كتاب Mechanical Behavior of Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Mechanical Behavior of Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16359
التقييم : 28273
تاريخ التسجيل : 01/07/2009
العمر : 32
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Mechanical Behavior of Materials  Empty
مُساهمةموضوع: كتاب Mechanical Behavior of Materials    كتاب Mechanical Behavior of Materials  Emptyالسبت 08 أغسطس 2020, 8:02 pm

أخوانى فى الله
أحضرت لكم كتاب
Mechanical Behavior of Materials
Marc Andre Meyers
University of California, San Diego
Krishan Kumar Chawla
University of Alabama at Birmingham  

كتاب Mechanical Behavior of Materials  M_b_o_10
و المحتوى كما يلي :


Contents
Preface to the First Edition page xvii
Preface to the Second Edition xxi
A Note to the Reader xxiii
Chapter 1 Materials: Structure, Properties, and
Performance 1
1.1 Introduction 1
1.2 Monolithic, Composite, and Hierarchical Materials 3
1.3 Structure of Materials 15
1.3.1 Crystal Structures 16
1.3.2 Metals 19
1.3.3 Ceramics 25
1.3.4 Glasses 30
1.3.5 Polymers 31
1.3.6 Liquid Crystals 39
1.3.7 Biological Materials and Biomaterials 40
1.3.8 Porous and Cellular Materials 44
1.3.9 Nano- and Microstructure of Biological Materials 45
1.3.10 The Sponge Spicule: An Example of a Biological Material 56
1.3.11 Active (or Smart) Materials 57
1.3.12 Electronic Materials 58
1.3.13 Nanotechnology 60
1.4 Strength of Real Materials 61
Suggested Reading 64
Exercises 65
Chapter 2 Elasticity and Viscoelasticity 71
2.1 Introduction 71
2.2 Longitudinal Stress and Strain 72
2.3 Strain Energy (or Deformation Energy) Density 77
2.4 Shear Stress and Strain 80
2.5 Poisson’s Ratio 83
2.6 More Complex States of Stress 85
2.7 Graphical Solution of a Biaxial State of Stress: the
Mohr Circle 89
2.8 Pure Shear: Relationship between G and E 95
2.9 Anisotropic Effects 96
2.10 Elastic Properties of Polycrystals 107
2.11 Elastic Properties of Materials 110
2.11.1 Elastic Properties of Metals 111
2.11.2 Elastic Properties of Ceramics 111
2.11.3 Elastic Properties of Polymers 116
2.11.4 Elastic Constants of Unidirectional Fiber Reinforced
Composite 117viii CONTENTS
2.12 Viscoelasticity 120
2.12.1 Storage and Loss Moduli 124
2.13 Rubber Elasticity 126
2.14 Mooney--Rivlin Equation 131
2.15 Elastic Properties of Biological Materials 134
2.15.1 Blood Vessels 134
2.15.2 Articular Cartilage 137
2.15.3 Mechanical Properties at the Nanometer Level 140
2.16 Elastic Properties of Electronic Materials 143
2.17 Elastic Constants and Bonding 145
Suggested Reading 155
Exercises 155
Chapter 3 Plasticity 161
3.1 Introduction 161
3.2 Plastic Deformation in Tension 163
3.2.1 Tensile Curve Parameters 171
3.2.2 Necking 172
3.2.3 Strain Rate Effects 176
3.3 Plastic Deformation in Compression Testing 183
3.4 The Bauschunger Effect 187
3.5 Plastic Deformation of Polymers 188
3.5.1 Stress--Strain Curves 188
3.5.2 Glassy Polymers 189
3.5.3 Semicrystalline Polymers 190
3.5.4 Viscous Flow 191
3.5.5 Adiabatic Heating 192
3.6 Plastic Deformation of Glasses 193
3.6.1 Microscopic Deformation Mechanism 195
3.6.2 Temperature Dependence and Viscosity 197
3.7 Flow, Yield, and Failure Criteria 199
3.7.1 Maximum-Stress Criterion (Rankine) 200
3.7.2 Maximum-Shear-Stress Criterion (Tresca) 200
3.7.3 Maximum-Distortion-Energy Criterion (von Mises) 201
3.7.4 Graphical Representation and Experimental Verification
of Rankine, Tresca, and von Mises Criteria 201
3.7.5 Failure Criteria for Brittle Materials 205
3.7.6 Yield Criteria for Ductile Polymers 209
3.7.7 Failure Criteria for Composite Materials 211
3.7.8 Yield and Failure Criteria for Other Anisotropic
Materials 213
3.8 Hardness 214
3.8.1 Macroindentation Tests 216
3.8.2 Microindentation Tests 221
3.8.3 Nanoindentation 225
3.9 Formability: Important Parameters 229
3.9.1 Plastic Anisotropy 231CONTENTS ix
3.9.2 Punch--Stretch Tests and Forming-Limit Curves
(or Keeler--Goodwin Diagrams) 232
3.10 Muscle Force 237
3.11 Mechanical Properties of Some Biological Materials 241
Suggested Reading 245
Exercises 246
Chapter 4 Imperfections: Point and Line Defects 251
4.1 Introduction 251
4.2 Theoretical Shear Strength 252
4.3 Atomic or Electronic Point Defects 254
4.3.1 Equilibrium Concentration of Point Defects 256
4.3.2 Production of Point Defects 259
4.3.3 Effect of Point Defects on Mechanical
Properties 260
4.3.4 Radiation Damage 261
4.3.5 Ion Implantation 265
4.4 Line Defects 266
4.4.1 Experimental Observation of Dislocations 270
4.4.2 Behavior of Dislocations 273
4.4.3 Stress Field Around Dislocations 275
4.4.4 Energy of Dislocations 278
4.4.5 Force Required to Bow a Dislocation 282
4.4.6 Dislocations in Various Structures 284
4.4.7 Dislocations in Ceramics 293
4.4.8 Sources of Dislocations 298
4.4.9 Dislocation Pileups 302
4.4.10 Intersection of Dislocations 304
4.4.11 Deformation Produced by Motion of Dislocations
(Orowan’s Equation) 306
4.4.12 The Peierls--Nabarro Stress 309
4.4.13 The Movement of Dislocations: Temperature and
Strain Rate Effects 310
4.4.14 Dislocations in Electronic Materials 313
Suggested Reading 316
Exercises 317
Chapter 5 Imperfections: Interfacial and Volumetric
Defects 321
5.1 Introduction 321
5.2 Grain Boundaries 321
5.2.1 Tilt and Twist Boundaries 326
5.2.2 Energy of a Grain Boundary 328
5.2.3 Variation of Grain-Boundary Energy with
Misorientation 330
5.2.4 Coincidence Site Lattice (CSL) Boundaries 332
5.2.5 Grain-Boundary Triple Junctions 334x CONTENTS
5.2.6 Grain-Boundary Dislocations and Ledges 334
5.2.7 Grain Boundaries as a Packing of Polyhedral Units 336
5.3 Twinning and Twin Boundaries 336
5.3.1 Crystallography and Morphology 337
5.3.2 Mechanical Effects 341
5.4 Grain Boundaries in Plastic Deformation (Grain-size
Strengthening) 345
5.4.1 Hall--Petch Theory 348
5.4.2 Cottrell’s Theory 349
5.4.3 Li’s Theory 350
5.4.4 Meyers--Ashworth Theory 351
5.5 Other Internal Obstacles 353
5.6 Nanocrystalline Materials 355
5.7 Volumetric or Tridimensional Defects 358
5.8 Imperfections in Polymers 361
Suggested Reading 364
Exercises 364
Chapter 6 Geometry of Deformation and
Work-Hardening 369
6.1 Introduction 369
6.2 Geometry of Deformation 373
6.2.1 Stereographic Projections 373
6.2.2 Stress Required for Slip 374
6.2.3 Shear Deformation 380
6.2.4 Slip in Systems and Work-Hardening 381
6.2.5 Independent Slip Systems in Polycrystals 384
6.3 Work-Hardening in Polycrystals 384
6.3.1 Taylor’s Theory 386
6.3.2 Seeger’s Theory 388
6.3.3 Kuhlmann--Wilsdorf’s Theory 388
6.4 Softening Mechanisms 392
6.5 Texture Strengthening 395
Suggested Reading 399
Exercises 399
Chapter 7 Fracture: Macroscopic Aspects 404
7.1 Introduction 404
7.2 Theorectical Tensile Strength 406
7.3 Stress Concentration and Griffith Criterion of
Fracture 409
7.3.1 Stress Concentrations 409
7.3.2 Stress Concentration Factor 409
7.4 Griffith Criterion 416
7.5 Crack Propagation with Plasticity 419
7.6 Linear Elastic Fracture Mechanics 421
7.6.1 Fracture Toughness 422CONTENTS xi
7.6.2 Hypotheses of LEFM 423
7.6.3 Crack-Tip Separation Modes 423
7.6.4 Stress Field in an Isotropic Material in the Vicinity of a
Crack Tip 424
7.6.5 Details of the Crack-Tip Stress Field in Mode I 425
7.6.6 Plastic-Zone Size Correction 428
7.6.7 Variation in Fracture Toughness with Thickness 431
7.7 Fracture Toughness Parameters 434
7.7.1 Crack Extension Force G 434
7.7.2 Crack Opening Displacement 437
7.7.3 J Integral 440
7.7.4 R Curve 443
7.7.5 Relationships among Different Fracture Toughness
Parameters 444
7.8 Importance of K I c in Practice 445
7.9 Post-Yield Fracture Mechanics 448
7.10 Statistical Analysis of Failure Strength 449
Appendix: Stress Singularity at Crack Tip 458
Suggested Reading 460
Exercises 460
Chapter 8 Fracture: Microscopic Aspects 466
8.1 Introduction 466
8.2 Facture in Metals 468
8.2.1 Crack Nucleation 468
8.2.2 Ductile Fracture 469
8.2.3 Brittle, or Cleavage, Fracture 480
8.3 Facture in Ceramics 487
8.3.1 Microstructural Aspects 487
8.3.2 Effect of Grain Size on Strength of Ceramics 494
8.3.3 Fracture of Ceramics in Tension 496
8.3.4 Fracture in Ceramics Under Compression 499
8.3.5 Thermally Induced Fracture in Ceramics 504
8.4 Fracture in Polymers 507
8.4.1 Brittle Fracture 507
8.4.2 Crazing and Shear Yielding 508
8.4.3 Fracture in Semicrystalline and Crystalline Polymers 512
8.4.4 Toughness of Polymers 513
8.5 Fracture and Toughness of Biological Materials 517
8.6 Facture Mechanism Maps 521
Suggested Reading 521
Exercises 521
Chapter 9 Fracture Testing 525
9.1 Introduction 525
9.2 Impact Testing 525
9.2.1 Charpy Impact Test 526xii CONTENTS
9.2.2 Drop-Weight Test 529
9.2.3 Instrumented Charpy Impact Test 531
9.3 Plane-Strain Fracture Toughness Test 532
9.4 Crack Opening Displacement Testing 537
9.5 J-Integral Testing 538
9.6 Flexure Test 540
9.6.1 Three-Point Bend Test 541
9.6.2 Four-Point Bending 542
9.6.3 Interlaminar Shear Strength Test 543
9.7 Fracture Toughness Testing of Brittle Materials 545
9.7.1 Chevron Notch Test 547
9.7.2 Indentation Methods for Determining Toughness 549
9.8 Adhesion of Thin Films to Substrates 552
Suggested Reading 553
Exercises 553
Chapter 10 Solid Solution, Precipitation, and
Dispersion Strengthening 558
10.1 Introduction 558
10.2 Solid-Solution Strengthening 559
10.2.1 Elastic Interaction 560
10.2.2 Other Interactions 564
10.3 Mechanical Effects Associated with Solid Solutions 564
10.3.1 Well-Defined Yield Point in the Stress--Strain Curves 565
10.3.2 Plateau in the Stress--Strain Curve and Luders Band ¨ 566
10.3.3 Strain Aging 567
10.3.4 Serrated Stress--Strain Curve 568
10.3.5 Snoek Effect 569
10.3.6 Blue Brittleness 570
10.4 Precipitation- and Dispersion-Hardening 571
10.5 Dislocation--Precipitate Interaction 579
10.6 Precipitation in Microalloyed Steels 585
10.7 Dual-Phase Steels 590
Suggested Reading 590
Exercises 591
Chapter 11 Martensitic Transformation 594
11.1 Introduction 594
11.2 Structures and Morphologies of Martensite 594
11.3 Strength of Martensite 600
11.4 Mechanical Effects 603
11.5 Shape-Memory Effect 608
11.5.1 Shape-Memory Effect in Polymers 614
11.6 Martensitic Transformation in Ceramics 614
Suggested Reading 618
Exercises 619CONTENTS xiii
Chapter 12 Special Materials: Intermetallics
and Foams 621
12.1 Introduction 621
12.2 Silicides 621
12.3 Ordered Intermetallics 622
12.3.1 Dislocation Structures in Ordered Intermetallics 624
12.3.2 Effect of Ordering on Mechanical Properties 628
12.3.3 Ductility of Intermetallics 634
12.4 Cellular Materials 639
12.4.1 Structure 639
12.4.2 Modeling of the Mechanical Response 639
12.4.3 Comparison of Predictions and
Experimental Results 645
12.4.4 Syntactic Foam 645
12.4.5 Plastic Behavior of Porous Materials 646
Suggested Reading 650
Exercises 650
Chapter 13 Creep and Superplasticity 653
13.1 Introduction 653
13.2 Correlation and Extrapolation Methods 659
13.3 Fundamental Mechanisms Responsible for
Creep 665
13.4 Diffusion Creep 666
13.5 Dislocation (or Power Law) Creep 670
13.6 Dislocation Glide 673
13.7 Grain-Boundary Sliding 675
13.8 Deformation-Mechanism (Weertman--Ashby)
Maps 676
13.9 Creep-Induced Fracture 678
13.10 Heat-Resistant Materials 681
13.11 Creep in Polymers 688
13.12 Diffusion-Related Phenomena in Electronic
Materials 695
13.13 Superplasticity 697
Suggested Reading 705
Exercises 705
Chapter 14 Fatigue 713
14.1 Introduction 713
14.2 Fatigue Parameters and S--N (Wohler) Curves ¨ 714
14.3 Fatigue Strength or Fatigue Life 716
14.4 Effect of Mean Stress on Fatigue Life 719
14.5 Effect of Frequency 721
14.6 Cumulative Damage and Life Exhaustion 721
14.7 Mechanisms of Fatigue 725xiv CONTENTS
14.7.1 Fatigue Crack Nucleation 725
14.7.2 Fatigue Crack Propagation 730
14.8 Linear Elastic Fracture Mechanics Applied to
Fatigue 735
14.8.1 Fatigue of Biomaterials 744
14.9 Hysteretic Heating in Fatigue 746
14.10 Environmental Effects in Fatigue 748
14.11 Fatigue Crack Closure 748
14.12 The Two-Parameter Approach 749
14.13 The Short-Crack Problem in Fatigue 750
14.14 Fatigue Testing 751
14.14.1 Conventional Fatigue Tests 751
14.14.2 Rotating Bending Machine 751
14.14.3 Statistical Analysis of S--N Curves 753
14.14.4 Nonconventional Fatigue Testing 753
14.14.5 Servohydraulic Machines 755
14.14.6 Low-Cycle Fatigue Tests 756
14.14.7 Fatigue Crack Propagation Testing 757
Suggested Reading 758
Exercises 759
Chapter 15 Composite Materials 765
15.1 Introduction 765
15.2 Types of Composites 765
15.3 Important Reinforcements and Matrix Materials 767
15.3.1 Microstructural Aspects and Importance of the
Matrix 769
15.4 Interfaces in Composites 770
15.4.1 Crystallographic Nature of the Fiber--Matrix
Interface 771
15.4.2 Interfacial Bonding in Composites 772
15.4.3 Interfacial Interactions 773
15.5 Properties of Composites 774
15.5.1 Density and Heat Capacity 775
15.5.2 Elastic Moduli 775
15.5.3 Strength 780
15.5.4 Anisotropic Nature of Fiber Reinforced Composites 783
15.5.5 Aging Response of Matrix in MMCs 785
15.5.6 Toughness 785
15.6 Load Transfer from Matrix to Fiber 788
15.6.1 Fiber and Matrix Elastic 789
15.6.2 Fiber Elastic and Matrix Plastic 792
15.7 Fracture in Composites 794
15.7.1 Single and Multiple Fracture 795
15.7.2 Failure Modes in Composites 796
15.8 Some Fundamental Characteristics of
Composites 799
15.8.1 Heterogeneity 799CONTENTS xv
15.8.2 Anisotropy 799
15.8.3 Shear Coupling 801
15.8.4 Statistical Variation in Strength 802
15.9 Functionally Graded Materials 803
15.10 Applications 803
15.10.1 Aerospace Applications 803
15.10.2 Nonaerospace Applications 804
15.11 Laminated Composites 806
Suggested Reading 809
Exercises 810
Chapter 16 Environmental Effects 815
16.1 Introduction 815
16.2 Electrochemical Nature of Corrosion in Metals 815
16.2.1 Galvanic Corrosion 816
16.2.2 Uniform Corrosion 817
16.2.3 Crevice corrosion 817
16.2.4 Pitting Corrosion 818
16.2.5 Intergranular Corrosion 818
16.2.6 Selective leaching 819
16.2.7 Erosion-Corrosion 819
16.2.8 Radiation Damage 819
16.2.9 Stress Corrosion 819
16.3 Oxidation of metals 819
16.4 Environmentally Assisted Fracture in Metals 820
16.4.1 Stress Corrosion Cracking (SCC) 820
16.4.2 Hydrogen Damage in Metals 824
16.4.3 Liquid and Solid Metal Embrittlement 830
16.5 Environmental Effects in Polymers 831
16.5.1 Chemical or Solvent Attack 832
16.5.2 Swelling 832
16.5.3 Oxidation 833
16.5.4 Radiation Damage 834
16.5.5 Environmental Crazing 835
16.5.6 Alleviating the Environmental Damage in Polymers 836
16.6 Environmental Effects in Ceramics 836
16.6.1 Oxidation of Ceramics 839
Suggested Reading 840
Exercises 840
Appendixes 843
Index 85
Index
abalone 41, 806--8
alpha-helix 49, 50
aorta 242
abductin 53
activation energy 657, 661, 662, 665,
666, 673
actin 4, 52
active materials 57
adhesion
thin films to substrates 552,
553
adiabatic curve 394, 395
adiabatic heating 192
adiabatic shear bands 395, 396
amino acids 48--50
anelasticity 74, 120
anisotropy 96, 213, 396, 799
annealing point 197, 198
antiphase boundary 624, 625, 628,
631
ARALL see composites
articular cartilage 137
atactic polymer see polymer
atomic point defects 25; see also
point defects
barreling 185, 186
Bauschinger effect 187, 188
Berg-Barrett topography 270
beta sheet 49, 50
biaxial test 162, 203, 208, 210, 212,
213, 230
bicycle frame
materials 11--15
biocompatibility 7
Bioglassr 7
bioimplants 42
biological materials 40--57, 241--5
biomaterials 40--56
biomimetics 42
blood vessels 134
blue brittleness 570
bone 242--5
cancellous 242--5
cortical 242--5
Brale indenter see hardness
branched polymers see polymers
Bravais lattices 16, 17
Bridgman’s correction 174, 175, 185
Brinell indenter see hardness
brittle materials 1, 2, 4, 7, 8, 41, 61,
205, 293, 412, 419 420, 422,
437, 443, 449--51, 474, 480--90,
494, 500--2, 507, 513
bubble raft 196
Budiansky and O’Connell equation
115, 118, 158
bulk modulus 101, 150--2
Burgers circuit see dislocation
Burgers vector see dislocation
cartilage 242
articular 137
cascade 262, 263
cavitation 472, 473, 657, 686, 687,
702, 70; see also void
cellular materials 44--6, 639--45
cellulose 53
Charpy impact test 526--9
Charpy impact instrumented test
531, 532
Chevron notch test 547
chitin 46, 54
cleavage 406--8, 467, 480--5, 533
Coble creep see creep
coincidence site lattice see grain
boundaries
cold working 369, 370, 385
collagen 51--5, 243
compliance 97, 99, 101, 111, 112,
118, 119, 145
composite(s) 7--9, 76, 117, 211
applications 803
aging response of matrix 785
anisotropic nature 783
applications 803
fracture 795
single and multiple 795
fundamental characteristics 799
heat capacity 775
importance of matrix 769
laminated 42, 121, 637, 806--9
abalone, 41, 806--8
aluminum/silicon carbide 809
aramid aluminum (ARALL) 807,
808
glass aluminum (GLARE) 807,
808
load transfer
fiber and matrix elastic 789
fiber elastic and matrix plastic
792
matrix materials 7, 67, 765--8
reinforcements 765--8, 770
compressibility 101
compression testing 183--6
Considère’s criterion 172, 229
controlled rolling treatment 586
corrosion 815--19
crevice 817
electrochemical nature 815
erosion 819
galvanic 816, 817
intergranular 818
pitting 818
stress 819
uniform 817
Cottrell atmosphere 562, 564, 601--4
Cottrell theory 349
crack
closure 748
extension force 434
nucleation 404, 468, 679
opening displacement 437
opening displacement testing
537
propagation 404, 730
propagation testing 75
propagation with plasticity 419
tip stress field 409, 423--7, 429,
444
crack extension force see crack
crack-tip opening modes 405, 423
crazing 210, 508, 511, 734
creep 653
Coble 660--70
compliance 690--3
correlation and extrapolation
methods 659
Larson-Miller 659--63
Manson-Haferd 661--3
Sherby-Dorn 659, 661--3
dislocation 670--3
diffusion coefficient 657, 661, 662,
666, 673, 686
electronic materials, in 695
fracture 678--80
mechanisms 665--70
Monkman-Grant equation661, 680,
681852 INDEX
creep (cont.)
Mukherjee-Bird-Dorn equation
657--9
Nabarro-Herring 666--70
polymers, in 688--93
Maxwell model 689, 690
Voigt model 689, 690
power law 670--3
rafting 683, 684
relaxation time 689, 690
rocks, in 654
stress relaxation 690--3
cross slip 288, 302, 384
crowdion(s) 262
crystal structures 16--30
DNA molecule 48, 140
optical trap 140
damage 262, 404
deep drawing 204, 229, 231
deformation energy density 77--9
deformation mechanism maps 676--8
density 3, 4, 8, 9, 27, 28, 30, 33, 36,
44, 45, 63, 768, 769, 775, 785,
803
diamond pyramid hardness see
hardness
diffusion coefficient 657, 661, 662,
666, 673, 686
dislocation (s)
Argon mechanism 195, 196
behavior 273
Burgers circuit 267--9, 272, 273
Burgers vector 196, 252, 267--9,
272, 273, 275, 276, 283--288,
291, 294--6, 301--4, 307, 308,
310
cells 288, 385, 388--91
climb 259, 270, 293, 297, 305, 312
deformation produced by 306
density 281, 298, 300, 307, 308,
379, 384--7, 390, 769, 774
energy 278, 296
ceramics, in 296
intermetallics, in 296
edge 259, 267--71, 273, 278, 280,
282, 296, 302--8, 313, 314
experimental observation of 270--3
emission 420
forest 304, 305, 312
Frank partial 288, 302
Frank’s rule 296
Frank-Read source 301, 302, 672
force required to bow 282
Gilman model 196
glassy silica, in 196
glide 673
helical 270
intersection, of 304
Johnston-Gilman equation 313
jogs 259, 304--8
Kear-Wilsdorf lock
kinks 304--7
line tension 283
Lomer-Cottrell lock 289, 671
loops 283, 274
misfit 313--5
Orowan’s equation 306--8
Peach-Koehler equation 282--4, 310
Peierls--Nabarro stress 309, 310, 312
pileup 302--4
screw 34, 259, 267, 270, 273,
275--7, 280, 282, 301--6, 313
sessile 288
sources 298--302
stair rod 290, 291, 298
stair way 290, 291
stress field 275, 278, 280, 282, 296
structures 624
ceramics 293
electronic materials 313
various structures 284
tangles 288, 385
velocity 313
dislocation-precipitate interaction
579
dispersion hardening 558, 559,
571--3, 576, 578, 588
dispersion strengthening see
dispersion hardening
draw ratio 127, 128
drop weight test 529--31
DS cast alloys 686
dual-phase steels 590
ductile material(s) 293, 421, 438,
443, 449, 450, 466, 469, 474,
480, 481, 484
ductile-brittle transition 481
temperature 272, 481, 485, 486
ductility 480, 634
earing 232
edge dislocation see dislocation
elastic constants
biological materials 134
ceramics 111
electronic materials 143
materials 110
metals 111
polymers 116, 119
polycrystals 107
unidirectional fiber reinforced
composites 102, 119, 120
elastic constants and bonding 145--55
elastic interaction 560
elastic modulus 77, 102, 117, 126,
134, 144, 145, 148, 149, 775
biaxial 144, 145
elastic properties
polycrystals 107--10
materials 110--120
elastic wave velocity 75, 77
elasticity 71
anisotropic 96--107
electronic materials 143--5
isotropic 99--101
nonlinear 126--33, 135, 136
rubber 126--33
elastin 53, 243
elastomer 121--8, 130--1
electronic materials 58, 59, 143--5,
695
electromigration 696, 697
interaction 147
environmental effects 404, 748,
815
ceramics 836--40
crazing 835, 836
intermetallics 638
metals 815--30
polymers 831--6
alleviating damage 836
Erichsen test 230, 232
extrusion(s) 161, 213, 231, 725--9
facture mechanism maps 521, 676--8;
see also Weertman-Ashby maps
failure criteria 199--214
failure modes in composites 796
fatigue
biomaterials 744--6
crack closure 748, 749
cumulative damage 721
crack nucleation 725
crack propagation 730--4
damage
cumulative 721--3
extrinsic mechanisms 744
intrinsic mechanisms 744
discontinuous crack growth 734
environmental effects 748
extrusions 725--9INDEX 853
frequency, effect of 721
hysteretic heating 746, 747
intrusions 725--9
linear elastic fracture mechanics
733--44
life 716, 721
life exhaustion 721--23
mechanisms 725--34
mean stress, effect of 719--21
Palmgren-Miner rule 723
Paris-Erdogan equation 736--46
parameters 714
persistent slip bands 725--9
residual stress, effect of 729, 730
S-N (Wohler) curves ¨ 714, 721
statistical analysis 753, 754
short crack problem 750, 751
shot peening 729, 730
strength 716
striations 731--4
two-parameter approach 749, 750
fatigue testing 751
conventional tests 751
rotating bending tests, 751, 752
servohydraulic machines 755,
756
flexure 454, 526, 540--4, 546
flexure test 540--4
flow criteria 169, 199
flow stress 161, 167, 174, 176, 177,
187, 188, 199--201, 204, 222--4
temperature, function of 312
fluidity 122
foams 621
syntactic 645
Focuson 262
forging 161, 369, 70, 395
formability 229--37
forming-limit curves 232
tests 230--7
Keeler-Goodwin diagrams 232--7
four-point bending 453, 542
fracture 794
biological materials 517
brittle 272, 466--9, 480, 484, 486,
507, 508
cleavage 480--6
ductile 421, 438, 443, 449, 466--8,
473--8, 481, 484, 487
environmentally assisted 820
Griffith criterion 406, 409, 410,
416--21, 443
intergranular 484, 522
mechanism maps 676--8
mechanisms and morphologies
467
ceramics, in 487--94
glass, in 490
metals, in 468--74
modes 405, 423, 424, 458
polymers, in 468--70, 507--16
fracture toughness 405, 422, 447
ceramics 446--7
metals 447
parameters 434--45
polymers 447
fracture toughness tests 532
chevron notch test 547
crack opening displacement test
537, 538
double cantilever beam test 546,
547
double torsion test 546, 547
indentation test 549--51
J-integral test 538, 539
plane strain fracture toughness
tests 532--7
free volume 209, 210
Frenkel defects 255
friction hill 187
Fukui test 230, 231
functionally graded materials 803
geometry of deformation 369--84
GLARE see composites
glass transition temperature 4, 30,
191, 194, 197
glasses 30, 193--6
metallic 193--6
Argon mechanism 196, 197
Gilman mechanism 196
plastic deformation 196
glassy polymers 189
graft copolymer 32, 33
grain boundary
coincidence site lattice 331--3
energy 328--33
variation with misorientation
330--2
ledges 330, 334--6, 350, 351
packing of polyhedral units 336
plastic deformation 322, 340,
345--9, 351, 352
sliding 675, 676
tilt 326
twist 326
triple junctions 334
grain boundary dislocations 334
grain boundary sliding 358, 675
grain size
ASTM 323--5
strengthening 260, 345--8, 355, 357,
358, 494, 627
Griffith
criterion for crack propagation
409--21
failure criterion 206--8
habit plane see martensitic
transformation
Hall-Petch relationship 346--8, 355,
357, 358, 630
hardness 214--23
Brale indenter 215, 219
Brinell 216--18, 219
diamond pyramid 219, 220, 221
Knoop 222, 223
microindentation 221--3
nanoindentation 225--8
Rockwell 218--20
Vickers 219, 220--3
Harper-Dorn equation see creep
heat resisting materials 681--8
high strength low alloy steels 586
Hooke’s law 75, 144, 407
generalized 85--7
hot working 369, 370
hydride formation 829
hydrogen damage
metals 824--30
theories 825--30
hydroxyapatite 46, 48
hypotheses of LEFM 423
hysteretic heating 746, 747
impact testing 525
imperfections in polymers 361
imperfections, point and line defects
251
implants 5--7
indentation tests for toughness
549--51
independent slip systems in
polycrystals 384
Inglis equation 410, 413, 418, 419
instrumented Charpy impact test 531
interfaces in composites 770
interfacial defects 321
interfacial bonding 772
interlaminar shear strength test 543
intermetallics 621
gold-based 621, 624854 INDEX
intermetallics (cont.)
ordered 622--7, 633
dislocation structure 624--7, 633
ductility 634
environmental effects 638
fatigue 631
Hall-Petch relationship 630
mechanical properties 627--34
macroalloying 636
microalloying 635
internal obstacles 353
interstitial defects 254--65, 295, 305,
558--62, 564, 565, 567--9
interstitial strengthening 564, 565,
567--9
intrusions 725--9
ion implantation 265
irradiation 263
voids due to 263
isotactic polymer 33
isotropic hardening 204
Izod test 526, 529
J-integral 439
testing 538
jogs see dislocations
Johnson-Cook equation 167
Johnston-Gilman equation 313
Kear-Wilsdorf lock see dislocation
Keeler-Goodwin diagrams see
formability
keratin 46, 52, 243
kinematic hardening 187, 204
kinks see dislocation
knock-on 263
Knoop indenter 222, 223
Kuhlmann-Wilsdorf theory of work
hardening 386, 388, 390, 391
ladder polymer 32
laminated composites 806; see also
composites
Larson-Miller parameter see creep
ledges see grain boundary
Li theory for grain size
strengthening 350
limiting draw ratio 231
line defects see dislocation
line tension see dislocation
lineal intercept 323--5
linear elastic fracture mechanics
(LEFM) 404, 421--48, 735--46,
750, 821--4
linear polymers 32, 33
liquid metal embrittlement 830,
831
liquid crystal(s) 39--41
logarithmic decrement 125
Lomer-Cottrell lock see dislocation
loops see dislocation
loss modulus 124
loss tangent 125
low-cycle fatigue tests 756
Luders band ¨ 566, 567
Ludwick-Hollomon equation 166
macroindentation tests 216
Manson-Haferd parameter see creep
martensite
acicular 597, 598
lath 597, 598
lenticular 597
mechanical effects 603--8
morphologies 594--8
strength, of 600--3
structure 594--8
twinned 598, 599
see also martensitic transformation
martensitic transformation 594--613
ceramics, in 614--18
habit plane 600
systems 595
undistorted and unrotated plane
600
materials
biological 134
artery 134, 135, 137
blood vessels 134
vein 134, 135
cartilage 137--40
mechanical properties, of
140--3, 241--5
composite 3--11
monolithic 3--11
structure 15--56
matrix materials 767--9, 774, 778
maximum distortion energy
criterion 201--4
maximum shear stress criterion
(Tresca) 200--4
maximum stress criterion (Rankine)
200, 480
Maxwell model 689, 690
McClintock-Walsh criterion 207,
208
Meyers-Ashworth theory 351
microalloyed steels 585, 586
microalloying 586
microhardness see microindentation
hardness
microindentation hardness tests
221
Miller indices 15--18
misorientation of grain boundary
322, 323, 326--30; see also grain
boundary
modulus see elastic modulus
Mohr circle 89--92
Mohr Coulomb failure criterion 206
molecular weight 36--8
Mooney-Rivlin equation 131, 132
Mukherjee-Bird-Dorn equation see
creep
muscle force 237--41
myosin 52, 54, 56
Nabarro-Herring creep see creep
nano- and microstructure
biological materials, of 45
nanocrystalline materials 355--8
nanoindentation 225
nanotechnology 60, 61
nanotubes 60--1
necking 164, 171--6, 189, 191, 371
Newtonian viscosity see viscosity
NiTiNOL 608
octahedral sites 255, 256, 295,
570
Olsen test 230, 232
ordered alloys see intermetallics
Orowan’s equation 306--8
orthotropic 98, 102, 117, 118, 784
oxidation
ceramics 839, 840
metals 819, 820
polymers 833, 834
Palmgren-Miner rule see fatigue
Paris-Erdogan equation see fatigue
Peach-Koehler equation see
dislocation
Peierls-Nabarro stress see dislocation
persistent slip bands 725--9
pileup see dislocation
plane strain fracture toughness 405,
447
ceramics 447
metals 447
polymers 447
plastic anisotropy 231INDEX 855
plastic deformation
compression, in 183
glasses, of 193
polymers, of 188
tension, in 163
plastic zone 534
plastic zone size correction 428--31
plasticity 161
point defects 254, 259
equilibrium concentration of
256
Poisson’s ratio 83--5, 87, 101, 121,
169, 170
pole figure 396
polygonization 390
polymers
atactic 33
block copolymers 32, 33
branched 32, 33, 35
crosslinked 32
defects 361--4
graft copolymers 32, 33
homopolymers 32, 33
isotactic 33
ladder 32
linear 32, 33, 35, 41
random copolymers 32, 33
syndiotactic 33
thermoplastic 33
thermoset 33, 514
Porous materials 44, 639--50
plastic behavior 646--50
post-yield fracture mechanics 448
precipitation
microalloyed steels, in 585
precipitation hardening 558, 559,
571--5, 577, 578, 581--6, 590
production of point defects 259
prostheses
hip replacement 5--7
knee replacement 5--7
proteins 47, 48
pseudoelasticity 608--11
punch-stretch tests 232
quasicrystals 38, 39
R curve 443
radiation damage 261, 819, 834
radiation effects 264, 265
rafting 683, 684
Rankine criterion 200, 480
reduction in area 170, 172, 174
reinforcements 767
relationships among fracture
toughness parameters 444
resilience 171
resilin 53, 243
Reuss average 107, 109, 110
Rockwell see hardness
rolling 161, 162, 176, 199, 204, 214,
231, 233
temper 234
rotating bending machine 751
rubber elasticity 126--32
Salganik equation 115, 118, 158
Schmid factor 377, 381--4, 398
Schmid law 377
Schotky defects 255
Seeger model 262, 263
Seeger work hardening theory 388
semicrystalline polymers 190
sensitization 818
serrated stress-strain curve 340, 568
servohydraulic testing machine 163,
755
sessile dislocation see dislocation
shape memory effect 595, 608--13
polymers, in 614
shear 80
banding 468, 511, 512
coupling 801
deformation 380
modulus 81, 102, 115, 154
pure 95, 96
yielding 210, 508
Sherby-Dorn parameter see creep
silicides 621--3
silk 54, 243
single crystal 34, 35, 383--6, 391,
395, 684--6
skin 242
slip 341--4
bands 383
conjugate 381, 382
critical 381, 382
cross 302, 381--5, 388
direction(s) 375, 376, 378, 380, 395
lines 383
markings 383
planes 384, 395
primary 381, 382, 384, 385, 388
systems 377, 378, 381, 382, 384,
385. 393
smart materials 57
S-N curves see fatigue
Snoek effect 569
softening mechanisms 392
softening point 197, 198
solid metal embrittlement 830, 831
solid solution strengthening 558--70
mechanical effects 564--70
spherulite(s) 35
sponge spicule 56
stacking fault 286--9, 291, 292, 297,
298, 303, 342, 343, 624, 626,
628, 634, 636
stair rod dislocation see dislocation
stamping 204, 229, 233, 236, 237,
369, 370
statistical analysis
failure strength, of 448
S-N curves, of 753
statistical variation in strength 802
stereographic projections 373, 375,
381--4, 398
stiffness 97, 99, 101, 111, 112, 118
storage modulus 124
strain
engineering 164--6, 171, 185
plane 87, 162, 418, 480, 532
point 197, 198
rate 197
shear 197
true 164--6, 170, 185
strain aging 567
strain energy density 77--9
strain memory effect 608, 610--13
strain rate effects 176, 189, 197, 310
strain rate sensitivity 197
strength 780
strength of martensite 600
strength of real materials 61
stress 72--83
compressive 174
barreling 174
plastic deformation 174
concentration 409
concentration factor 409
engineering 164--6, 171, 185
hydrostatic 209--11
effect on yielding 209--11
plane 86, 418
residual 136, 137
tensile 174
true 164--6, 170, 185
uniaxial 86
stress corrosion cracking (SCC)
820--4
ceramics, in 837--9
glass, in 837--9856 INDEX
stress relaxation 688--94
modulus 693
stress required for slip 374
stress singularity at crack tip 458
stress-strain curves
idealized 165
tensile 171
parameters 171--6
polymers 188--91
strain rate effects 176--83
uniaxial 170, 171
stretching 229, 231, 235
striations see fatigue
structure
crystal 16--40
ceramics 25--30
hierarchical 3, 9--11, 45
liquid crystal 39, 40
metals 19--25
polymers 31--8
quasi-crystals 38, 39
subboundaries 389
subgrains 322, 389, 390
substitutional strengthening 564--6,
570
substitutional defects 558--61, 564--6,
570
superelasticity 608--13; see also shape
memory effect
superalloys 653, 654, 668, 681--4, 669
superplasticity 653--704
surface energy 360
swelling 832
Swift test 230, 231
SX cast alloys 636
syntactic foam 645, 646
Taylor work hardening theory 386
Taylor-Orowan equation 306
tendon 9--10, 44, 51, 52
tensile curve parameters 171--6
tensile test 525
tetragonal distortion 560, 561
tetrahedral sites 255, 256, 264
texture 390, 395--8
texture strengthening 395--8
theoretical cleavage strength
406--8
theoretical tensile strength 406--8
theoretical shear strength 252--4
thermal stress(es) 695, 696
thermoset see polymer
three-point bending 162
test 541
tilt boundaries 326
tissue
soft 9--11
torsion 81, 162
toucan beak 44--6
toughness 785
fiber reinforcement 787
microcracking 786
particle toughening 786
transformation toughening 786
importance in practice 445
polymers 513
transformation-induced plasticity
595
transformation toughening 595, 617,
618
Tresca criterion 201--4
tridimensional defects 358
TRIP steels 595, 606, 615
turbine 685
twin boundary(ies) 336
energy 332
twinning 341--4
direction(s) 332, 333, 339--41
plane(s) 332, 333, 349--51
plastic deformation 337, 339
serrated stress-strain curve 340
work-hardening 342
twist boundaries 326
two-parameter approach 749; see also
fatigue
ultimate tensile strength 171
uniform elongation 171
upper yield point see yield point
vacancy 254--63, 305
vacancy loops 275, 276, 282
Vickers 219, 220--3
viscoelasticity 71, 75, 120--5
viscosity 121--5, 192, 197, 198
glasses 197, 198
Newtonian 122
temperature, function of 197--9
viscous flow 191--8
glasses, in 193--8
Voce equation 166
void(s) 26, 255, 258, 262--5
radiation 262--5
Voigt average 107, 109
Voigt model 689, 690
volumetric defects 321, 358--60
von Mises criterion 201--4, 480, 721
Wachtman-Mackenzie equation 113
Weibull statistical analysis 449--57
Weibull modulus 451
Weertman-Ashby maps 676--8
whiskers 61--3
Williams, Landel, and Ferry equation
691--3
wire drawing 174--6, 231, 345, 354
Wohler curves ¨ 714
work hardening 342, 369, 371, 381,
389
coefficient 197
polycrystals, in 384, 389
Kuhlmann-Wilsdorf theory 386,
388, 390, 391
Seeger theory 388
Taylor theory 386--8
work softening 173
working of metals
cold 370, 371, 385
hot 370, 371
yield criteria 199--214
polymers 209, 210
composites 211--13
yield point 171, 565--8
lower 565
upper 565--7
yield strength
orientation, function of 397
Young’s modulus 75, 79, 81, 101--4,
107, 110, 111, 113, 115--21, 131,
145, 149, 150--4
orientation, function of 396, 397
porosity, effect of 113, 117
temperature, function of 153, 312
Zachariasen model 196, 197
Zener anisotropy ratio 99
Zerilli-Armstrong equation 167
zirconia toughened alumina 617,


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Behavior of Materials
رابط مباشر لتنزيل كتاب Mechanical Behavior of Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Mechanical Behavior of Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: