كتاب Injection Molding - Technology and Fundamentals
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Injection Molding - Technology and Fundamentals

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15946
التقييم : 27136
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Injection Molding - Technology and Fundamentals  Empty
مُساهمةموضوع: كتاب Injection Molding - Technology and Fundamentals    كتاب Injection Molding - Technology and Fundamentals  Emptyالجمعة 20 ديسمبر 2019, 11:03 pm

أخوانى فى الله
أحضرت لكم كتاب
Injection Molding - Technology and Fundamentals
Polymer Processing Society
Progress in Polymer Processing
Series Editor: James L. White
W. Baker / C. Scott / G.-H. Hu
Reactive Polymer Blending
R. Davé / A. Loos
Processing of Composites
M. R. Kamal / A. I. Isayev / S.-J. Liu
Injection Molding
I. Manas-Zloczower
Mixing and Compounding of Polymers
I. M. Ward / P. D. Coates / M. Dumoulin
Solid Phase Processing of Polymers
J. L. White / H. Potente
Screw Extrusion
Musa R. Kamal (Editor)
Avraam Isayev (Co-Editor)
Shih-Jung Liu (Co-Editor)
Hanser Publishers, Munich
Hanser Publications, Inc., Cincinnati
With contributions by
Jean-Francois Agassant, Arjen. C. B. Bogaerds, M. Cakmak, Thierry Coupez, António
M. Cunha, Abdessalem Derdouri, Guido Finnah, Furong Gao, Oliver Groenlund, JeanFrançois Hétu, Florin Ilinca, Kalonji K. Kabanemi, Peter K. Kennedy, Kenji Kikugawa,
Nam Hyung Kim, Keehae Kwon, Walter Michaeli, Roberto Pantano, Chul B. Park, Gerrit.
W. M. Peters, Volker Piotter, António J. Pontes, Robert Ruprecht, James F. Stevenson,
Tadamoto Sakai, Luisa Silva, Mark A. Spalding, Giuseppe Titomanlio, Michel Vincent,
Xiang Xu, B. Yalcin, Yi Yang, Hidetoshi Yokoi

كتاب Injection Molding - Technology and Fundamentals  I_m_t_10
و المحتوى كما يلي :


Contents
Preface . V
Part I: Background and Overview . 1
1 Injection Molding: Introduction and General Background 3
Musa R. Kamal
1.1 Scope . 3
1.2 Introduction . 3
1.2.1 Polymer Processing 3
1.2.1.1 The Plastics Processing System 4
1.2.1.2 Processing Properties of Polymers and Their Compounds . 5
1.2.2 Injection Molding 5
1.2.2.1 Introduction . 5
1.2.2.2 General Injection Molding Process Sequence . 6
1.3 Injection Molding Process Characteritics 9
1.3.1 The Plastication Stage 9
1.3.1.1 The Melting Zone . 11
1.3.1.2 Temperature distribution in the nozzle 13
1.3.2 The Filling Stage 17
1.3.2.1 Flow Lines and Weld Lines 17
1.3.2.2 Jetting . 19
1.3.2.3 Fountain Flow 20
1.3.3 Heat Transfer in the Cavity 24
1.3.3.1 Measurement of Temperature Distribution in the Cavity . 24
1.3.3.2 Numerical Simulation of Heat Transfer in Injection Molding . 28
1.3.3.3 Crystallization Kinetics 30
1.4 Microstructure of Injection Molded Parts . 31
1.4.1 Crystallinity 32
1.4.1.1 Effect of Crystallinity and Orientation on Birefringence and Tensile Modulus 33
1.4.2 Morphology 36
1.4.3 Residual Stresses 40
1.4.3.1 Calculation of Residual Stresses 42
1.4.4 Microstructure of Fiber Reinforced Thermoplastics 46
1.4.4.1 Fiber Length and Concentration Distributions 46
1.4.4.2 Matrix Crystallinity . 47
1.4.4.3 Fiber and Matrix Orientation 48
1.4.4.4 Composites Incorporating Conductive Fibers . 51
1.4.5 Distribution of Cure in Thermosets 51
1.5 Properties of Injection Molding Compounds and Products . 54
Symbol List . 61
References 63VIII
Part II: Injection Molding Machinery and Systems 71
2 Injection Molding Machines, Tools, and Processes . 73
Tadamoto Sakai and Kenji Kikugawa
2.1 Injection Molding Machines . 73
2.1.1 Types of Injection Molding Machines . 73
2.1.1.1 Horizontal Injection Molding Machines 73
2.1.1.2 Vertical Injection Molding Machines . 74
2.1.1.3 Hybrid Injection Molding Machine Composed of Vertical and Horizontal
Units . 75
2.1.2 Screw and Barrel Unit . 75
2.1.2.1 In-Line Screw Type Injection Molding Machines 76
2.1.2.2 Screw Design for Injection Molding Machines . 76
2.1.2.3 Barrels for Injection Molding Machines . 77
2.1.3 Driving Principles 79
2.1.3.1 Hydraulic Injection Molding Machines . 80
2.1.3.2 Electric Injection Molding Machines . 80
2.1.3.2.1 Control Systems for an Electric Injection Molding Machine 81
2.1.3.2.2 Injection Mechanism for an Electric Machine . 82
2.1.3.2.3 Nozzle Contact Mechanism for an Electric Injection Molding Machine 83
2.1.3.2.4 Electric Clamping Mechanism . 83
2.1.3.2.5 Electric Ejection Mechanism . 84
2.1.3.3 Man-Machine Interface and Communication Control 84
2.1.3.3.1 Man-Machine Interface for an Injection Molding Machine . 84
2.1.3.3.2 Communication Control 86
2.1.4 Process Control . 86
2.1.4.1 Control of the Filling Process 87
2.1.4.2 Control of the Hold-Pressure Switching Process . 87
2.1.4.3 Control of the Hold-Pressure Process . 88
2.1.4.4 Control of the Metering Process 89
2.1.4.5 Control of the Mold Opening/Closing Process . 89
2.1.4.6 Temperature Control of Each Barrel And Nozzle . 89
2.1.4.7 Control of the Injection Compression Process . 89
2.2 Molds for Injection Molding . 90
2.2.1 Functions of Mold Components 91
2.2.2 Classification of Molds 94
2.2.2.1 Cold Runner Mold Systems 94
2.2.2.1.1 2-Plate Molds . 94
2.2.2.1.2 3-Plate Molds . 94
2.2.2.2 Hot Runner Mold Systems . 96
2.2.3 Sprue, Runners, and Gates . 98
2.2.3.1 Runners 98
2.2.3.2 Gates 98
2.2.3.3 Gate Balance 102
ContentsIX
2.2.3.4 Air Vents 103
2.2.4 Ejection Mechanisms . 103
2.2.4.1 Ejector Pins . 104
2.2.4.2 Sleeve and a Stripper Plate 104
2.2.4.3 Air Ejector 104
2.2.5 Mold Cooling . 106
2.2.6 Temperature Control Methods and Mechanisms 106
2.2.6.1 Liquid Medium Control 106
2.2.6.2 Electric Heater Control . 107
2.3 Injection Molding Processes 107
2.3.1 In-Mold Build-Up Injection Molding (DSI) 107
2.3.2 Conventional Processes 108
2.3.3 DSI Molding Process . 108
2.3.3.1 Injection Welding Mechanism 108
2.3.3.2 Advantages of the DSI molding process 109
2.3.3.3 Product Examples of the DSI Molding Process 110
2.3.4 Multi-Material Injection Molding . 111
2.3.4.1 Multi-Material Molding Techniques . 111
2.3.4.2 Application Examples for the M-DSI Molding Process 114
2.3.5 Super-High Speed Injection Molding 115
2.3.5.1 Effects of High-Speed Injection . 115
2.3.5.2 High-Speed Injection Molding Machines 116
2.3.5.3 Example of Ultra High-Speed Injection Molding 117
2.3.6 In-Mold Coating Injection Molding . 117
2.3.6.1 Surface Decoration Techniques 117
2.3.6.2 Simultaneous Transfer Molding . 118
2.3.7 Insert Injection Molding Process 120
2.3.7.1 Insert Molding Machines . 121
2.3.8 Sandwich Injection Molding 122
2.3.8.1 Process Outline 122
2.3.8.2 Construction of Sandwich Nozzles 122
2.3.8.3 Features of Sandwich Molding 124
2.3.9 Plastic Magnet Injection Molding . 125
2.3.9.1 Molding System and Magnetic Field Generating Methods . 126
2.3.9.2 Important Issues with Injection Molding of Plastic Magnets . 127
2.3.9.3 Key Points of Mold Design for Plastic Magnets . 128
2.3.10 Long-Glass Fiber Reinforced Injection Molding 128
2.3.10.1 Long Fiber Reinforced Plastics Injection Molding . 129
2.3.10.2 Properties of Long Glass Fiber (GF) Reinforced Plastics . 129
2.3.10.3 Applications of Long-Fiber Molding to Large-Size Products . 130
References . 130
ContentsX 3
The Plasticating System for Injection Molding Machines 133
Mark A. Spalding and Kun Sup Hyun
3.1 Introduction . 133
3.2 The Plasticating System 134
3.3 Operation of Plasticating Screw Machines 136
3.3.1 Proper Operation 138
3.4 The Melting Process 138
3.5 Basic Screw Design 146
3.5.1 PS Injection Molding Case Study 147
3.6 High-Performance Screw Designs . 148
3.7 Secondary Mixing Processes and Devices 154
3.7.1 Dynamic Mixers . 161
3.8 Screw Design Issues Causing Resin Degradation 163
3.9 Non-Return Valve . 165
Nomenclature . 166
References . 168
4 Non-Conventional Injection Molds 171
António M. Cunha, António J. Pontes
4.1 Introduction . 171
4.2 Molds for Multi-Material Molding . 173
4.2.1 Co-Injection . 173
4.2.2 Overmolding 176
4.3 Injection Units, Layout, and Runner System 181
4.3.1 Equipment 181
4.3.2 Hot Runners . 183
4.3.3 Material Interactions . 183
4.4 Molds for Injection-Welding 184
4.5 Molds for Backmolding . 186
4.5.1 Molding over Textiles or Fabrics . 186
4.5.2 In-Mold Labeling 191
4.5.3 In-Mold Decoration 192
References . 194
5 Gas Assisted Injection Molding 195
Shih-Jung Liu
5.1 Introduction . 195
5.1.1 Gas Assisted Injection Molding . 195
5.1.2 Advantages and Limitations of GAIM . 198
5.1.3 Materials for GAIM 199
5.2 Molding Equipment and Process 199
5.2.1 Gas Injection Unit and Injection Nozzle . 199
5.2.2 Gas Injection into the Part 200
5.2.3 Gas Nozzle 202
ContentsXI
5.2.4 Pressure Development during the Molding Process . 202
5.2.5 Gas Penetration Behavior in Molded Parts . 203
5.2.6 Gas Venting and Recycling 205
5.2.7 Moldability Diagram for GAIM . 206
5.3 Process Modeling 207
5.4 Part/Mold Designs and Molding Guidelines 209
5.4.1 Gas Channel Geometry . 209
5.4.2 Gas Channel Layout 211
5.4.3 Effect of Gravity . 211
5.4.4 Residual Wall Thickness Distribution 212
5.4.5 Gas Dissolution into the Polymer 213
5.4.6 Gas Fingering . 215
5.4.7 Unstable Gas Penetrations 216
5.4.8 Weld Lines Caused by the Flow-Lead Effect 217
5.4.9 Molding of Fiber Reinforced Materials . 218
5.5 Concluding Remarks . 220
List of symbols . 220
References . 221
6 Water Injection Techniques (WIT) . 223
Walter Michaeli
6.1 Introduction . 223
6.2 Processing Technology . 224
6.2.1 Course of Process 224
6.2.2 Process Variants . 225
6.2.2.1 Short-Shot Process . 226
6.2.2.2 Full-Shot Process 226
6.2.2.3 Full-Shot Process with Overspill . 226
6.2.2.4 Melt Push Back Process 226
6.2.2.5 Core Pulling Process . 227
6.2.2.6 Rinsing/Flushing Process . 227
6.2.3 Comparison between GAIM and WIT . 228
6.2.3.1 Limitations of GAIM . 229
6.2.3.2 Cycle Times . 229
6.2.3.3 Part Properties . 230
6.2.3.3.1 Residual Wall Thicknesses (RWT) . 230
6.2.3.3.2 Shrinkage/Warpage 232
6.2.3.3.3 Fluid-Sided Surface Qualities . 232
6.2.3.3.4 Typical Part Defects 233
6.3 Plant and Injector Technology 234
6.3.1 Concepts and Operation Technology for Water Pressure Generating Units 234
6.3.2 Injector Technology for Water Injection Technique . 237
6.3.2.1 Demands on WIT Injectors . 237
6.3.3 Classification and Presentation of Different WIT-Injectors 239
ContentsXII
6.3.3.1 Operating Method . 239
6.3.3.2 Operating Direction 241
6.3.3.3 Alignment in the Mold . 242
6.3.4 General Design Remarks for WIT Injectors 242
6.3.4.1 Excellent Process Reliability . 243
6.3.4.2 Specific Controllability . 243
6.4 WIT Compatible Part Design . 243
6.4.1 Injector Embedding 243
6.4.2 General Design Guidelines for WIT Articles . 244
6.4.3 Tubular Articles . 245
6.4.3.1 Cross Sections . 245
6.4.3.2 Aspect Ratio . 246
6.4.3.3 Curves and Redirections 246
6.4.3.4 Change of Diameter 247
6.4.4 Compact Parts with Integrated Thick-Walled Sections 248
List of Abbreviations and Symbols . 248
References . 249
Part III: Injection Molding of Complex Materials 251
7 Flow Induced Fiber Micro-Structure in Injection Molding of Fiber
Reinforced Materials 253
Michel Vincent
7.1 Introduction . 253
7.2 Observations 254
7.2.1 Fiber Length Distribution 254
7.2.2 Fiber Concentration 255
7.2.3 Fiber Orientation 256
7.2.3.1 Orientation Mechanisms . 256
7.2.3.2 Qualitative Observations . 256
7.2.3.3 Quantification Tools: Orientation Distribution Function, Orientation
Tensors . 258
7.2.3.4 Experimental Methods . 258
7.2.3.5 Results 260
7.3 Calculation of Fiber Orientation 261
7.3.1 Orientation Models 261
7.3.1.1 The Standard Model . 261
7.3.1.2 Choice of the Interaction Coefficient and the Closure Approximation 263
7.3.1.2.1 Value of the Interaction Coefficient 263
7.3.1.2.2 The Closure Approximation Issue . 264
7.3.1.3 Discussion of the Standard Model . 265
7.3.1.4 Application to Injection Molding 265
7.3.2 Rheological Models 266
7.3.2.1 Overview on Rheological Measurements . 266
ContentsXIII
7.3.2.2 Introduction to Behavior Laws 267
7.4 Conclusions . 268
List of Symbols 269
References . 270
8 Injection Foam Molding . 273
X. Xu and C. B. Park
8.1 Introduction . 273
8.2 Injection Foam Molding Technologies: Background . 274
8.2.1 Structural-Foam Molding . 274
8.2.1.1 Low-Pressure Foam Molding . 274
8.2.2 High-Pressure Foam Molding . 275
8.2.2.1 Co-Injection Foam Molding 276
8.2.2.2 Gas Counter-Pressure Foam Molding 277
8.2.2.3 Sequential Injection Foam Molding 278
8.2.3 Microcellular Injection Foam Molding . 279
8.2.3.1 Background on Microcellular Foam Processing . 279
8.2.3.2 Development of Microcellular Injection Foam Molding . 280
8.2.3.2.1 Batch Microcellular Processing 280
8.2.3.2.2 Semi-Continuous Microcellular Processing 281
8.2.3.2.3 Continuous Microcellular Processing 281
8.2.3.2.4 Microcellular Injection Foam Molding . 282
8.3 Fundamentals of Foam Injection Molding 284
8.3.1 Foaming Additives . 284
8.3.1.1 Cell-Nucleating Agents . 284
8.3.1.2 Blowing Agents 285
8.3.1.2.1 Chemical Blowing Agents 285
8.3.1.2.2 Physical Blowing Agents 285
8.3.2 Thermophysical and Rheological Properties of Polymer/Gas Mixtures 285
8.3.2.1 Solubility and Diffusivity . 285
8.3.2.1.1 Solubility 285
8.3.2.1.2 Diffusivity . 288
8.3.2.2 Viscosity of Polymer/Gas Mixtures 289
8.3.2.3 Surface Tension of Polymer/Gas Mixtures 291
8.3.3 Formation of Foamable Compositions . 291
8.3.3.1 Foamable Compositions in CBA Processing 291
8.3.3.2 Foamable Compositions in PBA Processing 292
8.3.3.3 Dissolution of Gas in Polymers 292
8.3.4 Cell Nucleation 293
8.3.4.1 Homogeneous and Heterogeneous Nucleation 293
8.3.4.1.1 Homogeneous Nucleation 293
8.3.4.1.2 Heterogeneous Nucleation 295
8.3.4.2 Nucleation and Pressure Profiles during Filling . 295
8.3.5 Filling and Cell Growth 298
ContentsXIV
8.3.5.1 Geometric Singularity and Weld Lines . 299
8.3.5.2 Void Fraction Control 299
8.3.5.3 Cell Growth in a Mold 299
8.4 Foam Molding Machines and Applications . 300
8.4.1 Foam Molding Machines . 300
8.4.2 Applications . 302
8.5 Future Developments 302
List of Symbols and Abbreviation 303
References . 304
9 Powder Metal Injection Molding . 309
James F. Stevenson
9.1 Opportunity . 309
9.2 Process Overview 310
9.3 Feedstock . 313
9.3.1 Powders . 313
9.3.2 Binders . 314
9.3.3 Compounds . 316
9.4 Part and Tool Design . 317
9.4.1 Part Design 317
9.4.2 Mold Design 319
9.5 Molding . 322
9.5.1 Equipment 322
9.5.2 Operations 322
9.6 Debinding . 323
9.7 Sintering 324
9.7.1 Fundamentals . 324
9.7.2 Furnaces 329
9.7.3 Setters 332
9.8 Post Sintering Treatments . 333
9.8.1 Heat Treatment 333
9.8.2 Hot Isostatic Pressing 335
9.8.3 Secondary Operations 335
9.9 Material Properties . 336
List of Symbols 338
References . 338
Acknowledgements 339
10 Micro Injection Molding 341
Volker Piotter, Guido Finnah, Thomas Hanemann, Robert Ruprecht
10.1 Introduction . 341
10.2 Why Is Polymer Processing so Interesting for Microsystems Engineering? 342
10.3 The Process Specialties of Micro Injection Molding . 343
10.3.1 Types of Micro Components 345
ContentsXV
10.3.2 Machine Technology for Micro Injection Molding 346
10.3.3 Fabrication of Microstructured Mold Inserts For Micro Injection Molding 349
10.3.4 Special Types of Micro Injection Molding 350
10.3.5 Simulation 351
10.4 Micro Reaction Injection Molding . 353
10.4.1 Reactive Resin Polymerization Methods . 353
10.4.2 Thermally Initiated Reaction Injection Molding of LIGA-Structures 354
10.4.3 Development of Light Induced Reaction Molding (Photomolding)
Techniques 356
10.4.4 UV-Embossing of Photocurable Systems . 358
10.4.5 Photomolding of Composites . 360
10.5 Micro Powder Injection Molding (MicroPIM) 362
10.5.1 Introduction to MicroPIM 362
10.5.2 Metal and Ceramic Powders for PIM 365
10.5.3 Commercially Available PIM Feedstocks and Binders . 366
10.5.4 Binder Systems for MicroPIM . 367
10.5.5 Compounding Feedstocks for MicroPIM 368
10.5.6 Rheology Measurements of PIM Feedstocks 369
10.5.7 Machinery for MicroPIM . 371
10.5.8 Molding Tools for MicroPIM . 371
10.5.9 Patterning Process for PIM Microparts 375
10.5.9.1 Debinding of MicroPIM Green Compacts 376
10.5.9.2 Sintering Process for MicroPIM Parts 378
10.5.10 MicroPIM Research 378
10.6 Two-Component Micro Injection Molding (2C-MicroPIM) . 378
10.6.1 Machine Technology for Micro Two-Component Injection Molding . 379
10.6.2 Mold Technology for Two-Component Micro Injection Molding . 381
10.6.3 Contact-Strength for the Multi-Component Injection Molding 381
10.6.4 Sequence of the Two-Component Micro Injection Molding Process 382
10.6.5 Variothermal Mold Temperature Control for Two-Component Injection
Molding . 383
10.6.6 Applications of Multi-Component Injection Molding . 384
10.6.6.1 Insert Injection Molding 384
10.6.6.2 Overmolding 384
10.6.6.3 In-Mold Assembly . 385
10.6.6.4 3D-MID-Technology . 385
10.6.6.5 Two-Component Powder Injection Molding . 385
10.7 Summary and Outlook . 386
List of Abbreviations . 387
References . 389
ContentsXVI
Part IV: Process Visualization, Control, Optimization, and Simulation 395
11 Internal Visualization of Mold Cavity and Heating Cylinder . 397
Hidetoshi Yokoi
11.1 Introduction . 397
11.2 Dynamic Visualization Techniques for the Inside of the Mold Cavity . 397
11.2.1 Overview of Dynamic Visualization Techniques 398
11.2.1.1 Light transmission method . 398
11.2.1.2 Light Reflection Method 399
11.2.1.3 Light-Section Method 401
11.2.2 Glass-Inserted Mold (2D, 3D) . 401
11.2.3 Back-Lighting Mold 406
11.2.4 Laser-Light-Sheet Mold 408
11.2.5 Runner-Exchanging System . 411
11.2.6 Automatic Tracking System under High Magnifications . 414
11.2.7 Visualization Technique for Ultra-High-Speed Injection Molding 416
11.3 Static Visualization Techniques for the Inside of a Mold Cavity . 418
11.3.1 Overview of Static Visualization Techniques 418
11.3.1.1 Plugging of Colored Materials . 418
11.3.1.2 Lamination of Colored Materials 419
11.3.2 Runner-Exchanging System and Gate-Magnetization Method . 420
11.4 Visualization Heating Cylinder 424
11.4.1 Overview of Visualization Techniques for the Inside of a Heating Cylinder 425
11.4.2 Glass-Inserted Heating Cylinder 428
11.4.3 Visualization Unit inside Hopper Throat, Check-Ring, and Reservoir Areas. 431
11.4.4 Image Processing Method for Laminated Slit Images 434
References . 435
12 Injection Molding Control . 439
Furong Gao and Yi Yang
12.1 Introduction . 439
12.2 Basic Concepts and Elements of Control Systems . 440
12.2.1 Basic Control System Structure 440
12.2.1.1 Open Loop System . 441
12.2.1.2 Closed-Loop System . 441
12.2.2 Basic Elements of Control Systems 442
12.2.2.1 Controlled Variables in Injection Molding . 442
12.2.2.2 Actuators in Injection Molding 443
12.2.2.3 Measurement of Output Variables . 444
12.2.2.4 The Controller . 444
12.3 Control Applications . 445
12.3.1 Machine Sequence Control . 445
12.3.2 Adaptive Control 446
12.3.2.1 Dynamic Analysis of Injection Molding Process Variables . 446
ContentsXVII
12.3.2.2 Adaptive Control Background 450
12.3.2.3 RLS Estimation 450
12.3.2.4 Pole Placement Design . 451
12.3.2.5 Solving the Diophantine Equation . 452
12.3.2.6 Direct Implementation of Adaptive Pole-Placement Control . 454
12.3.2.7 Improvement I – Anti-Windup Estimation . 454
12.3.2.8 Improvement II – Adaptive Feedforward Control . 457
12.3.2.9 Improvement III – Cycle-To-Cycle Adaptation . 459
12.3.2.10 Test of Different Conditions 460
12.3.2.11 Summary . 461
12.3.3 Model Predictive Control . 462
12.3.3.1 MPC Background 462
12.3.3.2 GPC Design for Injection Velocity . 464
12.3.3.3 Step Response Comparison of GPC and Pole-Placement 465
12.3.3.4 Adaptive GPC Experiments with Different Conditions 465
12.3.3.5 Summary . 467
12.3.4 Fuzzy Model Based Control [16] 468
12.3.4.1 Fuzzy Inference System . 468
12.3.4.2 Fuzzy Multi-Model and Application to Injection Velocity 469
12.3.4.3 Fuzzy Multi-Model Predictive Control . 474
12.3.4.4 On-Line Identification of Model Parameters of Rule Consequents 474
12.3.4.5 Batch Learning of Membership Function Parameters of Rule Premises . 475
12.3.4.6 Experimental Test of Fuzzy Multi-Model Based Predictive Control . 476
12.3.4.7 Summary . 481
12.3.5 Iterative Learning Control [18] 481
12.3.5.1 Iterative Learning Control Background 482
12.3.5.2 P-Type Learning Control Algorithm . 483
12.3.5.3 Optimal Iterative Learning Controller . 485
12.3.5.4 Robust and Convergence Analysis . 488
12.3.5.5 Selection of the Weighting Matrices . 490
12.3.5.6 Injection Velocity Control with Optimal ILC . 491
12.3.5.7 Summary . 494
12.3.6 Statistical Process Monitoring of Injection Molding . 494
12.3.7 Statistical Process Monitoring for Continuous Processes . 494
12.3.8 Statistical Monitoring of Batch Processes . 497
12.3.9 Stage-Based Statistical Monitoring of Injection Molding [61–63] . 499
12.3.9.1 Fault #1: Material Disturbance 501
12.3.9.2 Fault #2: Check-Ring Failure 503
12.4 Control Perspective and Challenges for Injection Molding . 504
12.4.1 Control Perspective 504
12.4.2 Major Challenges of Injection Molding Control 506
12.4.2.1 Implementation of Robust Control Algorithms . 506
12.4.2.2 New Measurements 506
12.4.2.3 Comprehensive Quality Modeling . 506
ContentsXVIII
12.4.2.4 Closed-Loop Quality Control . 507
12.4.2.5 Process and Control Performance Monitoring 507
References . 507
13 Optimal Design for Injection Molding . 511
Kalonji K. Kabanemi, Abdessalem Derdouri and Jean-François Hétu
13.1 Introduction . 511
13.2 Basic Equations for the Mold Filling Problem 513
13.2.1 Mathematical Model: Hele-Shaw and Energy Equations . 513
13.2.2 Boundary Conditions 514
13.2.3 Numerical Discretization . 515
13.3 Optimization Techniques . 516
13.3.1 Optimization Concept 516
13.3.2 Optimization Problems . 516
13.3.3 Numerical Solution of Optimization Problems . 517
13.3.3.1 Zero-Order Methods . 518
13.3.3.2 First- and Second-Order Methods . 519
13.3.3.3 Combination of Zero-Order and Gradient-Based Methods 520
13.4 Gradient-Based Methods and Sensitivity Analysis 521
13.4.1 Direct Sensitivity Equation Method . 521
13.4.2 Adjoint Equation Method 522
13.4.3 Comparison of Solution Methods . 524
13.4.4 Choice of a Method 524
13.5 Optimal Design for Injection Molding . 525
13.5.1 Problem Parameters 525
13.5.2 Problem Definition 525
13.5.3 Direct Sensitivity of the State Equations 526
13.5.4 Sensitivity Formulation of the Objective Function 528
13.5.5 Parameterization of the Injection Pressure and Sensitivities 528
13.5.6 Sensitivities of the Function Constraints . 530
13.5.7 Flow-Front Tracking and Sensitivities 530
13.5.8 Parameterization of the Flow Domain and Sensitivities 531
13.6 Algorithm . 534
13.7 Illustrative Applications 534
13.7.1 Automotive Part: Single Gate Optimization 534
13.7.2 Automotive Lens: Multiple Gate Optimization 541
13.7.3 Multiple Gate Optimization: More than One Optimal Solution 545
13.8 Conclusions . 547
List of Symbols and Abbreviations . 547
References . 549
14 Development of Injection Molding Simulation . 553
Peter Kennedy
14.1 Introduction . 553
ContentsXIX
14.2 The Molding Process . 553
14.3 The Problem 554
14.3.1 Basic Physics of the Process . 555
14.3.2 Material Properties . 555
14.3.3 Geometric Complexity of Mold and Part . 556
14.3.4 Process Stability . 556
14.4 Why Simulate Injection Molding? . 556
14.5 Early Academic Work on Simulation 557
14.5.1 Boundary Conditions and Solidification . 558
14.6 Early Commercial Simulation . 559
14.7 Simulation in the 1980s . 561
14.8 Academic Work in the 1980s 562
14.8.1 Mold Filling . 562
14.8.2 Mold Cooling . 565
14.8.3 Warpage Analysis 565
14.8.4 Fiber Orientation 566
14.9 Commercial Simulation in the 1980s 568
14.9.1 Codes Developed by Large Industrials and not for Sale 570
14.9.1.1 General Electric . 570
14.9.1.2 Philips/Technical University of Eindhoven . 570
14.9.2 Codes developed by Large Industrials for Sale in the Marketplace 571
14.9.2.1 SDRC . 571
14.9.2.2 GRAFTEK 571
14.9.3 Companies Devoted to Developing and Selling Simulation Codes 571
14.9.3.1 AC Technology 571
14.9.3.2 Moldflow . 572
14.9.3.3 Simcon Kunststofftechnische Software GmbH 573
14.10 Simulation in the 1990s . 573
14.11 Academic Work in the 1990s 574
14.12 Commercial Developments in the 1990s . 575
14.12.1 SDRC . 575
14.12.2 Moldflow . 576
14.12.3 AC Technology/C-MOLD 580
14.12.4 Simcon 580
14.12.5 Sigma Engineering . 580
14.12.6 Timon 581
14.12.7 Transvalor . 581
14.12.8 CoreTech Systems 581
14.13 Simulation Science since 2000 . 582
14.14 Commercial Developments since 2000 . 584
14.14.1 Moldflow . 584
14.14.2 Timon 585
14.14.3 Core Tech Systems . 586
14.15 The Simulation Market Today . 586
ContentsXX
14.16 Conclusion 587
14.17 Appendix: 2.5D Analysis . 587
14.17.1 Material Properties . 588
14.17.2 Geometric Considerations 589
14.17.3 Simplification by Mathematical Analysis . 590
14.18 Acknowledgments . 592
References . 592
15 Three-Dimensional Injection Molding Simulation 599
Luisa Silva, Jean-Francois Agassant and Thierry Coupez
15.1 Introduction . 599
15.1.1 Process Background 599
15.1.2 Historical Background on 3D Simulation 600
15.1.3 General Numerical Techniques for 3D Injection Molding Simulation . 602
15.1.3.1 Constitutive Equations . 602
15.1.3.2 Boundary Conditions 605
15.1.4 Numerical Issues in 3D Injection Molding . 606
15.2 Temperature Independent Flows and Finite Element Techniques . 607
15.2.1 Generalized Stokes Problem 607
15.2.1.1 Mixed Finite Elements for Newtonian Flows . 607
15.2.1.2 More General Viscous Resolution . 611
15.2.2 Extension to Weakly Isothermal Compressible Flows . 612
15.2.3 Extension to Navier and Stokes Equations 614
15.2.4 Extension to Viscoelastic Flows . 616
15.2.4.1 Viscoelasticity and Constitutive Models 617
15.2.4.2 Flow Determination for Viscoelastic Materials 618
15.3 Free Surface Determination . 622
15.3.1 Techniques to Determine the Interface . 622
15.3.2 The VOF (Volume of Fluid Method) . 623
15.3.2.1 Resolution of the Transport Equation 623
15.3.2.2 Advantages and Disadvantages of the VOF Method . 625
15.3.3 The Level Set Method 627
15.3.3.1 Mathematical Considerations . 627
15.3.3.2 Resolution of the Transport Equation 628
15.3.3.3 Advantages and Disadvantages of the Level Set Method . 628
15.4 Thermomechanical Coupling . 630
15.4.1 Material Properties Coupling . 630
15.4.2 The Temperature Balance Equation 632
15.4.3 Numerical Solution 632
15.5 Advanced Computational Techniques . 634
15.5.1 Meshing . 634
15.5.1.1 Generation and Anisotropic Adaptation of Static Interfaces 634
15.5.1.2 Multidomain and Interface Capturing . 636
15.5.2 Parallel Computing 637
ContentsXXI
15.5.3 Application to Filling Simulation with Mold Coupling 639
15.6 Application to a 3D Part 641
15.7 Conclusion 644
Acknowledgements 645
Appendixes 645
Appendix 15.1: Viscosity Equations 645
Appendix 15.2: Tait Equation Parameters 646
Notations . 647
References . 650
16 Viscoelastic Instabilities in Injection Molding 653
G. W. M. Peters, A. C. B. Bogaerds
16.1 Introduction . 653
16.2 Background, Literature Review 654
16.3 Experimental Motivation . 656
16.4 Analysis . 658
16.5 Numerical Modelling: Governing Equations 660
16.6 Numerical Modelling: Finite Element Analysis . 662
16.7 Domain Perturbation Technique 668
16.8 Results 672
16.8.1 Steady State Results 673
16.8.2 Stability Results 677
16.9 Discussion 678
Symbols and Notation 680
References . 682
Part V: Microstructure Development, Characterization, and Prediction 685
17 Evolution of Structural Hierarchy in Injection Molded Semicrystalline
Polymers . 687
M. Cakmak and B. Yalcin
17.1 Introduction . 687
17.2 Fundamentals of the Injection Molding Process 688
17.2.1 Experiences of Polymer Chains in a Typical Injection Molding Machine 688
17.2.2 Flow Behavior into Injection Molding Cavities . 689
17.3 Structure Development in Injection Molded Fast Crystallizing Polymers 693
17.3.1 Polyethylene (PE) 693
17.3.2 Polypropylene (PP) 694
17.3.3 Polyoxymethylene (POM) and Other Fast Crystallizing Polymers 696
17.3.4 Injection Molded PVDF and its Blends with PMMA 696
17.3.5 Polyamides (PA) . 702
17.3.6 Effect of Platelet Type Nanoparticles in Injection Molding . 703
17.3.7 Influence of Nano Clay on the Crystallization and Orientation – Summary . 708
17.3.8 Structure Development in Thermotropic Liquid Crystalline Polymers 708
ContentsXXII
17.4 Structure Development in Injection Molded Slowly Crystallizing Polymers . 709
17.4.1 General Characteristics of Structure Development in Slow Crystallizing
Polymers 710
17.4.2 Poly(Phyenylene Sulfide) (PPS) . 710
17.4.3 Effect of Molecular Weight 713
17.4.4 Poly(Ether Ether Ketone) PEEK . 716
17.4.5 Syndiotactic Polystyrene (s-PS) . 719
17.4.6 Polyethylene Naphthalate (PEN) 721
17.4.7 Structure Characteristics of Injection Molded Slowly Crystallizing
Polymers – Summary 722
17.5 Simulation of the Structure Development During Injection Molding
Process 722
17.6 General Summary . 725
Abbreviations 726
References . 727
18 Modeling Aspects of Post-Filling Steps in Injection Molding 731
Roberto Pantani and Giuseppe Titomanlio
18.1 Introduction . 731
18.1.1 The Post-Filling Stages . 732
18.1.2 State of the Art on Post-Filling Modeling . 732
18.1.3 Outline . 735
18.2 Understanding Pressure Evolution . 736
18.2.1 The Evolution of Pressure Curves During Injection Molding . 736
18.2.1.1 The Filling Stage . 736
18.2.1.2 The Packing-Holding Stage . 737
18.2.1.3 The Cooling Stage . 740
18.2.2 Pressure Curves Inside the Runners During Cooling 744
18.3 A Suitable Modeling of the Process 744
18.3.1 Modeling the Packing – Holding Stage . 746
18.3.2 Modeling the Cooling Stage . 747
18.3.3 Time-Depending Heat Transfer Coefficient 747
18.4 Relevant Aspects of Rheological Behavior 751
18.4.1 The Effect of Pressure on Viscosity 751
18.5 Mold Deformation . 753
18.5.1 Effect of Mold Deformation on the Packing Stage . 754
18.5.2 Effect of Mold Deformation on the Cooling Stage . 754
18.5.3 Effect of Mold Deformation on Pressure Evolution and on Gate Sealing
Time 755
18.6 Molecular Orientation 756
18.6.1 Experimental Evidences 757
18.6.2 Modeling the Evolution of Orientation . 760
18.6.2.1 Leonov Model . 761
18.6.2.2 Non-Linear Maxwell Model . 761
ContentsXXIII
18.6.3 Results of Modeling for Amorphous Materials 762
18.7 Semi-Crystalline Polymers 766
18.7.1 Effect of Crystallinity on Material Properties . 767
18.7.1.1 Effect of Crystallinity on Rheology 767
18.7.1.2 Effect of Crystallinity on Specific Volume 769
18.8 Morphology Evolution During the Post-Filling Stages . 770
18.9 Concluding Remarks . 773
Nomenclature . 774
References . 776
19 Volumetric and Anisotropic Shrinkage in Injection Moldings of
Thermoplastics . 779
A. I. Isayev and Keehae Kwon
19.1 Introduction . 779
19.2 Theoretical Analysis 780
19.2.1 Volumetric Shrinkage 780
19.2.2 Anisotropic Shrinkage 782
19.3 Comparison Between Simulations and Experiments 789
19.3.1 Volumetric Shrinkage 789
19.3.2 Anisotropic Shrinkage 793
19.4 Conclusions . 804
19.5 Acknowledgement . 805
Nomenclature . 805
References . 807
20 Three-Dimensional Simulation of Gas-Assisted and Co-Injection
Molding Processes 809
Jean-François Hétu, Florin Ilinca
20.1 Introduction . 809
20.2 Background . 811
20.3 Mathematical Modeling and Formulations . 812
20.3.1 Conservation of Mass and Momentum . 813
20.3.2 Conservation of Energy 814
20.3.3 Boundary and Initial Conditions 814
20.3.4 The Compressibility Effects . 815
20.4 Front Capturing Methods for Co-Injection Molding 815
20.4.1 The VOF and phase field methods . 816
20.4.2 The Level-Set Method 817
20.4.3 Use of Level-Set in Co-Injection Molding 818
20.5 Numerical Implementation . 818
20.5.1 A Finite Element Method . 818
20.5.1.1 Momentum-Continuity Equations 819
20.5.1.2 Energy Equation . 819
20.5.1.3 Level-Set Equation . 821
ContentsXXIV
20.5.2 Solution Algorithm 822
20.6 Validation Cases and Applications . 823
20.6.1 Gas-Assisted Injection Molding . 824
20.6.1.1 Gas-Assisted Injection of a Plate with a Flow Channel . 824
20.6.1.2 Secondary Penetration in Gas-Assisted Injection . 828
20.6.1.3 Gas-Assisted Injection of a Thick Part . 829
20.6.2 Co-Injection Molding 830
20.6.2.1 Co-Injection of a Side Gated Rectangular Plate . 830
20.6.2.2 Co-Injection of a Center-Gated Rectangular Plate 833
20.6.2.3 Co-Injection of a C-Shaped Plate 837
20.6.3 Simulation of Breakthrough in Co-Injection Molding . 838
20.7 Conclusions . 845
List of Symbols and Abbreviations . 846
References . 848
21 Co-Injection Molding of Polymers . 851
A. I. Isayev and Nam Hyung Kim
21.1 Introduction . 851
21.2 Technology 853
21.3 Experimental Studies . 860
21.3.1 Effect of Process Parameters on Skin-Core Structure 860
21.3.2 Breakthrough Phenomenon . 867
21.3.3 Interfacial Instability . 874
21.3.4 Mechanical Properties 875
21.3.5 Microstructure 881
21.3.6 Biomedical Applications 884
21.4 Modeling of the Co-Injection Molding Process . 884
21.4.1 Simulation Approaches . 884
21.4.2 Comparison between Simulation and Experiment 898
21.5 Conclusions . 909
Nomenclature . 909
References . 912
Subject Index . 917  


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Injection Molding - Technology and Fundamentals
رابط مباشر لتنزيل كتاب Injection Molding - Technology and Fundamentals

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Injection Molding - Technology and Fundamentals
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: