situ nanomechanical
testing
Electron phonon coupling (EPC), 690
Electrostatic forces, 907, 917
Element removal, 1469, 1490, 1495
techniques, 1492–1493
Elevated temperature tensile tests, 1927–1930
Embedded atom method (EAM), 22, 679
Energetic particle, to displacement
cascades, 676
Energy absorption, by nanostructure, 620–624
Energy equation, 1423–1425
Energy release rate, 1472, 1473, 1475, 1476,
1481, 1483, 1484, 1488, 1492,
1496
Engineering safety, 1466
Enrichment function, 1470, 1471, 1474,
1475, 1493
Epoxy-based materials, 60
Epoxy molecules dimension, 80
Euler beam model, 435
Eulerian orientation, 1171
Euler time discretization, 1356, 1357
Evans–Polanyi equation, 1820
Event-kinetic Monte Carlo (EKMC), 720–722
simulations, 705, 706
Exceptional deformation mechanisms, 14
Exponential convergence, 1349
Extended finite element method (XFEM), 1470,
1471, 1473–1476, 1489, 1493, 1494,
1496, 1498, 1765
Extensometer, 1921, 2039
gauge length, 1929
laser, 1921
video, 1921
Eyring and Cozman equation, 1821
F
Fabrication, 2374
Face-centered cubic (FCC)-crystalline
metals, 887
nanowire deformation, 7–9
Schmid factors, 8
slip systems, 5–7
Face centered cubic materials (fcc), 675
Factors, 1487
Fastest Fourier Transform in the West (FFTW),
1358
Fast Fourier transforms (FFT), 458, 1353, 1358
Fatigue, 1486, 1488, 1489, 2137
behavior analyses, 1130
crack growth, 2138
dislocation knitting, 2139
micro, 1146–1151
Fatigue behavior, 667
Al-SiC composite, 2024–2026
Fatigue corrosion, Al 7075 alloys, 2028
Fatigue crack growth, 1658–1664, 2138
laws, 1487
rate, 1193, 1200, 1202, 1206, 1208
Fatigue crack nucleation, 1655–1657
Fatigue crack propagation, 1947–1950
Fatigue failure, in finite element
simulation, 1486
Fatigue fracture, of commercially pure titanium,
1258–1260
Fatigue lifetime, 1939
Fatigue loading, 1486, 1487
Fatigue mechanism, of nanoscale components,
121–122
Ferroelectric(s), 552
capacitor, 572
nanocapacitor, 572
nanofilms, imprint behaviors in, 571–573
thin films, polarization in, 573–575
2414 IndexFiber, 657, 658, 660, 667
matrix suspension, 2360
reinforced composites, cracking in
continuous, 966–974
Fiber-reinforced polymers, 1495
Fibrous/high-aspect-ratio fillers, 2364
Field emission scanning electron microscope
(FE SEM), 2376
Film(s)
pair distribution function of, 23
stress generation mechanisms, 35
Finite-deformation shell theory, for carbon
nanotube, 495–502
Finite-difference method, 1679–1681
Finite element analysis (FEA), 989
Finite element method (FEM), 251–253,
401–404, 902, 1214, 1468, 1599
analysis, 1389
ansatz functions, 1349
baseline papers, 1760
contact analysis, 1767–1773
CT-based models, 1777–1779
dental and biomaterial problems, 1759
dental research areas, 1761
dentistry, 1760–1764
from 2D to 3D modeling, 1764–1766
h-refinement, 1349
large deformation, 1780
low-order shape functions, 1349
macroscopic damage mechanics, 258
model, 119
nonlinear contact analyses, 1763
nonlinear solution, 1766–1769
percentage, 1761
plasticity, 1779
p-refinement, 1349
PubMed search, 1759
r-refinement, 1349
of stress-strain relations of magnesium,
864–869
stress thresholds, 1774
thermal analysis, 1775–1777
visco-elastic analyses, 1779
Finite element simulation, 1469
Finite polymer matrix, 520–523
Finite strain framework, 1350–1353
constitutive modeling, 1351–1353
current configuration, 1350
reference configuration, 1350, 1351
Flaw strength distributions, 960–961
Flexoelectric coefficients, 552
experimental determination of, 563–569
theoretical calculations of, 561–562
Flexoelectric effect
applications of, 584–587
microscopic theory of, 559–561
at nanoscale, 550
novel domain wall properties resulted
by, 580
in solids, 551
Flexoelectricity, 551, 552
induced novel phenomena in nanoferroelectrics, 569–583
influence of, 575, 577
thermodynamic model of ferroelectrics
with, 553–559
Flexoelectricity-based piezoelectric
composite, 551
Flexoelectric response, size effect of, 562–563
Flexoelectric-type piezoelectric composite, 584
Flexural modes, in thermal vibration of
SWCNTs, 455–461
Flow rule, 1429–1430
Fluid pressure, 1332
Fluid-saturated media, 1314–1331
Flux coupling, 717–719
Foams, 2117
applications, 2089–2091
ASTM standard testing, 2091
characteristics, 2084
classification, 2085
compression testing, 2092
dynamic mechanical analysis (DMA),
2104–2109
imaging, 2112–2116
impact testing, 2100, 2101
vibration methods, 2110–2112
Focused ion beam (FIB), 96, 880, 882, 1495,
2220, 2232
milling technique, 2159
Formulation/solution strategy, 1352–1358
damage-mechanics, 1357–1358
mechanics, 1354–1355
thermo-mechanics, 1355–1356
Fourier space, 1357
Fractal bone model, 1296
Fracture, 1313, 1314, 1316, 1333, 1334, 1338
cohesive zone constitutive theory for,
918–919
resistance, 2259
Fracture mechanics, 1497
parameters, 1473, 1475–1479
theory, 95
Fracture nanomechanics, crack initiation at
interface edge
experimental method and apparatus, 96–97
Index 2415Fracture nanomechanics, crack initiation at
interface edge (cont.)
free edge of interface, 96–100
Fragment dichotomy model, 969–972, 976–977
FRANC3D software, 1476, 1492
Frank–Read mechanism, 1216
Frank–Read source, 1216
optimum size of FR source, 1218
Frank-van der Merwe (FM) growth mode, 34
Free body diagram, 2310
Free boundary condition, 773
Freeform fabrication, 2356–2363
Freeze-drying, 2316–2320
Frenkel pairs (FP), 675
Friction, 1701–1711, 1773
stir welding, 1447–1454
Front-end-of-line (FEOL) processing, 875
Functionally graded materials, 1496, 1497
Function convolution, 1418
Fused deposition modeling (FDM), 2358, 2365
process, 2360
Fusion reactor, 675
G
Galactose, 2325
Gauge theory, 1260–1264
Gaussian probability density function, 965
Gauss quadrature, 1494
Generalized particle algorithm (GPA), 1698
Generalized stacking fault energy (GSFE)
density, 317
Geometrically necessary dislocation
(GND), 761
character of the GNDs, 1226
(see also Dislocation accumulation)
density, 761, 779
norm of the GND density, 1226
Geometric nonlinearity, 455
Geometry of pillar, 893–894
Gibbs phenomenon, 1358
Gibbs–Thompson effect, 37
Global ansatz functions, 1349
Glucose, 2326
GND, see Geometrically necessary dislocation
Governing equation
in large deformed solid, 827
in small deformed solid, 831
Gradients
calculation of, 1358–1359
deformation, 1351
inelastic deformation, 1353
inelastic velocity, 1356
plastic deformation, 1352
plastic velocity, 1352
spatial, 1351
velocity, 1351
Grain boundary (GB), 592, 2171
bi-crystal with, 1050
cavitation, 1041
characteristics, 152–153
coherent twin, 155–157
confined microstructure, 161–163
deformation processes, 1240, 1241, 1243,
1246, 1248, 1250, 1251
diffusivity, 1070–1073
heterogeneity, 1039
insertion model, 49, 51
mediated mechanisms, 311–315
model, 378
morphology, 303
propagation limited systems, 158–161
sliding, 1041
temperature effects, 153–154
See also Grain boundary plane
Grain boundary plane, 1231
grain boundary triple junction, 1231
quadruple point, 1231
Grain shape, see Dislocation accumulation
Grain size, see Hall-Petch effect
Graphene, 484, 521, 524, 526
bending rigidity of, 502–504
plate theory for, 487–495
sheet, 484, 485, 489
Graphene oxide (GO) powders, 2364
Green–Lagrange strain, 1352
Griffith criterion, 1472
Gurson model, 1862, 1865
Gurson-Tveergard-Needleman damage
model, 1489
Gurson-Tvergaard-Needleman (GTN) model,
1862–1863
H
Hall–Petch effect, 1556
and breakdown, 1251
See also Grain size
Hall–Petch law, 1556
Hall–Petch plot, 1249
Hall–Petch relationship, 1299, 2173
Hall–Petch strengthening mechanism, 592
Halpin–Tsai equations, 1298
Hardening law, 1430–1433
Hardmetals, 2250, 2254, 2272, 2286
Hardness, 761, 2255–2257
2416 Indexfrom atomistic information, 775
comparison, 775, 777, 778
from loading process, 764, 765
from Oliver–Pharr method, 765, 767
from Taylor dislocation theory, 767
Harmonic transition state theory, 708
Heat capacity, 1822
Heat equation, 1425–1426
Heating methods, 1922–1924
Heat transfer, in porous body, 1168–1171
Heat transfer simulation
accuracy, 1165–1168
method, 1163–1164
Hemicellulose, 2319–2321
Hertzian contact stresses, 2268
Hertzian cracks, 2281
Hexagonal close packed (HCP) crystal
structure, 1230
Hierarchical fiber bundle model (HFBM), 400
Hierarchical lattice spring model (HLSM), 400
High-frequency fatigue testing, 1902–1906
High strain rate, 846–848
behaviors of materials, 850–855
compression testing of magnesium, 866, 867
compressive, 855
fracture strains for, 860
plastic deforamtion during, 867
High temperature nanomechanical testing
ceramics, 2231
constant strain rate tests, 2236–2237
creep testing, 2240–2242
future research in, 2242
issues for, 2221–2226
metals and semi-metals, 2229–2231
micropillar compression, 2232–2234
strain rate jump tests, 2238–2240
High-temperature polymer-matrix composites
(HTPMC), 996
High temperature tests, 1950
Hoffmann–Nix model, 37
Hollow-cylindrical-joint honeycombs, 410–415
Hookean elasticity, 1352
Hooke’s law, 850
Hot tensile tests, 1927–1930
Hsueh et al.’s rigorous formulas
bilayered systems, 1103–1104
conversion, 1103
correlation, 1099–1103
Hsueh et al.’s simplified formula, 1104–1107
Hybrid algorithm, 39
Hydrogen embrittlement (HE), 284, 358
AIDE, 361
atomistic simulations, 362, 363, 365, 370
combination, 362
grain boundary decohesion, 381
dislocation nucleation during crack
propagation, 381
influence of hydrogen, 383
HELP, 361
HID and HEDE, 360
hydride formation and cracking, 359
hydrogen effects on lattice defects
cohesive energy of grain boundary, 293
cracks and dislocations, 294
dislocation mobility, 293
lattice defect energy, 296
occupancy at trap sites, 290
vacancy, 292, 295
hydrogen trap energy
dislocations, 288
elastic strain, 287
free surface, 289
grain boundary, 288
stacking faults, 288
vacancy, 287
industrial applications, 358
mechanisms, 284, 359–362
segregation at grain boundaries, 371
site-energy selection technique, 372
statistical mechanics techniques, 374
steady-state crack propagation, 377
cohesive zone volume elements, 379
grain boundary model, 378
hydrogenated grain boundary creation,
377
Hydrogen-enhanced decohesion (HEDE),
284, 360
Hydrogen-enhanced localized plasticity
(HELP), 284, 361
Hydrogen-induced decohesion (HID), 360
Hydrostatic stress, 1426
Hysteresis curve, 1938
I
Imaging techniques, 2112
microCT-scan, 2115–2117
ultrasonic imaging, 2113–2114
Impact testing, 2101
drop weight impact, 2102–2104
pendulum impact, 2100–2102
Imprint behaviors, in ferroelectric
nanofilms, 571
Incoherent precipitation, 724
Incremental boundary value problem, 942–949
diffusion problem, 945–947
static problem, 942–945
Index 2417Indentation
mechanical properties from, 22
process, 774, 782–784
simulation at room temperature, 23–27
Indentation fracture resistance (IFR), 2256–2259
Indentation size effect (ISE), 761, 2230
dislocation density, 786–788
hardness, 786–791
Indenter repulsive potential, 763–764
Induction heater, 1922
Inelastic deformation gradient, 1353
Inelastic velocity gradient, 1353
Inexact Newton-GMRES method, 1361
Infinite polymer matrix, 516–520
Infrared spectroscopy, 657, 663
Inherent and intrinsic internal friction
Cu-Al-Ni, 1586–1587
Ni2MnGa, 1581–1582
Ni-Mn-Ti alloys, 1584
Ti50Ni50, 1571–1572
Ti50Ni50-xCux, 1574–1576
Ti50Ni50-xFex, 1578–1580
Initial conditions, 1359
In situ deformation, 141, 142, 163
In situ mechanical testing, in corrosive
environments, 2026–2031
In-situ nanomechanical testing, 2153–2157
bending fracture of micro/nano beam, 2175
complementary and functional components
of tools, 2159–2162
compression and dislocation of micro/nano
pillars, 2169–2171
deformation and fracture of hard biological
nanostructures, 2180
electron microscopes, 2182
inaccuracies and limitations, 2183–2184
indentation/compression of nanowires and
nanoparticles, 2166–2169
mechanical stress-induced phase
transformations, 2177–2178
microstructural boundaries, 2171–2177
plastic deformation of bulk materials and
blanket thin films, 2162–2165
sample preparation, 2157–2159
In situ tensile experiment, of single crystalline
nanorod, 122–124
Instrumented nanoindentation, 2147–2149
Instrument stability, 2221
Interaction integral method, 1479, 1497
Interactions, 1444–1445
Interatomic forces, 431
Interatomic potentials, 486–487, 709–710
plate theory for graphene based on, 487–495
Interface piezoelectricity, 814, 817, 819
Interface toughness, 1407
Intermetallics (IMCs), 877, 878, 887
plastic deformation in, 887
preparation and orientation
determination, 883
Interphase layer model, 797
Inverse compositional Gauss–Newton (IC-GN)
method, 2210
Ion-bombardment, damaged layer caused by,
892–893
Ionic species, state functions for transport of
multiple, 916–918
Ion implantation, 692
Ion-plasma coating deposition, 1835
Irradiated alloys, 705
Irradiation
AKMC simulations of precipitation without,
712–713
effect, 712
Monte–Carlo simulations of precipitation
under, 705–727
Irradiation-induced defects, 145–146
IR spectroscopy, 663
Island growth
morphology, 41, 42
simulation methods, 39–41
stress–thickness ?h vs. number of adatoms
N, 42, 43
surface or interface stresses, 43, 45
wafer curvature experiment, 45
Isothermal treatment, 1568, 1571
Izod testing, 2101, 2102
J
Jaumann stress rate, 1427
J-integral, 1473, 1474, 1476, 1478, 1480, 1481,
1488, 1490, 1497
approach, 1808
function, 1478, 1479
Jogged dislocation
atomic structures of, 596
in nanotwinned metals, 595–597
Johnson–Cook cumulative-damage fracture
model, 1433–1434
Johnson–Cook flow stress model, 1431
Johnson–Cook model, 852, 862
K
Kernel function, 1419–1420
renormalization, 1441
Kernel support incompleteness, 1441
2418 IndexKevlar aramid fiber, 2040
Kinetic demixing, 904, 925–932
Kinetic Monte–Carlo (KMC) method,
247–248, 676
obstacle strength, 254–255
simulations, 705
Kinetics of precipitation, 712
Kink angle, 1480, 1481, 1489
L
Lab-scale microtomography, 2016–2018
Lagrangian incremental deformation gradient
tensor, 800
Lamp furnace, 1922
quartz lamps, 1922
Langevin dynamics, 422
Langevin equation, 440
Larché and Cahn model, 910
Large deformation, 1779
Large-scale atomic/molecular massively
parallel simulator (LAMMPS),
61, 772
Laser diffraction technique, 2039
Laser Doppler vibrometer, 118
Laser sintering (LS), 2364
Lattice free and on-the-fly methods, 723–724
Layer-wise fabrication, stair-step effect, 2358
Leapfrog method, 1445
Lennard–Jones EAM (LJ-EAM) potential, 40
Lennard–Jones potential, 1444
Lennard–Jones (LJ) type film, 22
Level-set functions, 1471, 1493
Level set method, 1470
Light-weight structural materials, 846
Li-ion batteries, 902
Lin and Thomson model, 2128
Linear-elastic, 1467
fracture mechanics, 1472, 1473, 1477,
1479, 1481, 1498
regime, 919
Linear elasticity theory, 74
Linear intercept method, 2262
Linear static model, 1770
Linear thermoelasticity, 1425
Linear Voce hardening law, 854
Linked linear list, 1443
Liquidus temperature, 1831
Lithiation, 826, 827
induced buckling of elastic-perfectly plastic
nanowire, 838–841
induced buckling of nanowire, 832–838
of Si, 837
Load cases, 1467
Load sharing, and multiscale computation
techniques, 1295
Localized plastic deformation (LPD)
construction, 1521
form, 1507
Long stress-plateau, 2094
Loop test, single fibres, 2040–2041
Lorentz–Berthelot rules, 21
Loss factor, 2000
Low-angle boundaries (LABs), 1664
Low cycle fatigue (LCF), 1938–1942
Low cycle property
cyclic softening, 1637–1643
cyclic stress-strain relationship, 1647
hysteresis loops, 1644–1648
Lüders band initiation
geometrical parameters, 1550
Hall–Petch effect, 1556
hyperbolas, 1548, 1549
profiles, 1555
relaxation value, 1548
semiaxis of fictitous ellipses, 1555
?
y-component, 1554
tangent of ellipse, 1546
tripple grain junction, 1555
zones, 1551
Lumped model, 2313, 2314
M
Machining tools, productivity and wear
resistance of, 1302
Macromechanical behavior, 665
Macropores, 1327
Macroscopic models, 902
Macroscopic strain hardening ratio,
see Dislocation accumulation
Magnesium (Mg), 846, 855
<001> dislocation, 349–350
dynamic mechanical behavior of, 848, 861,
864, 869
extensive research, 332
high concentration of alloying element,
346–348
low concentration of solute elements, 337
manufacture routes, 332
medical field, 332
semi-empirical potentials, 333–335
solute element and dislocations
interaction, 343–346
stacking fault energy surface, 337–343
structural defects, 335–337
?-surface in B2-structure, 348–349
Index 2419Magnesium single crystal
dynamic stress-strain curves of, 856–857
FEM of stress-strain relations of, 864–869
maximum stress and fracture strain of,
857–860
theoretical stress-strain relations of, 861
Majumdar and Burns analysis, 2126–2128
Mandel stress, 1353
Martensite lath boundaries (MLB), 1634
Martensitic transformations
Ni2MnGa, 1581–1582
Ni-Mn-Ti alloys, 1583, 1584
Ti50Ni50, 1569–1572
Ti50Ni50-xCux, 1573–1576
Ti50Ni50-xFex, 1577–1580
Mason–Coffin model, 1632
Mass action law, 1820
Mass attenuation coefficients, 2018
Mass concentrations, 1830
Mass density, 1356
Material degradation and damage, 1468
Material derivative, 1421
Material equation of state, 1426
Material properties, 1920
Material velocity field, 1351
MATLAB functions, 2210
Matricity model
adjusting matricity, 1619
cluster parameter r, 1623
definition, 1617, 1618
embedded cell model, 1618, 1619
mechanical constants, 1622, 1623
microstructures, 1624, 1625
stress-strain curves, 1621, 1623, 1626
weighting factors, 1620, 1621
yield stress, 1622, 1625, 1626
Matter flux velocity, 1176
Maximum circumferential stress criterion,
1480, 1488
Maximum energy release rate, 1481
Maxwell stress, 2302
effect, 2307
Me/Al2O3 interfaces, 203, 221
Mean field rate theory (MFRT), 676, 693
Mean square displacement (MSD), 691
Mechanical annealing, 2169
Mechanical behavior, 1597, 1598
matricity (see Matricity model)
Mechanical energy transfer simulation method,
1171–1175
Mechanical properties, 735, 743, 747, 753
polymeric materials, 58–60
Mechanical testing, 1957, 1961, 1971
Mechanical threshold stress (MTS) model,
853–854
Mechanics, 658, 1354–1355
damage-mechanics, 1357–1358, 1365–1368
Kirsch’s plate, 1363
thermo-mechanics, 1355–1356, 1363–1365
Mechanics of deformed solid (MDS), inverse
problems, 1542
Mechanostat theory, 1774
Membrane strain tensor, 499
Membrane stresses and moments, 499–502
equilibrium equations for, 500–502
Mesh-conforming cracks
cohesive model failure, 1493
element removal technique, 1492
node release, 1490
remeshing, 1492
representation, 1469, 1470
Mesh-free methods, 404, 1468
Mesio-occlusal-distal (MOD)
restorations, 1770
Mesoanalysis, 618, 619
Mesocell, 619, 626
Meso-micro-and nano-scales, 1677
Mesovolume, 629, 630
formation, 619
Metal-Al2O3 interface, 202, 235
Metallic alloys
non-localized deformation
in, 610–612
radiation damage in, 675–696
Metallic glasses (MGs), 20
Cu-Zr-Al, 20, 28
plastic deformation in, 607
thin films, 25
Metallic materials, 1214
Metal matrix composites (MMCs)
axisymmetric cell model, 1613
composite strengthening, 1611, 1612
damage evolution, 2023
definition, 1597
different matrix shapes, 1608
Duva model, 1611
experiment, 1605–1607
fiber and particle arrangement, 1607
fiber shape and clustering, 1597
geometrical shape, 1607
inclusion volume fraction, 1607, 1610
iterative modeling procedure, 1604–1606
low matrix strain-hardening ability, 1613
low particle volume fractions, 1613
mechanical behavior, 1598
model formulation, 1599–1601
2420 IndexOldroyd model, 1611
strengthening model, 1614
stress-strain curves, 1608, 1609
2D embedded cell model, 1603–1604
transverse mechanical behavior, 1597
3D embedded cell model, 1603–1604
unit cell models, 1601–1603
Metal microstructures, 1214
Metal nanostructure, 653
Metal nanowires, 4
Metropolis algorithm, 707
Microbalance, 2334
Microbump(s)
formation and joining, 877–878
potential structure material in, 890–892
Micro-cracks, 1497, 1771, 2255
MicroCT-scan, 2090, 2115–2117
Micro-electromechanical systems (MEMS), 60,
760, 1957, 1958, 1961, 1962, 1964,
1965, 1968
Micrographs, 1495
Micromachining process, 2297
Micromechanical approach, 1597
Micromechanical behavior, of single-crystalline
Cu6Sn5, 885–887
Micromechanics model
for nanocomposites, 538–540
Norton type creep, 1040–1041
rate dependent cohesive zone model,
1041–1044
Micro-mechanics of failure (MMF) theory, 956
Micropillar compression, 880–881, 884–885,
2226, 2228
issues in, 892–895
of single-crystalline Cu6Sn5, 885–889
of single-crystalline Ni3Sn4, 889–892
Micropillar fabrication, 882–884
synthesis of Sn-based intermetallic
compound, 882–883
Micropores, 1327
Micro Raman strain measurement, 2045–2047
Micro scale, 1129, 1148, 1151
models, 1496
Microscopic structural voids, 59
Microscopic theory, of flexoelectric effect, 559–561
Microstructural crack nucleation, 1197–1208
Microstructurally small cracks, 1192, 1193, 1198
Micro-structural parameters, 2354
Microstructural simulations of crack
propagation, 1495
Microstructure, 1495, 1497, 2015, 2020, 2024
length scale, 1222
temperature effects on, 27–29
Microstructure-based finite element method,
1241, 1248
Mie–Grüneisen EoS, 1426
Mindlin’s analysis, 797
Mises–Schleicher yield criterion, 1321
Mixed-mode cracks, 1467, 1473, 1483, 1484,
1487, 1496
Mixed-mode loading, 1484, 1487
Mixed-mode situation, 1485
Modeling, 2125, 2133
cracks, 1468
Moisture, 58–59, 67, 76–77
Molecular beam epitaxy (MBE), 35
Molecular dynamics (MD), 296, 397, 422, 465,
617, 761, 1468, 1495
deformation mechanism
atomic shear strain distribution, 310
dislocation mediated mechanisms,
316–322
grain boundary mediated mechanisms,
311–315
in NC metals, 311
grain boundaries, 302
mechanical behavior, 308–310
methodology
atomic structure analysis, 306–307
interatomic potential, 306
nanocrystalline sample construction,
303–304
time and length scale restrictions, 305
models, 21–23, 442
NC metals, mechanical properties, 302
numerical simulation, 618–619
obstacle strength, 254–255
physical model, 617
polycrystalline metals, 302
for quasi-static loading, 763
radiation damage, 678
simulations, 20–22, 59–60, 217, 232,
249–250, 705, 1195–1197
Monte Carlo model, 375
Monte-Carlo simulations
dynamical interpretation of, 706–708
of precipitation under irradiation, 705–727
Moore, Gordon E., 874–876
More-than-Moore, 874–876
Mori–Tanaka scheme, 1297
Movable Cellular Automaton (MCA) method,
1315, 1678
elastic-plastic model, 1685–1688
fracture model and criteria, 1688–1690
general statements, 1681–1685
high-rate processes, 1699–1700
Index 2421Multi-axial elemental strength model, 958
Multi-field coupling, 797
Multi-filaments tows, 974
Multilayer coatings, 1836
Multilayered disc
ASTM formulas, 1096–1097
biaxial stress, 1096
Hsueh et al.’s rigorous formulas
bilayered systems, 1103–1104
conversion, 1103
correlation, 1099–1103
Hsueh et al.’s simplified formula, 1104–1107
Roark’s formulas, 1097–1099
Multiphase and multicomponent materials,
1822–1824
Multi-physics coupling approach, algorithm
for, 1361, 1362
Multi-scale modeling, 187
Multi-wall carbon nanotubes (MWCNTs),
515, 533
cohesive law for infinitely long, 526–535
cohesive law for two finite, 535–538
N
Nabarro–Herring creep, 1251
Nacre structure, 1304
Nano-beam, vibration amplitude of, 423
Nano-cantilever torsion, 103
Nanocellulose reinforcement, 1301
Nanocomposites, micromechanics model for,
538–540
Nanoindentation, 760, 878–879, 2226
adhesion, 2004, 2005
Al/SiC multilayer thin films, 2006
axisymmetric process, 1988
Berkovich indenter, 1986
circular contact edge, 1983
contact stiffness, 1989
creep parameters, 1997–2000
elastic analysis of loading, 1984
elastic solutions, 1985
fracture toughness, 2003, 2004
hardness and elastic modulus, 1987–1989
heterogeneous materials, 2006–2010
hydrostatic stress, 1996
indentation displacement, 1983
indentation load-displacement response,
1998
indentation strain rate, 1999
indenter material, 2223
load-displacement curve, 1988
nanotwinned metals under, 598
nominal geometric relations and parameters,
1987
numerical modeling, 1992–1996
Poisson’s ratio, 1985
projected contact area, 1990
raw measurements, 1990–1991
residual stresses, 2000–2003
size effect, 763, 770
Sneddon’s analyses, 1984
Sneddon’s solutions, 1984
spherical indentation, 2001
tests, 1986
thermal drift, 2221
thin films, 1991, 1992
time-dependent deformation, 1996
Vickers indentation, 2004
viscoelastic deformation, 2000
Nanoindenter, 878, 880
Nanolayered metallic composites, 593
Nanoscale
flexoelectric effect at, 550
single crystalline Si in, 124–126
Nanoscale components
cracking criterion simplification, 102–106
creep cracking of interface in, 109–113
fatigue fracture of interface, 113–117
high-cycle fatigue
fatigue fracture in, 118–121
fatigue mechanism of, 121–122
resonant vibration, 117–118
interface cracking in
crack initiation at interface, 107–108
plastic deformation, 107, 108
specimen design, 106–107
modulation of location for crack initiation,
98–102
modulation of mode mixity for mixed-mode
interface cracking, 102–103
Nanoscale ferroelectrics
dielectric and mechanical response of,
569–570
impacts on domain patterns of, 575–580
Nanoscale materials, 2145, 2147, 2161
Nanoscale single crystalline materials, fracture
of, 122–127
Nanoscale twin boundaries (TBs)
strengthening by, 592–593
toughening by, 599–602
Nanostructure, 665
cross-size influence, 642–649
energy absorption by, 620–624
2422 Indexmetal, 653
rotary field in, 616, 632–642
wave process in, 617
Nanostructured metals, mechanical properties
of, 593–595
Nanotwinned metals, 593
continuous strengthening in, 597–598
crack propagation in, 600
delocalized deformation in, 602–606
Jogged dislocation in, 595
under nanoindentation, 598–599
threading dislocation in, 593
Nanotwinned nanorods
physical origin of torsional detwinning
domino in, 604–606
torsion of, 602–604
Nanowires, 1957, 1961, 1963, 1966–1968,
1970, 1971, 1973–1977
lithiation induced buckling of, 832–838
Nature microstructure, 2302
Nb/Al2O3 interfaces, 210
Negative Poisson’s ratio, 735, 755
Neighborhood search, 1443
Nernst-Planck equation, 917
Neutral species, state functions for transport of,
913–916
Newton–Euler motion equations, 1681
Newton–Raphson algorithm, 948
Ni/Al2O3 interface, 202
Nickel-titanium alloy, 1780
Nikolaevsky’s model, 1321
9-12%Cr ferritic-martensitic steel
chemical composition and microstructure,
1632–1634
efficiency and steam parameters, 1631
fatigue crack growth, 1658–1664
fatigue crack nucleation, 1655–1657
fatigue damage accumulation, 1650, 1651
fatigue life, 1654
life prediction, 1650–1654
microstructure evolution, 1664–1671
strengthening mechanism, 1634–1637
USC unit generator, 1630, 1631
Nitride coating, 1845
Nix and Gao model, 761
Node-release, 1491
scheme, 1469, 1490
technique, 1490, 1491
Node separation/element removal techniques,
1493
Nominal stress, 1793
Non-contact measurements, 1925
Non-equilibrium interstitial structural states, 1266
Non-linear GMRES method, 1360
Nonlinear interface cohesive law, 538–540
Nonlinearity, geometric, 455
Nonlinear piezoelectricity, 799
Non-linear Richardson method, 1360
Nonlinear thermal vibration, of SWCNTs,
444–461
Nonlinear wave theory, 616
Nonlocal elastic plate model, RMS amplitude
of RSLGS via, 462–464
Nonlocal piezoelectric effect, 551
Non-planar nonlinear beam model, thermal
vibration via, 449–455
Norgett, Robinson, and Torrens (NRT), 688
Normal distribution, 965–966
Normality condition, 1429
Normalization condition, 1440
Norton’s power law, 111
Norton type creep, 1040–1041
Nosé–Hoover thermostat, 458
Nuclear power plant, 674
Nucleating fracture, 918
Numerical fracture, 1437
Numerical simulation, 1019, 1022, 1028, 1031
Numerical time integration, 1445–1446
O
Object kinetic Monte Carlo (OKMC), 720–722
simulations, 705, 706
Observed cyclic nature, 50
Occlusal Fingerprint Analyser software (OFA),
1770
Oldroyd model, 1598, 1610, 1611
Oliver–Pharr method, 24, 27, 879
1D composite and minicomposite, matrix
fragmentation in, 967–974
Onion actuator
demonstration of, 2335–2339
electrode design, 2320–2322
epidermal cell layer, 2315–2317
freeze-drying, 2316–2320
measurement of, 2329–2336
operation of, 2303–2309
with bending actuation, 2307–2315
Onion epidermal cell, 2315–2317
acid pretreatment, 2318–2319
cell orientation, 2321–2323
phenol-sulfuric method, 2322–2327
test of modulus of elasticity, 2327–2331
X-ray diffractometer, 2326–2328
Index 2423Onion tactile sensor
demonstration, 2346–2348
design, 2340–2341
electrode design, 2342–2344
measurement, 2343–2346
sensing mechanisms, 2340–2343
Open-cell foams, 2086–2087
Optical profilometry, 2271
Oriented minimum bounding box, 1444
Orowan equation, 1215
Orowan stress, 1216, 1218, 1228
Orthodontics, 1763
Orthogonal metal cutting, 1454–1459
Osteons, 1496
Oxide dispersion strengthened (ODS)
alloys, 720
materials, 142–145
steels, 1637
P
Pair distribution function (PDF), of films, 23
Palmgreen–Miner law, 1650
Pande, Masamura and Chou-Mode-I,
2128–2133
Pande, Masamura and Chou-Mode-III, 2133
Parallelization, 726
Paris law, 1486, 1487
Partial differential equations (PDEs), 1349,
1353
Peach–Koehler force, 598
Peierls–Nabarro stress, 1226
Peierls stress, 2173
Penetration, 1697
Penta-twinned silver nanowire, 12–14
Peridynamics, 404
Periodic boundary condition, 773
Persistent slip band (PSB), 1655, 2138
Phantom node technique, 1494
Phase contrast imaging, 2018
Phase-field method (PFM), 248–249,
1468, 1822
obstacle strength, 254–255
Phenol-sulfuric acid method, 2322–2327
Physical mesomechanics, 1160
Piezoresistive sensing mechanism, 2298
Piola–Kirchhoff membrane stress tensor,
499, 908
Piola–Kirchhoff stress tensor, 815
Planar nonlinear beam model, thermal vibration
via, 445–448
Plane strain, 1467, 1481
Plane stress, 1467, 1481
Plastic deformation, 107, 595, 603, 1214,
1242, 1941
different strain state, 1507
edge effects, 1537–1539
elastically deformed matrix, 1511
gradient, 1352
jump-like propagation, 1539–1542
Kirsch’s solution, 1511
Lüders band initiation (see Lüders band
initiation)
mesoscopic scale, 1507
in metallic glass matrix composites, 607–609
non-homogeneous distribution, 1505
in polycrystals, 1542–1545
qualitative and quantitative discrepancies,
1515
RE with gradients, 1515–1520
simulation, 1531–1532
stress relaxation of pure shear, 1514
stress strain state, 1511
testing device, 1534–1537
with tensor of stress relaxation,
1509–1511
Plastic grooving model, 2260
Plasticity, 133, 1428
effects of, 1026–1030
high temperature, 1245
model, 1428–1433
Plastic nanowire, lithiation induced buckling of
elastic-perfectly, 838–841
Plastic shear strain, 1214, 1224
Plastic zone size, 2130
Plate model, with initial stress, 469
Plate theory, for graphene based on interatomic
potential, 487–495
Platic deformation, localization modelling,
1532–1534
Ploughing deformation, 2277
Poisson’s ratio, 69, 1467
Polarization, in ferroelectric thin films,
573–575
Polycrystal
?
cr, 1545
?
maxdefines, 1543
with regular hexagonal grains, 1056–1061
Polycrystalline ceramic, creep fracture, 1038
Polycrystalline magnesium, 346
AZ31 magnesium alloy, 864–869
FEM of stress-strain relations of, 864–869
maximum stress and fracture strain of,
857–860
stress-strain curves of, 856–857
theoretical stress-strain relations of, 861
2424 IndexPolycrystalline model, 1077–1079
creep competing mechanism, 1081–1083
diffusion mechanism, 1082–1085
grain boundary sliding, 1084–1088
Poly-lactic acid (PLA) composites, 2363
Polymer, 988
degradation, 989
foams, 2084
materials, 662
surface roughness, 523–526
Polymer consistent force field (PCFF),


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم


رابط من موقع عالم الكتب لتنزيل كتاب Handbook of Mechanics of Materials
رابط مباشر لتنزيل كتاب Handbook of Mechanics of Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Handbook of Mechanics of Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: