Admin مدير المنتدى
عدد المساهمات : 19002 التقييم : 35506 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب How to Make Injection Molds الإثنين 13 أبريل 2020, 12:04 am | |
|
أخوانى فى الله أحضرت لكم كتاب How to Make Injection Molds Third Edition Georg Menges , Walter Michaeli , Paul Mohren
و المحتوى كما يلي :
Chapter 1 Prof. Dr. F. Klocke A. Karden Chapter 2 Prof. Dr. A. Biihrig Polaczek Prof. Dr. F. Klocke A. Karden Dr. M. Langen Prof. Dr. E. Schmachtenberg Dr. M. Polifke Chapter 3 Prof. Dr. H. Schluter Dr. V. Romberg-Forkert Chapter 4 P. Niggemeier Chapter 5 Dr. F. Ehrig Chapter 6 J. Berthold Dr. C. Brockmann C. P. Cuttat Dr. F. Ehrig C. Hopmann C. Ronnewinkel Chapter 7 Dr. A. Rogalla Chapter 8 Dr. F. Ehrig A. Spennemann Dr. J. Zachert Chapter 9 P. Niggemeier Chapter 11 Dr. F. Ehrig Chapter 12 Dr. M. Stommel Chapter 13 Dr. N. Kudlik Chapter 14 Dr. P. FiIz H. Genoske Dr. A. Biswas Dr. K. Schlesinger Chapter 15 Dr. A. Feldhaus Chapter 16 Dr. H. Recker Dr. O. Schnerr-Haselbarth Chapter 18 R Gorbach Chapter 20 Dr. A. Rogalla C. Brockmann E. Henze vii Contents Preface to the 3rd Edition v The Following Contributors Helped to Revise and Update This New Edition . vi 1. Materials for Injection Molds 1 1.1 Steels 2 1.1.1 Summary . 2 1.1.2 Case-Hardening Steels . 6 1.1.3 Nitriding Steels 7 1.1.4 Through-Hardening Steels 7 1.1.5 Heat-Treated Steels 9 1.1.6 Martensitic Steels 10 1.1.7 Hard Mold Alloys . 10 1.1.8 Corrosion-Resistant Steels 10 1.1.9 Refined Steels . 11 1.2 Cast Steel . 12 1.3 Nonferrous Metallics . 12 1.3.1 Copper Alloys 12 1.3.1.1 Beryllium-Copper Alloys 13 1.3.2 Zinc and Its Alloys . 14 1.3.3 Aluminum Alloys 16 1.3.4 Bismuth-Tin Alloys . 18 1.4 Materials for Electrolytic Deposition . 19 1.5 Surface Treatment of Steels for Injection Molds . 20 1.5.1 General Information . 20 1.5.2 Heat Treatment of Steels 21viii Contents 1.5.3 Thermochemical Treatment Methods 21 1.5.3.1 Carburizing 21 1.5.3.2 Nitriding . 22 1.5.3.3 Bonding . 22 1.5.4 Electrochemical Treatments 23 1.5.4.1 Chrome Plating . 23 1.5.4.2 Nickel Plating 23 1.5.4.3 NYE-CARD Process . 24 1.5.4.4 Hard Alloy Coating 24 1.5.5 Coating at Reduced Pressure . 24 1.5.5.1 CVD Process . 24 1.5.5.2 PVD Process . 25 1.6 Laser Surface Treatment 26 1.6.1 Laser Hardening and Re-Melting 27 1.6.2 Laser Alloying, Dispersing, and Coating . 27 1.7 Electron Beam Hardening 28 1.8 Lamcoat Coating 28 References . 28 2. Mold Making Techniques . 31 2.1 Production of Metallic Injection Molds and Mold Inserts by Casting . 32 2.1.1 Casting Methods and Cast Alloys . 32 2.1.2 Sand Casting . 33 2.1.3 Precision Casting Techniques . 35 2.2 Rapid Tooling for Injection Molds . 35 2.2.1 State of the Art 37 2.2.2 Direct Rapid Tooling 39 2.2.2.1 Direct Fabrication of Metallic Molds 39 2.2.2.1.1 Generative Methods . 39 2.2.2.1.2 Direct Fabrication of Nonmetallic Molds 42Contents ix 2.2.3 Indirect Rapid Tooling (Multistage Process Chains) . 43 2.2.3.1 Process Chains Involving a Positive Pattern . 44 2.2.3.2 Process Chains Involving a Negative Pattern . 46 2.2.4 Outlook 50 2.3 Hobbing 50 2.4 Machining and Other Material Removing Operations . 54 2.4.1 Machining Production Methods . 54 2.4.2 Surface Treatment (Finishing) . 55 2.4.2.1 Grinding and Polishing (Manual or Assisted) . 55 2.4.2.2 Vibratory Grinding . 56 2.4.2.3 Sand Blasting (Jet Lapping) 56 2.4.2.4 Pressure Lapping 57 2.4.2.5 Electrochemical Polishing . 57 2.4.2.6 Electric-Discharge Polishing . 57 2.5 Electric-Discharge Forming Processes 59 2.5.1 Electric-Discharge Machining (EDM) 59 2.5.2 Cutting by Spark Erosion with Traveling-Wire Electrodes . 62 2.6 Electrochemical Machining (ECM) . 63 2.7 Electrochemical Material Removal-Etching 63 2.8 Surfaces Processed by Spark Erosion or Chemical Dissolution (Etching) . 65 2.9 Laser Carving . 67 2.9.1 Rapid Tooling with LASERCAV . 68 2.10 Molds for the Fusible-Core Technique . 68 2.10.1 Molds for Sheathing the Fusible Cores . 71 2.10.1.1 Gating the Molding 74 2.10.1.2 Thermal Considerations Concerning Mold Design 74 2.10.1.3 Core Shifting . 75 2.10.1.4 Venting 75x Contents 2.10.2 Molds for Making the Fusible Cores 77 2.10.2.1 Core Material . 78 2.10.2.2 Construction of a Casting Mold . 78 2.10.2.3 Gating Systems . 78 2.10.2.4 Thermal Considerations Concerning the Core-Casting Mold 80 2.10.2.5 Demolding Cast Fusible Cores . 81 References . 81 3. Procedure for Estimating Mold Costs . 85 3.1 General Outline 85 3.2 Procedures for Estimating Mold Costs . 85 3.3 Cost Group I: Cavity . 88 3.3.1 Computation of Working Hours for Cavities 89 3.3.2 Time Factor for Machining Procedure . 90 3.3.3 Machine Time for Cavity Depth . 90 3.3.4 Time Consumption for Cavity Surface . 91 3.3.5 Time Factor for Parting Line 92 3.3.6 Time Factor for Surface Quality 92 3.3.7 Machining Time for Fixed Cores . 92 3.3.8 Time Factor for Tolerances . 93 3.3.9 Time Factor for Degree of Difficulty and Multifariousness 93 3.3.10 Time Factor for Number of Cavities 94 3.3.11 Computation of Working Hours for EDM Electrodes . 94 3.4 Cost Group II: Basic Molds . 95 3.5 Cost Group III: Basic Functional Components . 96 3.5.1 Sprue and Runner System 96 3.5.2 Runner System . 98 3.5.3 Hot-Runner Systems . 98 3.5.4 Heat-Exchange System . 98 3.5.5 Ejector System 99Contents xi 3.6 Cost Group IV: Special Functions 99 3.7 Other Cost Calculation Methods . 100 3.7.1 Costs Based on Similarity Considerations 100 3.7.2 The Principle behind Hierarchical Similarity Searching 103 References . 103 4. The Injection Molding Process 105 4.1 Cycle Sequence in Injection Molding 105 4.1.1 Injection Molding of Thermoplastics 107 4.1.2 Injection Molding of Crosslinkable Plastics . 107 4.1.2.1 Injection Molding of Elastomers 108 4.1.2.2 Injection Molding of Thermosets . 108 4.2 Terms Used in Connection with Injection Molds . 109 4.3 Classification of Molds 109 4.4 Functions of the Injection Mold . 110 4.4.1 Criteria for Classification of Molds . 111 4.4.2 Basic Procedure for Mold Design 115 4.4.3 Determination of Mold Size . 115 4.4.3.1 Maximum Number of Cavities . 115 4.4.3.2 Clamping Force . 121 4.4.3.3 Maximum Clamping Area 121 4.4.3.4 Required Opening Stroke 121 4.4.4 The Flow Length/Wall Thickness Ratio . 122 4.4.5 Computation of Number of Cavities 123 4.4.5.1 Algorithm for the Determination of the Technically and Economically Optimum Number of Cavities 127 4.4.5.2 Costs for Sampling, Setup, and Maintenance 136 4.5 Cavity Layouts 138 4.5.1 General Requirements 138 4.5.2 Presentation of Possible Solutions 139xii Contents 4.5.3 Equilibrium of Forces in a Mold During Injection . 139 4.5.4 Number of Parting Lines 140 References . 141 5. Design of Runner Systems 143 5.1 Characterization of the Complete Runner System . 143 5.2 Concept and Definition of Various Types of Runners . 144 5.2.1 Standard Runner Systems 144 5.2.2 Hot-Runner Systems . 144 5.2.3 Cold-Runner Systems . 144 5.3 Demands on the Runner System . 145 5.4 Classification of Runner Systems . 146 5.5 The Sprue . 146 5.6 Design of Runners 151 5.7 Design of Gates 152 5.7.1 Position of the Gate at the Part . 156 5.8 Runners and Gates for Reactive Materials . 161 5.8.1 Elastomers 161 5.8.2 Thermosets . 162 5.8.3 Effect of Gate Position for Elastomers 162 5.8.4 Runners for Highly-Filled Melts . 163 5.9 Qualitative (Flow Pattern) and Quantitative Computation of the Filling Process of a Mold (Simulation Models) 164 5.9.1 Introduction . 164 5.9.2 The Flow Pattern and Its Significance . 165 5.9.3 Using the Flow Pattern for Preparing a Simulation of the Filling Process . 166 5.9.4 Theoretical Basis for Producing a Flow Pattern 168 5.9.5 Practical Procedure for Graphically Producing a Flow Pattern 169 5.9.5.1 Drawing the Flow Fronts . 169 5.9.5.2 Radius Vectors for the Presentation of Shadow Regions . 169Contents xiii 5.9.5.3 Areas with Differences in Thickness . 172 5.9.5.4 Flow Patterns of Ribs 175 5.9.5.5 Flow Patterns of Box-Shaped Moldings 176 5.9.5.6 Analysis of Critical Areas 176 5.9.5.7 Final Comments 179 5.9.6 Quantitative Analysis of Filling 179 5.9.7 Analytical Design of Runners and Gates . 180 5.9.7.1 Rheological Principles . 180 5.9.7.2 Determining Viscous Flow Behavior under Shear with the Aid of a Capillary Viscometer 186 5.9.7.3 Elongational Viscosity . 189 5.9.7.4 Simple Equations for Calculating Loss of Pressure in Gates and Runners 189 5.10 Special Phenomena Associated with Multiple Gating 192 5.11 Design of Gates and Runners for Crosslinking Compounds 194 5.11.1 Elastomers 194 5.11.1.1 Calculation of Filling Process 194 5.11.1.2 Effect of Processing Characteristics on the Basis of Processing Windows . 195 5.11.1.3 Criticism and Examples Concerning the Processing-Window Model 196 5.11.2 Thermosets . 198 5.11.2.1 Flow-Curing Behavior of Thermosets 198 References . 200 6. Design of Gates . 205 6.1 The Sprue Gate 205 6.2 The Edge or Fan Gate 206 6.3 The Disk Gate . 208 6.4 The Ring Gate 208 6.5 The Tunnel Gate (Submarine Gate) . 210xiv Contents 6.6 The Pinpoint Gate in Three-Platen Molds 212 6.7 Reversed Sprue with Pinpoint Gate . 214 6.8 Runnerless Molding 215 6.9 Molds with Insulated Runners 217 6.10 Temperature-Controlled Runner Systems – Hot Runners 220 6.10.1 Hot-Runner Systems . 221 6.10.1.1 Economic Advantages and Disadvantages of Hot-Runner Systems . 221 6.10.1.2 Hot Runners for Various Applications and New Possibilities . 222 6.10.1.3 Design of a Hot-Runner System and Its Components . 223 6.10.1.3.1 Sprue Bushing . 227 6.10.1.3.2 Melt Filters . 228 6.10.1.3.3 Manifold Blocks 228 6.10.1.3.4 Manifold Beams . 229 6.10.1.4 Nozzles for Hot-Runner Molds 231 6.10.1.5 Data Concerning the Design of Hot Runner Manifolds 234 6.10.1.5.1 Manifold Beams . 234 6.10.1.5.2 Nozzle Design 237 6.10.1.5.3 Notes on Operating Hot Runners . 238 6.10.1.6 Heating of Hot Runner Systems 238 6.10.1.6.1 Heating of Nozzles . 238 6.10.1.6.2 Heating of Manifolds 239 6.10.1.6.3 Computing of Power Output . 240 6.10.1.6.4 Temperature Control in Hot Manifolds 241 6.10.1.6.5 Placement of Thermocouples 241 6.10.2 Cold Runners 242 6.10.2.1 Cold-Runner Systems for Elastomer Injection Molds 242Contents xv 6.10.2.2 Cold-Runner Molds for Thermosets 248 6.11 Special Mold Concepts . 249 6.11.1 Stack Molds . 249 6.11.2 Molds for Multicomponent Injection Molding . 252 6.11.2.1 Combination Molds . 253 6.11.2.2 Two-Component Sandwich Injection Molds . 256 6.11.2.3 Bi-Injection Molds 256 References . 256 7. Venting of Molds . 259 7.1 Passive Venting 260 7.2 Active Venting . 265 7.3 Venting of Gas Counter-Pressure Injection Molds . 266 References . 268 8. The Heat Exchange System . 271 8.1 Cooling Time 272 8.2 Thermal Diffusivity of Several Important Materials . 275 8.2.1 Thermal Diffusivity of Elastomers 276 8.2.2 Thermal Diffusivity of Thermosets . 276 8.3 Computation of Cooling Time of Thermoplastics 277 8.3.1 Estimation . 277 8.3.2 Computation of Cooling Time with Nomograms 277 8.3.3 Cooling Time with Asymmetrical Wall Temperatures 279 8.3.4 Cooling Time for Other Geometries 280 8.4 Heat Flux and Heat-Exchange Capacity 283 8.4.1 Heat Flux . 283 8.4.1.1 Thermoplastics 283 8.4.1.2 Reactive Materials . 287 8.4.1.2.1 Thermosets 287xvi Contents 8.5 Analytical, Thermal Calculation of the Heat-Exchange System Based on the Specific Heat Flux (Overall Design) . 293 8.5.1 Analytical Thermal Calculation 294 8.5.1.1 Calculating the Cooling Time 296 8.5.1.2 Heat Flux Balance . 296 8.5.1.3 Coolant Throughput 298 8.5.1.4 Temperature of the Cooling Channel 300 8.5.1.5 Position of the Cooling Channels 302 8.5.1.6 Design of Cooling Circuit . 307 8.5.1.6.1 Flow Rate of Coolant . 307 8.5.1.6.2 Pressure Drop 308 8.6 Numerical Computation for Thermal Design of Molded Parts . 308 8.6.1 Two-Dimensional Computation . 309 8.6.2 Three-Dimensional Computation . 309 8.6.3 Simple Estimation of the Heat Flow at Critical Points 310 8.6.4 Empirical Correction for Cooling a Corner . 311 8.7 Practical Design of Cooling Systems 312 8.7.1 Heat-Exchange Systems for Cores and Parts with Circular Cross-Section . 312 8.7.2 Cooling Systems for Flat Parts 316 8.7.3 Sealing of Cooling Systems 318 8.7.4 Dynamic Mold Cooling 320 8.7.5 Empirical Compensation of Corner Distortion in Thermoplastic Parts from Heat-Flux Differences 322 8.7.5.1 Cold Core and Warm Cavity . 323 8.7.5.2 Modification of Corner Configuration . 323 8.7.5.3 Local Adjustment of Heat Fluxes 324 8.8 Calculation for Heated Molds for Reactive Materials 325 8.9 Heat Exchange in Molds for Reactive Materials . 325 8.9.1 Heat Balance . 325 8.9.2 Temperature Distribution . 328Contents xvii 8.10 Practical Design of the Electric Heating for Thermoset Molds 329 References . 331 9. Shrinkage . 335 9.1 Introduction . 335 9.2 Definition of Shrinkage . 335 9.3 Tolerances 337 9.4 Causes of Shrinkage 342 9.5 Causes of Anisotropic Shrinkage . 343 9.6 Causes of Distortion . 345 9.7 Effect of Processing on Shrinkage . 346 9.8 Supplementary Means for Predicting Shrinkage 348 References . 349 10. Mechanical Design of Injection Molds 351 10.1 Mold Deformation . 351 10.2 Analysis and Evaluation of Loads and Deformations . 351 10.2.1 Evaluation of the Acting Forces . 352 10.3 Basis for Describing the Deformation . 353 10.3.1 Simple Calculation for Estimating Gap Formation 353 10.3.2 More Accurate Calculation for Estimating Gap Formation and Preventing Flash . 354 10.4 The Superimposition Procedure . 356 10.4.1 Coupled Springs as Equivalent Elements . 356 10.4.1.1 Parallel Coupling of Elements . 357 10.4.1.2 Elements Coupled in Series 358 10.5 Computation of the Wall Thickness of Cavities and Their Deformation 358 10.5.1 Presentation of Individual Cases of Loading and the Resulting Deformations . 359 10.5.2 Computing the Dimensions of Cylindrical Cavities 360xviii Contents 10.5.3 Computing the Dimensions of Non-Circular Cavity Contours . 362 10.5.4 Computing the Dimensions of Mold Plates . 363 10.6 Procedure for Computing Dimensions of Cavity Walls under Internal Pressure 364 10.7 Deformation of Splits and Slides under Cavity Pressure 364 10.7.1 Split Molds . 364 10.8 Preparing for the Deformation Calculations 370 10.8.1 Geometrical Simplifications . 372 10.8.2 Tips on Choosing Boundary Conditions 374 10.9 Sample Calculations . 376 10.10 Other Loads 385 10.10.1 Estimating Additional Loading . 385 References . 386 11. Shifting of Cores . 387 11.1 Estimating the Maximum Shifting of a Core . 387 11.2 Shifting of Circular Cores with Lateral Pinpoint Gate at the Base (Rigid Mount) . 388 11.3 Shifting of Circular Cores with Disk Gates (Rigid Mount) . 390 11.3.1 Basic Examination of the Problem 391 11.3.2 Results of the Calculations 392 11.4 Shifting of Cores with Various Types of Gating (Rigid Mount) 394 11.5 Shifting of Inserts 395 11.5.1 Analytical Calculation of Deformation of Metal Inserts Using a Cylindrical Roll Shell as an Example 395 11.5.1.1 Evaluation of the Deflection Line for Different Part Geometries . 396 11.6 Design Examples for Core Mounting and Alignment of Deep Cavities . 399 References . 400Contents xix 12. Ejection 401 12.1 Summary of Ejection Systems 401 12.2 Design of the Ejection System – Ejection and Opening Forces . 405 12.2.1 General Discussion . 405 12.2.2 Methods for Computing the Release Forces . 407 12.2.2.1 Coefficients of Static Friction for Determining Demolding and Opening Forces . 407 12.2.2.2 The Estimation Method for Cylindrical Sleeves . 410 12.2.2.3 Rectangular Sleeves . 413 12.2.2.4 Tapered Sleeves . 413 12.2.2.5 Summary of Some Basic Cases . 413 12.2.3 The Release Forces for Complex Parts Exemplified with a Fan 414 12.2.4 Numerical Computation of Demolding Processes (for Elastomer Parts) . 420 12.2.5 Estimating the Opening Forces . 424 12.2.5.1 Changes of State in a p-v-T Diagram for Molds with Different Rigidities 425 12.2.5.2 Indirect Opening Forces 426 12.2.5.3 Total Opening Force . 426 12.3 Types of Ejectors 426 12.3.1 Design and Dimensions of Ejector Pins 426 12.3.2 Points of Action of Ejector Pins and Other Elements of Demolding . 429 12.3.3 Ejector Assembly . 433 12.4 Actuation of the Ejector Assembly 434 12.4.1 Means of Actuation and Selection of Places of Action 434 12.4.2 Means of Actuation 434 12.5 Special Release Systems . 437 12.5.1 Double-Stage Ejection . 437xx Contents 12.5.2 Combined Ejection 437 12.5.3 Three-Plate Molds . 440 12.5.3.1 Ejector Movement by Stripper Bolt 440 12.5.3.2 Ejector Movement by Latch . 440 12.5.3.3 Reversed Ejection from the Stationary Side . 441 12.6 Ejector Return . 443 12.7 Ejection of Parts with Undercuts . 446 12.7.1 Demolding of Parts with Undercuts by Pushing Them Off . 446 12.7.2 Permissible Depth of Undercuts for Snap Fits 447 12.8 Demolding of Threads 449 12.8.1 Demolding of Parts with Internal Threads . 449 12.8.1.1 Stripper Molds . 449 12.8.1.2 Collapsible Cores 449 12.8.1.3 Molds with Interchangeable Cores 450 12.8.2 Molds with Unscrewing Equipment . 451 12.8.2.1 Semiautomatic Molds 452 12.8.2.2 Fully Automatic Molds . 453 12.8.3 Demolding of Parts with External Threads 460 12.9 Undercuts in Noncylindrical Parts . 461 12.9.1 Internal Undercuts . 461 12.9.2 External Undercuts 461 12.9.2.1 Slide Molds 462 12.9.2.2 Split-Cavity Molds . 467 12.9.3 Molds with Core-Pulling Devices . 471 References . 472 13. Alignment and Changing of Molds 475 13.1 Function of Alignment . 475 13.2 Alignment with the Axis of the Plasticating Unit 475 13.3 Internal Alignment and Interlocking 476 13.4 Alignment of Large Molds . 480Contents xxi 13.5 Changing Molds 482 13.5.1 Systems for a Quick Change of Molds for Thermoplastics 482 13.5.2 Mold Exchanger for Elastomer Molds . 489 References . 490 14. Computer-Aided Mold Design and the Use of CAD in Mold Construction . 493 14.1 Introduction . 493 14.1.1 The Flow Pattern Method Pointed the Way Forward . 493 14.1.2 Geometry Processing Marks the Key to Success . 494 14.1.3 Complex Algorithms Mastered 495 14.1.4 Simulation Techniques Still Used Too Infrequently . 495 14.1.5 Simpler and Less Expensive . 495 14.1.6 The Next Steps Already Carved Out . 496 14.2 CAD Use in Mold Design 498 14.2.1 Introduction . 498 14.2.2 Principles of CAD 498 14.2.2.1 2D/3D Model Representation 498 14.2.2.2 Enhancing the Performance of CAD Models by Associativity, Parametrics, and Features 501 14.2.2.3 Interfaces and Use of Integrated CAD 502 14.2.2.4 Data Administration and Flow of Information 506 14.2.3 CAD Application in Mold-Making . 507 14.2.3.1 Modeling 507 14.2.3.2 Integrated Functions for Mold-Making . 511 14.2.3.3 Application-Specific Function Extension . 514 14.2.3.4 Possibilities Afforded to Concurrent Engineering through the Use of CAD 515xxii Contents 14.2.4 Selection and Introduction of CAD Systems . 517 14.2.4.1 Phases in System Selection 518 14.2.4.2 Formulating the CAD Concept 520 14.2.4.3 Benchmarking . 521 14.2.4.4 CAD Introduction . 522 References . 523 15. Maintenance of Injection Molds . 527 15.1 Advantages of Maintenance Schedules . 529 15.2 Scheduling Mold Maintenance . 530 15.2.1 Data Acquisition 530 15.2.2 Data Evaluation and Weak-Point Analysis 532 15.2.3 Computer-Based Support 534 15.3 Storage and Care of Injection Molds 534 15.4 Repairs and Alterations of Injection Molds . 538 References . 541 16. Measuring in Injection Molds . 543 16.1 Sensors in Molds 543 16.2 Temperature Measurement 543 16.2.1 Measuring Melt Temperatures in Molds Using IR Sensors . 543 16.3 Pressure Measurement 544 16.3.1 Purpose of Pressure Measurement . 544 16.3.2 Sensors for Measuring Melt Pressures in Molds . 544 16.3.2.1 Direct Pressure Measurement 545 16.3.2.2 Indirect Pressure Measurement 546 16.4 Use of Sensor-Transducer Probes . 547 16.5 Process Optimization 547 16.6 Monitoring Quality . 548 References . 550Contents xxiii 17. Mold Standards . 553 References . 559 18. Temperature Controllers for Injection and Compression Molds 561 18.1 Function, Method, Classification . 561 18.2 Control 563 18.2.1 Control Methods 563 18.2.2 Preconditions for Good Control Results 565 18.2.2.1 Controllers . 565 18.2.2.2 Heating, Cooling, and Pump Capacity 565 18.2.2.3 Temperature Sensors . 566 18.2.2.4 Installation of Temperature Sensors in the Mold 566 18.2.2.5 Heat-Exchange System in the Mold 567 18.2.2.6 Keeping the Temperature as Stable as Possible . 568 18.3 Selection of Equipment . 569 18.4 Connection of Mold and Equipment – Safety Measures 569 18.5 Heat Carrier 570 18.6 Maintenance and Cleaning . 571 References . 571 19. Steps for the Correction of Molding Defects during Injection Molding 573 References . 576 20. Special Processes – Special Molds . 577 20.1 Injection Molding of Microstructures . 577 20.1.1 Molding Technology and Process Control . 577 20.1.2 Production Processes for Microcavities 579 20.1.2.1 Silicon Technology 581 20.1.2.2 The LiGA Technique . 583 20.1.2.3 Laser LiGA 584xxiv Contents 20.1.2.4 Laser Removal 584 20.1.2.5 Electric-Discharge Removal 585 20.1.2.6 Micromachining . 587 20.2 In-Mold Decoration . 587 20.3 Processing of Liquid Silicone 591 20.3.1 Evacuation 591 20.3.2 Gate 592 20.3.3 Demolding . 592 20.3.4 Temperature Control . 592 20.3.5 Cold-Runner Technique 593 20.4 Injection-Compression Molding 593 References . 596 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب How to Make Injection Molds رابط مباشر لتنزيل كتاب How to Make Injection Molds
|
|