كتاب Smart Devices and Machines for Advanced Manufacturing
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Smart Devices and Machines for Advanced Manufacturing

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16123
التقييم : 27629
تاريخ التسجيل : 01/07/2009
العمر : 32
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Smart Devices and Machines for Advanced Manufacturing  Empty
مُساهمةموضوع: كتاب Smart Devices and Machines for Advanced Manufacturing    كتاب Smart Devices and Machines for Advanced Manufacturing  Emptyالإثنين 20 يوليو 2020, 11:18 pm

أخوانى فى الله
أحضرت لكم كتاب
Smart Devices and Machines for Advanced Manufacturing
Lihui Wang , Jeff Xi
Editors  

كتاب Smart Devices and Machines for Advanced Manufacturing  S_d_a_10
و المحتوى كما يلي :


Contents
List of Contributors xvii
1 Appropriate Design of Parallel Manipulators . 1
J.-P. Merlet, D. Daney
1.1 Introduction 1
1.2 Understanding End-user Wishes and Performance Indices 2
1.2.1 Establishing the Required Performances 2
1.2.2 Performance Indices . 4
1.2.3 Indices Calculation . 6
1.3 Structural Synthesis 7
1.4 Dimensional Synthesis . 8
1.4.1 Choosing Design Parameters 8
1.4.2 Design Methods 8
1.4.3 The Atlas Approach 9
1.4.4 Cost Function Approach . 9
1.4.5 Other Design Methodologies Based on Optimisation . 10
1.4.6 Exact Design Methodologies 10
1.5 The Parameter Space Approach 12
1.5.1 Parameter Space 12
1.5.2 Principle of the Method 12
1.5.3 Finding Allowed Regions . 13
1.5.4 Finding Allowed Regions with Interval Analysis . 14
1.5.5 Search for Appropriate Robots . 19
1.5.6 Design Examples 19
1.6 Other Design Approaches . 20
1.6.1 Design for Reliability . 20
1.6.2 Design for Control 21
1.7 Conclusions 21
References 21
2 Gravity Compensation, Static Balancing and Dynamic Balancing
of Parallel Mechanisms 27
Clément Gosselin
2.1 Introduction and Definitions . 27
2.2 Mathematical Conditions for Balancing . 28x Contents
2.3 Static Balancing 30
2.3.1 Static Balancing of a Planar Four-bar Linkage . 30
2.3.2 Spatial 6-dof Parallel Mechanism . 31
2.4 Gravity Compensation 36
2.5 Dynamic Balancing 40
2.5.1 Dynamic Balancing of Planar Four-bar Linkages . 40
2.5.2 Synthesis of Reactionless Multi-dof Mechanisms 44
2.5.3 Synthesis of Reactionless Parallel 3-dof Mechanisms 44
2.5.4 Synthesis of Reactionless Parallel 6-dof Mechanisms 47
2.6 Conclusions 47
References 47
3 A Unified Methodology for Mobility Analysis
Based on Screw Theory . 49
Zhen Huang, Jingfang Liu, Qinchuan Li
3.1 Introduction 49
3.2 Basic Screw Theory and Mobility Methodology 51
3.2.1 Dependency and Reciprocity of Screws . 51
3.2.2 Modified Grübler-Kutzbach Criterion 54
3.2.3 Four Key Techniques 55
3.3 Mobility Analysis of Single-loop Mechanisms 57
3.3.1 The Bennett Mechanism . 57
3.3.2 The Goldberg Mechanism 60
3.3.3 The Bricard Mechanism with a Symmetric Plane 61
3.4 Mobility Analysis of Parallel Mechanisms . 63
3.4.1 4-DOF 4-URU Mechanism . 63
3.4.2 The CPM Mechanism . 65
3.4.3 The 4-DOF 1-CRR+3-CRRR Parallel Mechanism . 66
3.4.4 DELTA Robot 68
3.4.5 H4 Manipulator . 70
3.5 Discussions . 73
3.6 Conclusions 75
References 76
4 The Tau PKM Structures 79
Torgny Brog?rdh, Geir Hovland
4.1 Introduction 79
4.2 Non-symmetrical PKM Structures . 81
4.3 The SCARA Tau PKM . 84
4.4 The Gantry Tau PKM . 87
4.5 The Reconfigurable Gantry Tau PKM . 90
4.5.1 Kinematics and Workspace 92
4.5.2 Calibration 98
4.5.3 Stiffness 101
4.5.4 Mechanical Bandwidth . 102Contents xi
4.6 Industrial Potential of PKMs based on Tau Structures . 105
4.6.1 Performance Advantages 105
4.6.2 Life-cycle Cost Advantages 106
4.6.3 Relieving People from Bad Working Conditions . 107
4.7 Conclusions 108
References 109
5 Layout and Force Optimisation in Cable-driven
Parallel Manipulators 111
Mahir Hassan, Amir Khajepour
5.1 Introduction 111
5.2 Static Force Analysis 112
5.3 Optimum Layout for the Redundant Limb . 115
5.3.1 Background on Convex Optimisation . 117
5.3.2 Optimum Direction of the Redundant Limb . 121
5.3.3 Multiple Poses 124
5.3.4 Multiple Redundant Limbs . 125
5.3.5 Case Study 126
5.4 Minimising Cable Tensions 130
5.4.1 Case Study 132
5.5 Conclusions 133
References 134
6 A Tripod-based Polishing/Deburring Machine . 137
Fengfeng (Jeff) Xi, Liang Liao, Richard Mohamed, Kefu Liu
6.1 Introduction 137
6.2 Hybrid Machine Design 139
6.2.1 Description of the Machine . 139
6.2.2 ParaWrist Design 141
6.3 Motion Planning . 142
6.3.1 Tripod Constraints 143
6.3.2 Inverse Kinematics . 145
6.3.3 Motion Planning . 145
6.4 Motion Simulation, Part Localisation and Measurement . 146
6.4.1 Forward Kinematics for Motion Simulation and
Part Measurement . 146
6.4.2 Three-point Method for Part Localisation 148
6.5 Tripod Stiffening 150
6.5.1 Compliance Modelling . 151
6.5.2 Tripod Stiffening 152
6.6 Compliant Toolhead Design . 153
6.6.1 Axial Compliance Design . 153
6.6.2 Radial Compliance Design . 154
6.7 Tool Control . 157
6.7.1 Parameter Planning Based on Contact Model . 157xii Contents
6.7.2 Control Methods . 159
6.7.3 Model-based Control 160
6.8 Test Examples 163
6.9 Conclusions 164
References 165
7 Design and Analysis of a Modular Hybrid Parallel-Serial
Manipulator for Robotised Deburring Applications . 167
Guilin Yang, I-Ming Chen, Song Huat Yeo, Wei Lin
7.1 Introduction 167
7.2 Design Considerations 169
7.2.1 Robot Modules . 169
7.2.2 6-DOF Hybrid Parallel-Serial Manipulator 170
7.3 Forward Displacement Analysis . 172
7.3.1 3RRR Planar Parallel Platform . 173
7.3.2 PRR Serial Robot Arm . 176
7.3.3 Entire Hybrid Manipulator 178
7.4 Inverse Displacement Analysis . 179
7.4.1 Orientation Analysis . 179
7.4.2 Position Analysis 180
7.4.3 Parallel Platform Analysis 180
7.5 Instantaneous Kinematics . 181
7.5.1 3RRR Planar Parallel Platform . 181
7.5.2 Entire Hybrid Manipulator 182
7.6 Computation Examples . 183
7.7 Application Studies 184
7.8 Conclusions 186
References 187
8 Design of a Reconfigurable Tripod Machine System and
Its Application in Web-based Machining . 189
Z. M. Bi, Lihui Wang
8.1 Introduction 189
8.2 Related Work 190
8.3 Design of Reconfigurable Tripod Machine Tools 191
8.4 Kinematics, Dynamics and Optimisation . 193
8.4.1 Inverse Kinematics . 194
8.4.2 Direct Kinematics . 195
8.4.3 Stiffness Model . 196
8.4.4 Dynamic Model 202
8.4.5 New Criterion in Optimisation . 205
8.5 Integrated Design Tools 206
8.5.1 Modelling Tool . 207
8.5.2 Analysis Tool 209
8.5.3 Simulation Tool 211Contents xiii
8.5.4 Optimisation Tool . 211
8.5.5 Monitoring Tool . 212
8.6 Web-based Machining: a Case Study . 213
8.6.1 Testing Environment 213
8.6.2 Tripod 3D Model for Monitoring . 214
8.6.3 Web-based Machining 215
8.7 Conclusions 217
References 217
9 Arch-type Reconfigurable Machine Tool . 219
Jaspreet S. Dhupia, A. Galip Ulsoy, Yoram Koren
9.1 Introduction 219
9.2 Design and Construction 221
9.2.1 Arch-type RMT Specifications . 224
9.3 Dynamic Performance 225
9.3.1 Cutting Process Parameters 226
9.3.2 Frequency Response Functions 228
9.3.3 Stability Lobes 231
9.4 Conclusions 236
References 236
10 Walking Drive Enabled Ultra-precision Positioners . 239
Eiji Shamoto, Rei Hino
10.1 Introduction 239
10.2 One-axis Feed Drive . 240
10.2.1 Driving Principle and Control Method . 240
10.2.2 One-axis Walking Device . 241
10.2.3 Open Loop Control . 242
10.2.4 Laser Feedback Control 243
10.2.5 Methods to Overcome Disadvantages 244
10.3 Three-axis Feed Drive 245
10.3.1 Three-axis Walking Device 245
10.3.2 Walking Algorithm for Simultaneous 3-axis Drive 247
10.3.3 Three-axis Positioning System with
Laser Feedback Control 251
10.3.4 Results of 3-axis Positioning 252
10.4 Conclusions 255
References 255
11 An XYTZ Planar Motion Stage System
Driven by a Surface Motor for Precision Positioning . 257
Wei Gao
11.1 Introduction 257
11.2 The XYTZ Surface Motor . 259xiv Contents
11.3 The Decoupled Controller 264
11.4 The XYTZ Surface Encoder 271
11.5 Precision Positioning by the XYTZ Stage System 277
11.6 Conclusions 279
References 279
12 Design and Analysis of Micro/Meso-scale Machine Tools 283
K. F. Ehmann, R. E. DeVor, S. G. Kapoor, J. Cao
12.1 Introduction 283
12.2 Overview of Worldwide Research on the mMT Paradigm . 285
12.3 Overview of mMT Developments in USA . 288
12.4 Development of a Three-axis mMT . 289
12.4.1 Design Considerations for the NU 3-axis mMT . 289
12.4.2 Physical Realisation of the NU 3-Axis mMT . 290
12.4.3 Performance Evaluations 292
12.5 Development of a Five-axis mMT 294
12.5.1 Design Considerations for the UIUC 5-axis mMT . 295
12.5.2 Motor and Bearing Placement 298
12.5.3 Summary of 5-axis mMT Design . 301
12.5.4 Evaluation of Performance . 301
12.5.5 Analysis of 5-axis mMT Motion Parameters 304
12.5.6 Examples of Micro-scale Machining on
the UIUC 5-axis mMT 305
12.6 A Hybrid Methodology for Kinematic Calibration of mMTs . 306
12.6.1 Design of the Measurement System . 307
12.6.2 A Hybrid Calibration Methodology 308
12.6.3 Off-machine Measurements 309
12.6.4 On-machine Measurements 309
12.6.5 Kinematic Error Modelling . 310
12.6.6 Validation of Calibration Methodology 311
12.7 Challenges in mMT Development 312
12.8 The Status of mMT Commercialisation Worldwide . 313
12.9 Conclusions 314
References 315
13 Micro-CMM . 319
Kuang-Chao Fan, Ye-Tai Fei, Weili Wang, Yejin Chen, Yan-Chan Chen
13.1 Introduction 319
13.2 Structure of a Micro-CMM . 321
13.2.1 Semi-circular Bridge Structure . 321
13.2.2 Co-planar XY Stage 322
13.2.3 Z-axis Design 323
13.3 Probes . 324
13.3.1 Focus Probe 324
13.3.2 Contact Probe . 327Contents xv
13.4 Actuator and Feedback Sensor . 329
13.5 System Integration and Motion Control . 332
13.5.1 System Assembly 332
13.5.2 Motion Control . 332
13.5.3 System Errors . 332
13.6 Conclusions 334
References 334
14 Laser-assisted Mechanical Micromachining 337
Ramesh K. Singh, Shreyes N. Melkote
14.1 Introduction 337
14.2 Development of LAMM-based Micro-grooving Process . 339
14.2.1 Basic Approach . 339
14.2.2 LAMM Setup for Micro-grooving 339
14.3 Process Characteristics . 341
14.3.1 Design of Experiment . 341
14.3.2 Results and Discussion . 342
14.4 Process Modelling 347
14.4.1 HAZ Characterisation and Thermal Modelling 347
14.4.2 Force Modelling in Laser Assisted Micro-grooving . 354
14.5 Summary and Future Directions . 362
References 363
15 Micro Assembly Technology and System . 367
R. Du, Candy X. Y. Tang, D. L. Zhang
15.1 Introduction 367
15.2 Micro Grippers . 368
15.2.1 Pneumatic Grippers 369
15.2.2 Capillary Force Grippers 369
15.2.3 Bio-inspired Grippers . 372
15.2.4 Force Feedback . 374
15.3 Precision Positioning 376
15.3.1 Servomotor . 376
15.3.2 Linear Motor . 377
15.3.3 Piezoelectric Motor . 379
15.3.4 Image Based Feedback . 380
15.4 A Sample Micro Assembly System 380
15.5 Conclusions 382
References 383
Index 385
Index
6-axis drive, 252
Abbé principle, 323, 334
acceleration
acceleration capability, 295, 301,
304
acceleration limiter, 252
angular acceleration, 44, 203
linear acceleration, 203–204
accuracy
acoustic emission, 313, 315
actuation, 22, 40, 43, 84, 87, 105,
111, 130, 141, 169, 172–173,
188, 376
actuator
piezo-actuator, 288
piezoelectric actuator, 243, 245,
281, 384
voice-coil actuator, 288
affine, 118, 130–132
analysis
interval analysis, 14–16, 18, 24
workspace analysis, 5, 186
angle grid, 259, 271–275, 277, 279
astigmation principle, 324
atlas approach, 9
autocollimation, 271, 273–274, 280
backward neural network, 332
balancing
dynamic balancing, 27–29, 40, 45,
47–48
force balancing, 29, 36, 40–41, 48
static balancing, 27–31, 35, 39–40,
47
bandwidth
bandwidth, 79, 81, 102, 105–108,
213–214, 229, 274, 304
bandwidth conservation, 214
closed-loop bandwidth, 304
beam splitter, 273–274, 324
bearing
aerostatic bearing, 288–291
air bearing, 242, 280
cable-driven, 111–114, 126, 133
calibration
calibration, 16, 24, 81, 85, 107,
109, 283–285, 306–308, 310–
312, 315, 317–318, 328
calibration methodology, 283, 285,
307–308, 311–312
kinematic calibration, 315, 318
compensation
compensation
gravity compensation,
compromise programming, 23
condition number, 4–5, 9, 21
constraint
common constraint,
constraint couple, 54, 64–69, 72–73
constraint force, 53, 56, 70386 Index
constraint order, 57
redundant constraint, 50–51, 54–55,
68–69, 76
control
behavioural control, 191, 213
continuous path control, 252
contouring control, 252–253
feedback control,  
force feedback control, 374
motion control,  
NC control, 215–216
point-to-point positioning control,
252, 254
convex set, 111, 117–118, 120–121
cost function, 9–10
customisation, 217
cylinder, 67, 111–115, 158, 160, 219,
221, 236, 302, 318
cylindroid, 75
data packet, 215
deburring,
Delta robot, 7, 9, 23, 50, 55, 68, 80–
81, 84, 109
design,
design for control,
disturbance observer, 257, 268–270,
279, 384
Dykstra’s projection algorithm, 111,
120–123, 130–134
elastic deflection, 355, 360–361
end-effector,  
equilibrium, 27, 112, 202, 204, 355,
360–361
error
focus error, 325, 329
following error, 252, 304–305
interference error, 257, 264, 266–
270
straight motion error, 245
Euclidean distance, 120–121, 131
fast tool servo, 274, 281
FEM, 86, 156, 322
fixture, 140, 149
flexure
1-DOF flexure, 307
freedom
degree of freedom,  
full-cycle freedom, 50–51
local freedom, 55
passive freedom, 55, 64, 68, 72–73
translational freedom, 54, 68–70,
72–73
frequency
eigenfrequency, 86
frequency response, 108, 219, 223,
228, 236, 293–294
structural frequency, 229, 235, 303Index 387
genetic algorithm, 22, 205, 212, 218
Grassmann line geometry, 52
gripper, 193, 368–369, 371–373, 376,
380, 382
group theory, 7, 75
Grübler-Kutzbach criterion, 49–50,
54, 75
guideway,  
hardened steel, 338, 341, 362
heat affected zone, 339, 347, 362,
364–365
hyperboloid, 53, 58–61
hyper-rectangle, 118–120
impact hammer, 228–229, 231, 293
index
global conditioning index, 5, 9
performance index, 3–6, 9–10, 13,
22
industrial applications, 81, 89, 108
integrated toolbox, 189–190, 206–
208, 211
interferometer, 244, 251, 258, 306,
319–320, 330–331
interpolation, 332
intersection set, 121, 123, 131–132
invar steel, 322
isosceles triangle, 57
Jacobian, 4, 11, 21, 79, 81, 96, 101,
104, 182–183, 196, 198–201,
206, 209
Java 3D, 191, 213–215
kinematic coupling, 289, 307, 309–
310
kinematic design, 23, 76, 109, 169,
177, 188
kinematic mount, 290
kinematics
direct kinematics, 195, 218
inverse kinematics, 92, 94–99, 137,
143, 145–146, 157, 164, 179,
181, 188, 194, 211, 311
parallel kinematics, 139
laser interferometer,
Lie algebra, 51, 75, 77
line vector, 51–54, 59–61, 74
linear encoder, 100, 160, 162, 165,
258, 290, 377
Lissajous plot, 331
machine
coordinate measuring machine,
micro lathe, 285–286
mMT, 283–292, 294–296, 299–
307, 309–310, 312–315, 318
machine chatter, 226
machine dynamics, 219
magnet, 247, 260–261, 384
manipulability, 9, 21, 23, 25, 181,
205–206, 209–210
manipulator,  
mechanism
Bennett mechanism, 50, 57–61, 76
Bricard mechanism, 61, 75
four-bar linkage, 30–31, 40, 42–44,
48, 57, 59, 147
Goldberg mechanism, 60–61, 76
Gough-Stewart platform, 24–25, 55
H4 mechanism, 51, 61, 70–73, 75
multiple-loop mechanism, 49
paradoxical mechanism, 50–51, 77
parallel mechanism,
single-loop mechanism,  
MEMS, 247, 283, 314, 319, 337–
338, 363, 384
micro assembly, 367–368, 376, 380–
384
micro ball, 327, 335
micro EDM, 287, 316388 Index
micro endmill, 304, 364
micro extrusion, 286
microfactory,
micromachining, 337–338, 363–365
minimisation, 9, 112, 115–117, 120–
124, 131, 311
minimum chip thickness effect, 304
mirror, 28, 242, 274, 280, 327–328
mobility
global mobility, 57
nominal mobility, 55, 73
model
dynamic model,  
kinematic model,
kinetostatic model,  
mass-spring-damper model, 81
parametric model, 193, 208
scene-graph model, 214
stiffness model, 196, 198, 201
thermal error model, 306
volumetric error model, 293
modelling
dynamic modelling, 21
kinematic modelling, 176, 237, 310
process modelling, 339, 347
thermal modelling, 347
modular robot, 169, 176, 191, 237
motion purity, 205–207, 217
motor
DC motor, 288
linear motor, 141, 257, 259–261,
263, 279, 289–291, 367–368,
376–379, 383–384
planar motor, 245, 247, 280
surface motor, 257–260, 262, 264,
271–272, 274, 277, 279–280
ultrasonic motor, 244, 319, 330
multi-spot, 274
nanopositioning, 326, 335, 379
NEMS, 319, 325–326
non-negative orthant, 119–120, 130
objective function, 122, 205, 212
optimisation
optimisation
convex optimisation, 116
optimum,
over-tensioning, 115
pair
cylindrical pair, 50, 52
generalised kinematic pair, 57, 68,
71
kinematic pair, 50–52, 55–57, 65,
68–69, 71, 73–75
prismatic pair, 50, 52, 55, 65, 71
revolute pair
spherical pair, 50, 52, 68, 71
pallet, 284, 289, 309
parallel manipulator
parallel-serial manipulator, 167–170,
172, 183, 185–186
parameter space, 9, 12–13, 18
parasitic motion, 7
Pareto, 10, 23
passive leg, 144, 152, 191–193, 198,
200–202, 204–205
passive link, 193, 199, 201
physical programming, 23
PID controller, 264, 266–269, 279
piezo transducer, 329
piezo-electric accelerometer, 293
piezo-electric load cell, 292
planar artifact, 307, 309
planar motion
platen, 257, 259–263, 269, 277
ploughing, 304Index 389
Plücker coordinate, 52, 59, 65
polishing, 137–143, 146, 153–154,
161, 163–166, 187, 189, 348
polyhedral cone, 118–119
positioning
positioning resolution
precision positioning
384
probe
contact probe, 324, 327–328
focus probe, 324–326, 328–329,
334
non-contact probe, 324–325
touch probe, 327–328
projection, 111, 120–121, 123, 130–
131, 134, 168
reactionless, 28, 40, 42–48
real-time monitoring, 208, 213–214
reciprocal product, 53
reciprocal screw, 54–56, 59, 61, 63–
65, 67–71, 73–74, 77
reconfiguration, 90–91, 98, 108, 189,
219–223, 225, 228–229, 232–
236
redundant limb, 111–116, 124–130,
132–134
regulus, 59
relative accuracy, 283, 285, 304–305
reliability, 20, 106, 220
repeatability, 86, 105, 222, 290, 295,
302–303, 309, 313, 332, 381
resolution
robotised deburring, 167–170, 184–
187
rubbing, 304
running drive, 244–245
SCARA
screw system
screw theory, 7, 49–52, 57, 73, 75,
77, 199, 222, 237
sensitivity, 10, 317, 328–329
sensor
angle sensor, 259, 271–274, 279
capacitance sensor, 292
serial kinematic chain, 57, 73, 77
settling time, 162, 244–245, 265
signal processing, 214
single pose, 124
singularity, 3, 5, 11, 24, 54, 57, 65,
98, 172, 188, 206
skew line, 53
slope, 271, 281, 329
spherical joint, 31, 36, 46, 141, 143,
145, 147, 150, 191, 193, 198,
205
spindle
air-turbine spindle, 290
spindle
stability lobe
stage
co-planar stage, 319, 322–323, 332
linear stage
rotary stage, 295–297
stiffness
dynamic stiffness, 225, 292–294,
303
rotational stiffness, 210
static stiffness, 101, 103, 105, 292–
293, 299, 301, 303, 322, 360
stiffness matrix, 11, 101, 151, 197–
198, 200–201
translational stiffness, 210
straightness, 284, 332–333390 Index
streaming, 213
structure
link structure, 79, 81–83, 87–91,
98, 108
non-symmetrical structure, 81, 83
surface encoder, 257–259, 271–272,
274–277, 279–281
surface roughness, 142, 166, 342,
345–346
synthesis
dimensional synthesis, 7–8
structural synthesis, 7
telescoping ball bar, 306, 309
tension, 111–112, 114–115, 125–126,
129, 133, 151, 369–370, 372
tensionability, 112, 115, 131
tetrahedron, 57
tool touch-off system, 284
tracking, 25, 106, 138, 217, 264,
269–270, 279, 317
trial and error, 8
tripod, 137, 139, 141, 143–145, 147,
150–155, 160, 164, 166, 189–
194, 198, 201–202, 205–218,
375
twist, 53–57, 60, 176–177
ultra-precision positioner, 255
uncertainty, 3–4, 7, 10, 13, 16–17,
19, 189, 352
?-factor, 50, 54–56, 64
velocity
angular velocity, 203, 241–243,
252
velocity
walking drive
wave plate, 324, 330
web-based machining, 190, 213,
215–217
workspace
wrench, 53, 111, 114, 132–134, 151
XYT table, 245, 255
zero-pitch, 52, 74–75


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Smart Devices and Machines for Advanced Manufacturing
رابط مباشر لتنزيل كتاب Smart Devices and Machines for Advanced Manufacturing

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Smart Devices and Machines for Advanced Manufacturing
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: