كتاب The Complete Part Design Handbook
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب The Complete Part Design Handbook

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15558
التقييم : 26198
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب The Complete Part Design Handbook Empty
مُساهمةموضوع: كتاب The Complete Part Design Handbook   كتاب The Complete Part Design Handbook Emptyالأربعاء 02 أكتوبر 2019, 8:38 pm

أخوانى فى الله
أحضرت لكم كتاب
The Complete Part Design Handbook - For Injection Molding of Thermoplastics
E. Alfredo Campo  

كتاب The Complete Part Design Handbook T_c_p_10
و المحتوى كما يلي :

Chapter 1 Plastic Materials Selection Guide: Includes an introduction
to plastic materials, the beginning of plastics, classifi cation of
polymer families. Each resin is discussed by its basic chemistry,
properties, processing characteristics, advantages, disadvantages and limitations, typical applications and several product
illu strations. Thermoplastic materials (35 generic families),
thermoplastic elastomer materials (8 generic families), liquid
injection molding of silicone, thermoset materials (16 generic families).
Chapter 2 Engineering Product Design: Starts with the introduction to
structural product design principles, mechanical strength properties of thermoplastics. Centroid, section area, moment of
inertia equations and tables. Beam defl ection analysis methods.
Structure analysis of beams, columns, flat circular plates, and torsion.
Chapter 3 Structural Design for Thermoplastics: Discusses the product wall
thickness, structural rib design, sharp corners, bosses, threads,
undercuts, integral life hinges, pin hinges. Encapsulation of inserts,
types of metal inserts and anchorage, and electrical lead inserts.
Chapter 4 Thermoplastic Gearing Design: An introduction to and classification of gears. Standard spur, helical, bevel, and worm gears;
properties required for thermoplastic molded spur gears, mounting gears on metal shafts, tolerances and mold shrinkage of gears.
Plastic spur and helical gearing technology design, strength,
horsepower rating, equations, tables, analysis examples and gear
specifi cation illustrations.
Chapter 5 Plastic Journal Bearing Design: An introduction to types of
materials for journal bearings. Theory and design for lubrication. Design principles, performances, dimensions, clearances,
molding effects, PV limits and surface fi nishing. Self-lubricated
thermoplastic bearings. Equations, tables, and analysis examples.VIII Preface
Chapter 6 Thermoplastic Spring Design: Introduces cantilever beam spring
design, applications, and analysis examples. Locating, fi xing clip,
flexible hinges, and torsional spring applications. Belleville spring
washers’ equations, tables, and analysis examples.
Chapter 7 Thermoplastic Pressure Vessel Design: Discusses thin- and
thick-walled pressure vessels’ basic principles, equations, tables,
analysis examples, design guidelines, applications, and pressure
vessel regulations.
Chapter 8 Thermoplastic Assembly Methods: Joining two or more components together: assembly method is selected based on product
design geometry, size, end use requirements, thermo plastic material characteristics, automatic or manual assembly operation, and
manufacturing costs. Each assembly method provides a description, process sequence, advantages and limitations, typical applications, equipment, product joint design, and its variations.
Chapter 9 Thermoplastic Effects on Design: Starts discussing the polymer
melt behavior, reinforcement, degradation, moisture characteristics, mold shrinkage and critical properties. The molding process
effects caused by molding cycle, melt/mold temperature, injection
pressure and speed, etc. on product design dimensions, surface
finishing, weld line strength and impact resistance and other
molding problems.
Chapter 10 Thermoplastic Injection Mold Design: Provides an introduction
of injection molds, classification and effects on product design.
Types of steels, chemical composition, effects of alloying, heat
treatment, properties and characteristics. Types of steels used
for mold bases and mold components. Cavity surfaces fi nish
procedures and specifications. Types of injection mold designs.
Cold runners (two- and three-plate molds, interchangeable mold
inserts and vertical insert encapsulation mold). Hot runner molds
(internally and externally heated, insulated). Mold design system
and other considerations, such as number of cavities, parting
line, ejection, cooling, cold runner, gating, venting, cavity inserts
sidewall strength, support pillars, molded parts tolerances, mold
designer check list, general specifications for mold construction
are covered.
Chapter 11 Performance Testing of Thermoplastics: It introduces various
tests to which thermoplastic polymers are subjected, describes
their properties (statistical analysis), such as mechanical, thermal,
chemical resistance, rheometer melt viscosity, soldering heat
resistance, electrical, flammability, smoke generation, weathering
and micro-organism resistance. Test description, procedures,
apparatus, test specimen and conditioning, and their signifi cance
are discussed here.
Chapter 12 Thermoplastic Product Cost Analysis: It discusses molding
process variables and capital equipment cost. Three cost analysis
methods are used to estimate the molded product user’s price.IX
Contents
Preface VII
1 Polymeric Materials 1
1.1 Introduction to Plastic Materials 1
1.1.1 Beginning of Plastics 1
1.1.2 Polymer Families . 3
1.2 Thermoplastic Polymers . 4
1.2.1 Classification of Polymers by Performance . 4
1.2.2 Molecular Structure of Plastic Materials . 6
1.2.3 Acrylonitrile-Butadiene-Styrene (ABS) 6
1.2.4 Acetal (POM, Polyacetal) 9
1.2.5 Polymethyl Metacrylate (Acrylic, PMMA) 12
1.2.6 High Temperature Nylon (HTN) 14
1.2.7 Ionomer Polymers . 16
1.2.8 Liquid Crystal Polymer (LCP) . 18
1.2.9 Polyamide (PA, Nylon) . 20
1.2.10 Polyetherimide (PEI) . 23
1.2.11 Polyarylate (PAR) 25
1.2.12 Polyetherether Ketone (PEEK) . 27
1.2.13 Polycarbonate (PC) 28
1.2.14 Modified Polyphenylene Oxide (PPO) 31
1.2.15 Polybutylene Terephthalate (PBT) . 33
1.2.16 Polyethylene Terephthalate (PET) 34
1.2.17 Polyethylene (PE) 36
1.2.18 Polytetrafl uoroethylene (PTFE) . 39
1.2.19 Polyphenylene Sulfi de (PPS) 44
1.2.20 Polypropylene (PP) 46
1.2.21 Polystyrene (PS) . 48
1.2.22 Polysulfone (PSU) . 49
1.2.23 Polyvinyl Chloride (PVC) . 51
1.2.24 Styrene Acrylonitrile (SAN) . 53
1.3 Thermoplastic Elastomers (TPE) . 55
1.3.1 Thermoplastic Elastomer Families . 56
1.3.2 Thermoplastic Polyurethane Elastomer (TPU) 57
1.3.3 Styrenic Block Copolymer (SBS) . 60
1.3.4 Polyolefin Thermoplastic Elastomer (TPO) . 62
1.3.5 Elastomeric Alloy Thermoplastic Vulcanized (TPV) 65
1.3.6 Melt Processible Rubber (MPR) . 69
1.3.7 Copolyester Thermoplastic Elastomer . 71
1.3.8 Polyamide Thermoplastic Elastomer . 75
1.4 Liquid Injection Molding Silicone (LIM®) 77
1.4.1 LIM® Silicone Processing . 79
1.5 Thermoset Polymers 82
1.5.1 Polyester Alkyd (PAK) 83
1.5.2 Diallyl Phthalate/Isophthalate (DAP, DAIP) . 85
1.5.3 Melamine Formaldehyde (MF) 87
1.5.4 Cellulosic Ester 88
1.5.5 Cyanate . 89
1.5.6 Epoxy (EP) 92
1.5.7 Phenol Formaldehyde (Phenolic, PF) . 94X Contents
1.5.8 Polybutadiene (PB) 97
1.5.9 Bismaleimide (BMI) . 97
1.5.10 Unsaturated Polyester (UP) . 98
1.5.11 Polyimide (PI) 101
1.5.12 Polyxylene . 103
1.5.13 Polyurethane (PUR) . 104
1.5.14 Silicone (SI) 107
1.5.15 Urethane Hybrid 109
1.5.16 Vinyl Ester (BPA) . 111
2 Engineering Product Design . 115
2.1 Understanding the Properties of Materials . 115
2.1.1 Plastics Selection Guidelines . 117
2.2 Structural Design of Thermoplastic Components . 120
2.2.1 Stress-Strain Behavior . 121
2.2.2 Tensile Testing of Viscoelastic Materials 122
2.3 Mechanical Properties of Materials 126
2.4 Tension and Compression Curves . 129
2.5 Modulus of Elasticity (E) . 129
2.6 Stress and Strain Analysis 130
2.7 Thermoplastics Elastic Design Method 131
2.7.1 Working Stress 132
2.7.2 Compressive Stress 133
2.7.3 Flexural Stress 134
2.7.4 Coefficient of Linear Thermal Expansion (α) 135
2.7.5 Poisson’s Ratio (υ) 136
2.7.6 Moisture Effects on Nylon . 136
2.7.7 Effects of Temperature on the Behavior of
Thermoplastics . 137
2.8 Stress-Strain Recovery (Hysteresis) 138
2.8.1 Creep Behavior of Thermoplastics 138
2.8.2 Creep and Rupture Under Long-Term Load 139
2.8.3 Creep and Relaxation of Thermoplastics . 139
2.9 Flexural Beam Stress Distribution . 145
2.10 Viscoelastic Modulus Design Method 147
2.11 Centroid, Section Area, and Moment of Inertia . 150
2.12 Radius of Gyration 158
2.13 Stress Analysis of Beams . 158
2.13.1 Types of Loads 158
2.13.2 Normal Stresses in Beams 159
2.13.3 Shearing Force 164
2.14 Beam Defl ection Analysis 168
2.14.1 Beam Deflection by Double Integration Method . 169
2.14.2 Beam Deflection Moment Area Method . 178
2.14.3 Applications of Moment Area and Double Integration
Methods . 179
2.14.4 Beam Deflection Superposition Method . 183
2.15 Column Structural Analysis 188
2.15.1 Long Slender Column Critical Load (PCr) 188
2.15.2 Column Slenderness Ratio (L / r) . 188
2.15.3 Eccentrically Loaded Columns . 188
2.16 Flat Circular Plates 194
2.16.1 Classifi cation . 195
2.16.2 Stress Analysis Methods . 195Contents XI
2.16.3 Flat Circular Plate Equations . 196
2.16.4 Flat Circular Plate Stresses . 197
2.16.5 Theory of Flexure Comparison . 198
2.16.6 Circular Plates Simply Supported, Concentrated
Center Load 198
2.16.7 Flat Circular Plate under Concentrated Center Load 199
2.16.8 Flat Circular Plate with Fixed Edge 199
2.16.9 Flat Circular Plate Compensation Factor for
Defl ection 200
2.16.10 Flat Circular Plate Bending under Edge Boundaries . 200
2.17 Torsion Structural Analysis . 207
3 Structural Designs for Thermoplastics . 211
3.1 Uniform and Symmetrical Wall Thickness . 211
3.1.1 Part Geometries Difficult to Mold 212
3.1.2 Wall Draft Angle per Side 213
3.2 Structural Rib Design 213
3.2.1 Rib Strength Analysis Method 215
3.3 Internal Sharp Corners and Notches . 222
3.4 Injection Molded Thermoplastic Bosses 222
3.5 Injection Molded Thermoplastic Threads 224
3.6 Collapsible Core for Molding Internal Threads . 224
3.7 Preferred Standard Thread Forms for Thermoplastics . 225
3.7.1 Thermoplastic Threads Creep Effects 227
3.8 Injection Molded Products with Undercuts . 227
3.9 Injection Molded Integral Life Hinges . 232
3.9.1 Injection Molded Integral Life Hinge Design . 233
3.9.2 Mold Design Considerations for Hinges . 235
3.9.3 Proper Gate Design for Life Hinges . 236
3.10 Conventional Types of Pin Hinges . 237
3.11 Metal Inserts for Thermoplastic Encapsulation . 239
3.11.1 Machined Metal Threaded Insert Tolerances . 240
3.11.2 Thermoplastic Boss Wall Thickness for Metal Inserts 240
3.11.3 Press/Lock Slotted Metal Insert Installation After
Molding . 242
3.11.4 Cold Forged Metal Inserts for Encapsulation . 243
3.11.5 Threaded Female Metal Inserts . 244
3.11.6 Metal Inserts Anchorage for Thermoplastic
Encapsulation 246
3.11.7 Metal Insert Encapsulating Process Problems 249
3.11.8 Special Metal Inserts Anchorage for Encapsulation . 250
3.11.9 Electrical Lead Inserts for Encapsulation . 253
3.11.10 Inserts Preparation for Molding Encapsulation . 255
4 Thermoplastic Gearing Design 257
4.1 Classification of Gears . 258
4.1.1 Gears Parallel to the Shaft Axis . 258
4.1.2 Bevel Gears, Nonparallel and Intersecting Shafts 259
4.1.3 Hypoid Gears, Nonparallel and Nonintersecting
Shafts 261
4.1.4 Gears for Straight Linear Motion . 262
4.2 Standard Injection Molded Thermoplastic Gears . 263
4.2.1 Selection of Thermoplastic Resins for Gears . 264
4.2.2 Horsepower Equations for Gears . 266XII Contents
4.2.3 Spur Gear Terminology and Defi nitions . 268
4.3 Properties Required for Injection Molded Thermoplastic
Gears 272
4.4 Thermoplastic Spur Gear Design Requirements 273
4.4.1 Gating Effects on Thermoplastic Gear Roundness
Dimensions 275
4.4.2 Multifunction Designs with Thermoplastic Gears . 277
4.4.3 Mounting Thermoplastic Gears on Metal Shafts 279
4.4.4 Standard Spur Gears, Equations, and Calculations 279
4.4.5 Spur Gear Pitch Backlash 281
4.4.6 Standard Spur Gear Tooth Size Selection 282
4.4.7 Standard Gear Total Composite Tolerances 283
4.5 Tolerances and Mold Shrinkage of Thermoplastic Gears . 287
4.6 Standard Helical Gears . 289
4.7 Standard Straight Bevel Gears 290
4.8 Standard Worm Gears . 292
4.8.1 Standard Worm Gear Analysis 293
4.10 Plastic Gearing Technology Designs . 294
4.10.1 Spur and Helical Gears PGT-1 Tooth Design . 295
4.10.2 Spur and Helical Gears PGT-2 Tooth Design . 297
4.10.3 Spur and Helical Gears PGT-3 Tooth Design . 298
4.10.4 Spur and Helical Gears PGT-4 Tooth Design . 299
4.10.5 Plastic Gearing Technology Tooth Form Design
Variables . 300
4.10.6 Maximum Allowable Outside Diameter D
O (Max.) . 302
4.10.7 Spur Gear Tooth Form Comparison . 303
4.10.8 Mating Spur Gears Tooth Form Comparison . 304
4.10.9 PGT Spur Mating Gears Strength Balance . 305
4.10.10 PGT Close Mesh Center Distance Between Spur
Gears 308
4.10.11 Maximum Close Mesh Center Distance . 309
4.11 PGT Helical Thermoplastic Gearing . 314
4.11.1 PGT-1 Helical Mating Gears Strength Balance 319
4.11.2 PGT-1 Helical Mating Gears Center Distance 322
4.12 PGT Spur and Helical Gears Horsepower Rating 323
4.12.1 PGT Gear Horsepower Equation Basic Parameters 324
4.13 PGT Spur and Helical Gear Specifi cations 328
5 Plastic Journal Bearing Design 335
5.1 Introduction 335
5.2 Materials Used for Journal Bearings . 335
5.2.1 Babbitt Journal Bearings . 336
5.2.2 Bronze Journal Bearings . 336
5.2.3 Sintered Porous Metal Journal Bearings . 336
5.2.4 Plugged Bronze Journal Bearings . 336
5.2.5 Carbon-Graphite Journal Bearings 337
5.2.6 Cast-iron Journal Bearings . 337
5.2.7 Wooden Journal Bearings 337
5.2.8 Rubber Journal Bearings . 337
5.2.9 Self-Lubricated Thermoplastic Journal Bearings 338
5.3 Hydrodynamics of Lubrication . 339
5.4 Journal Bearings Design for Lubrication . 342
5.5 Journal Bearing Design Principles . 345
5.5.1 Journal Bearing Nomenclature and Equations 345XIII
5.5.2 Thermoplastic Journal Bearing Axial Wall Thickness 347
5.5.3 Mounting Thermoplastic Journal Bearings 347
5.6 Split Bushing Thermoplastic Journal Bearings 348
5.7 Self-Centering Thermoplastic Journal Bearings . 348
5.8 Journal Bearing Load Carrying Contact Surface (C) . 350
5.9 Load Reaction Across the Length of Thermoplastic Bearing 350
5.10 Injection Molded Journal Bearings Process Defects 351
5.11 Factors Affecting Journal Bearing Performance . 352
5.12 Factors Affecting Journal Bearing Dimensions 353
5.12.1 Length-to-Inside Diameter Ratio of Journal Bearings . 354
5.12.2 Types of Service and Motion of Journal Bearings . 354
5.12.3 Thermoplastic Journal Bearing Annealing Effects . 354
5.12.4 Acetal Homopolymer Moisture Absorption Effects . 355
5.12.5 TFE and Nylon 6/6 Moisture Absorption Effects 355
5.12.6 Temperature Effects on Thermoplastic Journal
Bearings . 356
5.12.7 Thermal Effects on Thermoplastic Journal Bearing
Clearances . 357
5.13 Journal Bearing Pressure-Velocity (PV) Limits 358
5.13.1 Methods to Determine the PV Limits of Plastics 359
5.13.2 Journal Bearing Coefficient of Friction 359
5.13.3 Journal Bearing Failures Due to Small Clearances . 360
5.13.4 Definition of Different Types of Wear . 361
5.14 Mating Material Hardness and Surface Finishing 362
5.15 Self-Lubricated Thermoplastic Journal Bearings 363
5.15.1 Vespel® Polyimide Bearings 366
5.15.2 Journal Bearing Pressure Equation 367
5.15.3 Vespel® Wear Factor Effects Caused by Temperature 368
5.15.4 Vespel® Wear Transition Temperature . 369
5.15.5 Frictional Behavior of Vespel® 369
5.15.6 Vespel® Journal Bearings Length to Inside Diameter
Ratio 370
5.15.7 Vespel® Thrust Bearing Ratio Between Diameters 370
5.15.8 Vespel® Journal Bearing Initial Clearance (cI) 370
5.15.9 Vespel® Journal Bearing Inside Diameter (dB) 371
5.16 Teflon® (TFE) Fabric Composite Bearings . 373
5.16.1 Bearing Physical Properties 374
5.16.2 Bearing PV Limit Rating . 374
5.16.3 Journal Bearing Clearances (c) . 375
5.17 Thermoplastic Kevlar® Reinforced Bearings 375
6 Thermoplastic Molded Spring Design 377
6.1 Introduction 377
6.2 Thermoplastic Molded Spring Design Considerations . 378
6.3 Thermoplastic Helical Compression Springs . 378
6.4 Thermoplastic Molded Cantilever Beam Springs 379
6.5 Cantilever Beam Spring Design Analysis . 381
6.5.1 Initial Modulus of Elasticity Cantilever Beam
Analysis Method 381
6.5.2 Stress-Strain Curve Cantilever Beam Analysis
Method 381
6.5.3 Empirical Data Cantilever Spring Analysis Method . 382
6.6 Thermoplastic Cantilever Spring Applications 385
6.7 Thermoplastic Belleville Spring Washers . 388
ContentsXIV
6.7.1 Acetal Homopolymer Belleville Spring Washer
Analysis 389
6.7.2 Belleville Spring Washer Loading Rate . 392
6.7.3 Belleville Spring Washer Long-Term Loading
Characteristics 392
7 Thermoplastic Pressure Vessel Design 393
7.1 Thermoplastic Thin-Walled Pressure Vessels . 393
7.2 Thin-Walled Cylinder Basic Principles . 394
7.3 Thick-Walled Pressure Vessels 396
7.3.1 Lame’s Equation for Thick-Walled Cylinders . 396
7.3.2 Maximum Stresses with Internal and External
Pressures . 398
7.3.3 Maximum Stresses for Internal Pressure Only 398
7.4 Designing Cylinders for Cost Reduction . 400
7.5 Thermoplastic Pressure Vessels Design Guidelines 400
7.5.1 Preliminary Pressure Vessel Design 400
7.6 Testing Prototype Thermoplastic Pressure Vessels . 402
7.6.1 Redesign and Retesting the Pressure Vessels 402
7.7 Pressure Vessel Regulations . 402
7.7.1 ASME Pressure Vessel Code 403
8 Thermoplastic Assembly Methods . 405
8.1 Introduction 405
8.2 Cold Heading Method . 405
8.2.1 Cold Heading Procedure and Equipment 406
8.3 Electro Fusion Fitting System . 408
8.3.1 The SEF-System 409
8.4 Hot Plate Welding Method . 410
8.4.1 Hot Plate Welding Joint Design . 412
8.4.2 Flash or Weld Bead 413
8.5 Solvent and Adhesive Bonding Methods . 413
8.5.1 Solvents Used to Bond Thermoplastic Polymers 414
8.6 Adhesive Bonding Method . 416
8.6.1 Adhesive Families . 416
8.6.2 Adhesive Concerns 419
8.6.3 Adhesives Bonding Selection . 420
8.6.4 Ultra Violet Curable Adhesives . 421
8.6.5 Adhesive Surface Preparation . 424
8.6.6 Adhesive Application and Curing Methods 425
8.6.7 Joint Design for Adhesive Bonding 425
8.7 Metal Fasteners Method 427
8.7.1 Thermoplastic Bosses and Self-Tapping Screws . 429
8.7.2 Thread Forming and Thread Cutting Screws . 430
8.8 Press Fitting Method . 437
8.8.1 Press Fitting Interference 439
8.8.2 Circular Press Fitting Assembly Method . 441
8.9 Snap Fitting Methods 444
8.9.1 Circular Undercut Snap Fitting Joints . 445
8.9.2 Suggestions for Stripping Circular Undercut Snap
Fitting . 446
8.9.3 Cantilevered Latch Snap Fitting Joint 447
8.9.4 Cantilever Snap Fit Latch Design Guidelines . 449
8.9.5 Cantilever Latch Snap Fit Mathematical Model . 450
ContentsXV
8.9.6 Cantilever Snap Latch Beam Permissible
Defl ection (δ) 452
8.9.7 Cantilever Latch Beam Assembly Force (W) 453
8.9.8 Design and Material Considerations 454
8.9.9 Uniform Cross Section Cantilever Beam . 454
8.9.10 Tapered Cross Section Cantilever Beam . 455
8.10 Electromagnetic Welding Method . 458
8.10.1 Electromagnetic Welding Process . 459
8.10.2 Electromagnetic Welding Coil Design . 460
8.10.3 Electromagnetic Welding Joint Design 463
8.10.4 Available Welding Gasket Shapes and Forms . 464
8.11 Vibration Welding Method . 465
8.11.1 High Frequency Vibration Welding . 465
8.11.2 Vibration Welding Modes 466
8.11.3 Comparing Vibration Welding to Other Assembly
Methods . 469
8.11.4 Vibration Welding Equipment 471
8.11.5 Vibration Welding Joint Design . 472
8.11.6 Vibration Welding Aligning and Fixturing . 473
8.11.7 Vibration Welding Tolerances 474
8.11.8 Vibration Welding Equipment 474
8.12 Spin Welding Method 476
8.12.1 Applications 476
8.12.2 Basic Spin Welding Equipment . 476
8.12.3 Spin Welding Variables 477
8.12.4 Types of Spin Welding Processes 477
8.12.5 Spin Welding Joint Designs 480
8.12.6 Spin Welding Process Suggestions . 480
8.13 Ultrasonic Welding Method 482
8.13.1 Ultrasonic Welding Basic Principles . 482
8.13.2 Ultrasonic Welding Basic Components 483
8.13.3 Ultrasonic Welding Equipment . 483
8.13.4 Ultrasonic Welding Process Variables 487
8.13.5 Ultrasonic Welding Joint Designs . 489
8.13.6 Ultrasonic Welding Energy Director Butt Joint . 492
8.13.7 Ultrasonic Welding Method Design Limitations 494
8.13.8 Weldability of Thermoplastic Materials 496
8.13.9 Effects Caused by Thermoplastic Additives on
Ultrasonic Welding 497
8.14 Ultrasonic Insertion . 500
8.14.1 Applications 500
8.14.2 Ultrasonic Insertion Confi gurations 501
8.14.3 Ultrasonic Insertion Product Design 502
8.14.4 Ultrasonic Insertion Equipment Requirements . 502
8.14.5 Ultrasonic Insertion Process Guidelines . 503
8.15 Ultrasonic Stud Staking Method 503
8.15.1 Ultrasonic Stud Staking Joint Design 503
8.16 Ultrasonic Stud Heading Method . 506
8.16.1 Thermoplastic Stud Profiles for Ultrasonic Heading 506
8.17 Ultrasonic Spot Welding Method 509
8.17.1 Hand-Held Ultrasonic Spot Welder . 510
9 Thermoplastic Effects on Product Design . 511
9.1 Polymer Melt Behavior . 511
ContentsXVI
9.1.1 Thermoplastics Glass Transition Temperature 513
9.2 General Characteristics of Polymers . 513
9.2.1 Critical Properties of Thermoplastics 514
9.3 Polymer Reinforcements . 515
9.3.1 Types of Fiber Reinforcements . 516
9.3.2 Isotropic Warpage of Fiber Reinforced Resins 517
9.3.3 Fiber Glass Reinforcement Limitations 517
9.3.4 Injection Molding Process Effects
on Fiber Glass Orientation . 517
9.3.5 Tensile Stress Effects Caused by Fiber Glass
Orientation 518
9.3.6 Flexural Modulus Effects Caused by Fiber Glass
Orientation 519
9.4 Chemical and Environmental Resistance . 520
9.4.1 Effects of the Environment . 521
9.5 Types of Degradations . 522
9.5.1 Oxidative Degradation 522
9.5.2 Radiation Degradation 522
9.5.3 Photo Oxidation 522
9.5.4 Mechanical Degradation . 522
9.5.5 Microbial Degradation 523
9.6 Moisture Effects on Nylon Molded Parts . 523
9.7 Aqueous Potassium Acetate for Moisture Conditioning Nylon 527
9.8 Injection Molding Cycles . 528
9.9 Mold Cavity Surface Temperature . 529
9.10 Mold Cavity Temperature Control 530
9.10.1 Mold and Post-Mold Shrinkage . 531
9.11 Process Condition Effects on Mold Shrinkage 533
9.12 Post-Mold Shrinkage 538
9.13 Weld Lines 541
10 Injection Mold Design 545
10.1 Classification of Injection Molds 545
10.2 Effects of Product Design on the Injection Molding Process 546
10.2.1 Uniform Wall Thickness . 547
10.2.2 Balance Geometrical Confi guration . 547
10.2.3 Smooth Internal Sharp Corners 547
10.2.4 Draft Walls . 547
10.2.5 Feather Edges . 547
10.2.6 Proportional Boss Geometries 548
10.2.7 Gate Type and Location . 548
10.2.8 Molded Product Ejection Surface Area 548
10.2.9 Molded Product Tolerances 548
10.2.10 Surface Finish of Molded Product 549
10.3 Effects of Mold Design on the Injection Molding Process 549
10.3.1 Runner System . 549
10.3.2 Mold Cooling System 549
10.3.3 Ejector System 550
10.3.4 Mold Venting . 550
10.3.5 Other Mold Devices . 550
10.4 Design Considerations for Injection Molds . 550
10.4.1 Preliminary Mold Design 551
10.4.2 Detailed Mold Design . 552
10.5 Types of Steels Required for Injection Molds . 553
ContentsXVII
10.5.1 Major Steel Families . 553
10.6 Steels for Thermoplastic Injection Molds 557
10.6.1 General Steel Selection Procedures 558
10.6.2 Properties and Characteristics of Tool Steels . 559
10.6.3 Effects of Alloying Elements on Tool Steel Properties 559
10.6.4 Chemical Composition of Steels Used for Molds . 559
10.6.5 Effects of Alloying on Tool Steels . 560
10.6.6 Effects of Heat Treatment on Tool Steel Properties 562
10.6.7 Prehardened Tool Steels . 564
10.6.8 Carburizing Tool Steels 566
10.6.9 Oil and Air Hardening Tool Steels . 567
10.6.10 Stainless Steels 568
10.6.11 Steels Used in Thermoplastic Injection Mold
Components . 569
10.7 Mold Cavity Surface Finishing 571
10.7.1 Mold Surface Finishing Process Procedures 573
10.8 Thermoplastic Injection Mold Bases . 578
10.8.1 Standard Mold Base Components . 578
10.8.2 Functions of the Mold Base Components 579
10.8.3 Types of Standard Mold Bases 582
10.9 Types of Thermoplastic Injection Molds . 583
10.9.1 Two-Plate Molds 584
10.9.2 Round Mate® Interchangeable Insert Molds . 585
10.9.3 Master Unit Die Interchangeable Insert Molds . 585
10.9.4 Three-Plate Mold Cold Runner System 586
10.9.5 Vertical Insert Mold for Thermoplastic
Encapsulations . 587
10.9.6 Hot Runner Molding Systems 588
10.9.7 Hot Runner Mold Temperature Control Systems . 589
10.9.8 Hot Runner Mold Gates (Drops) . 590
10.9.9 Types of Hot Runner Molding Systems 593
10.9.10 Thermoplastic Stack Injection Molds 601
10.9.11 Lost Core Thermoplastic Injection Molds 602
10.10 Number of Mold Cavities 606
10.10.1 Cavity Number Limitations 606
10.10.2 Number of Mold Cavities Equation . 606
10.11 Mold Parting Line . 607
10.11.1 Flat Mold Parting Line . 607
10.11.2 Non-Flat Mold Parting Line 608
10.11.3 Balancing of Mold Parting Line Surfaces . 610
10.12 Mold Ejection Systems . 610
10.12.1 Ejector Plate Assembly . 611
10.12.2 Ejector Plate 611
10.12.3 Retaining Plate . 611
10.12.4 Ejector Sleeves 611
10.12.5 Types of Mold Ejection Systems 612
10.13 Injection Mold Cooling 615
10.13.1 Mold Temperature Control 616
10.13.2 Factors Affecting Mold Cooling . 617
10.13.3 Effects Caused by Elevated Mold Temperature . 617
10.13.4 Effects Caused by Too Low a Mold Temperature 618
10.13.5 Mold Heat Transfer Methods . 618
10.13.6 Mold Cavity Insert Cooling 631
10.14 Injection Molding Machine Nozzle 639
ContentsXVIII
10.14.1 Mold Cold Runner System . 639
10.14.2 Determining the Injection Pressure Needed 653
10.14.3 Cold Runner Flow Tab . 654
10.15 Mold Cavity Gating . 655
10.15.1 Types of Mold Cavity Gates 656
10.15.2 Different Types of Hot Runner Gates 663
10.16 Gate Molding Effects 664
10.17 Mold Venting Systems . 666
10.17.1 Product Design for Venting 667
10.17.2 Venting Characteristics of Thermoplastic Polymers . 669
10.17.3 Mold Deposit Problems . 669
10.17.4 How to Avoid Venting Problems 670
10.17.5 Planning Mold Venting 671
10.17.6 Mold Venting Process Problems 672
10.17.7 Mold Venting Design 674
10.17.8 Mold Venting Using Sintered Porous Insert Plugs . 690
10.17.9 Logic Seal (Negative Coolant Pressure) Mold Venting . 691
10.17.10 Mold Cavity Vacuum Venting System . 693
10.18 Mold Cavity Insert Contact Area Strength 698
10.18.1 Cavity Insert Sidewall Strength . 699
10.18.2 Methods to Calculate the Strength of Cavity Insert
Sidewall 700
10.19 Mold Layout Case Studies 704
10.20 Mold Support Pillars 705
10.21 Tolerances for Thermoplastic Molded Parts 705
10.21.1 Factors Affecting Dimensional Control Tolerances 707
10.22 General Specifications for Mold Construction for
Thermoplastic Injection Molding Resins . 709
10.22.1 Mold Design Requirements 709
10.22.2 Mold Drawing Standards 709
10.22.3 Required Types of Tool Steels for Mold Construction . 711
10.22.4 Mold Construction Requirements 713
10.23 Mold Tryout – Debug – Approvals – “MQ1” Requirements . 720
10.23.1 Mold Tryout or Evaluation . 720
10.23.2 Mold Debug Procedures . 720
10.23.3 Approval of Molded Parts and Pre-Production
Molding Process 720
10.23.4 Mold Cavity and Core Surface Temperatures . 720
10.23.5 “MQ1” Requirements . 721
11 Performance Testing of Thermoplastics 723
11.1 Property Data Sheet for Thermoplastics . 724
11.2 Tensile Testing (ASTM D-638) 725
11.2.1 Tensile Testing Equipment . 725
11.2.2 Tensile Test Specimen . 726
11.2.3 Specimen Conditioning . 726
11.2.4 Tensile Strength Test Procedures 726
11.2.5 Tensile Modulus and Elongation 727
11.2.6 Molecular Orientation Effects 728
11.2.7 Crosshead Speed Effects . 729
11.2.8 Temperature Effects . 729
11.2.9 Moisture Absorption Effects 729
11.2.10 Stress-Strain Effects Caused by Creep . 730
11.3 Flexural Testing (ASTM D-790) . 730
ContentsXIX
11.3.1 Apparatus 731
11.3.2 Test Procedures and Equations . 732
11.3.3 Modulus of Elasticity 733
11.4 Compressive Strength Testing (ASTM D-695) 733
11.4.1 Compressive Testing Apparatus . 734
11.4.2 Test Specimens and Conditioning . 734
11.4.3 Test Procedures . 734
11.4.4 Stress-Strain Tension and Compression Curves . 735
11.5 Shear Strength Testing (ASTM D-732) . 735
11.5.1 Test Specimen and Apparatus 735
11.5.2 Test Procedures . 736
11.5.3 Significance and Limitations . 736
11.6 Surface Hardness Testing . 736
11.6.1 Rockwell Hardness Testing (ASTM D-785-60T) 737
11.6.2 Barcol Hardness Testing (ASTM D-2583) 739
11.6.3 Factors Affecting the Test Results . 740
11.7 Abrasion Resistance Testing (ASTM D-1044) . 740
11.7.1 Taber Abrasion Testing 741
11.7.2 Theoretical Analysis of Wear . 741
11.8 Coefficient of Friction (ASTM D-1894) 742
11.8.1 Coefficient of Friction of Thermoplastic Materials 743
11.8.3 Effects of Lubricants 744
11.9 Mold Shrinkage Test (ASTM D-955) 744
11.9.1 Purpose of the Mold Shrinkage Test . 744
11.9.2 Factors Affecting Mold Shrinkage . 745
11.9.3 Injection Molding Effects on Shrinkage 745
11.9.4 Requirements for Sampling 745
11.9.5 Test Procedures . 746
11.10 Specific Gravity Testing (ASTM D-792) 748
11.10.1 Test Procedures . 749
11.11 Density Gradient Testing (ASTM D-1505) . 750
11.12 Water Absorption Testing (ASTM D-570) 750
11.12.1 Test Specimen 751
11.12.2 Test Procedure 751
11.13 Impact Resistance Testing 751
11.13.1 Pendulum Impact Tests 753
11.13.2 Charpy Impact Testing (ASTM D-256) 755
11.13.3 Chip Impact Testing . 755
11.13.4 Tensile Impact Testing (ASTM D-1822) . 755
11.13.5 Drop Weight Impact Testing (ASTM D-3029) 756
11.13.6 Falling Weight Impact Testing 757
11.13.7 Instrumented Impact Testing . 758
11.14 Creep, Rupture, Relaxation, and Fatigue . 761
11.14.1 Tensile Creep Testing 761
11.14.2 Flexural Creep Testing . 762
11.14.3 Procedure for Applying Creep Modulus . 764
11.15 Melting Point Test (ASTM D-795) 767
11.16 Vicat Softening Point (ASTM D-1525) . 767
11.16.1 Melting Point, Glass Transition Temperature . 768
11.17 Brittleness Temperature (ASTM D-746) . 768
11.17.1 Test Apparatus and Procedures . 768
11.18 UL – Temperature Index . 770
11.18.1 Relative Thermal Indices . 770
11.18.2 Long Term Thermal Aging Index . 772
ContentsXX
11.18.3 Creep Modulus/Creep Rupture Tests 773
11.19 Heat Deflection Temperature (ASTM D-648) . 774
11.19.1 Apparatus and Test Specimens . 774
11.19.2 Test Procedure 775
11.19.3 Test Variables and Limitations 775
11.20 Soldering Heat Resistance 775
11.21 Coefficient of Linear Thermal Expansion Testing . 776
11.21.1 Test Procedure 777
11.22 Thermal Conductivity Testing (ASTM C-177) 777
11.23 Melt Flow Testing . 779
11.23.1 Moisture Content . 780
11.24 Melt Index Testing (ASTM D-1238) . 780
11.24.1 Melt Flow Rate . 781
11.25 Capillary Rheometer Melt Viscosity Testing (ASTM D-1703) . 782
11.25.1 Melt Viscosity vs. Shear Rate Curves . 783
11.26 Electrical Properties Testing 784
11.26.1 Underwriter’s Laboratories (UL) Yellow Cards . 785
11.26.2 How to Read and Interpret the “UL Yellow Card” . 786
11.26.3 “UL Insulation Systems Recognition” . 791
11.27 Electrical Insulation Properties . 792
11.28 Electrical Resistance Properties . 792
11.28.1 Volume Resistivity Testing (ASTM D-257) . 793
11.28.2 Surface Resistivity Testing (ASTM D-257) . 794
11.28.3 Dielectric Strength Testing (ASTM D-149) . 795
11.28.4 Dielectric Constant Testing (ASTM D-150) 797
11.28.5 Dissipation Factor Testing (ASTM D-150) . 800
11.28.6 Arc Resistance Testing (ASTM D-495) . 801
11.28.7 High Voltage Arc Tracking Rate (UL-746 A) 803
11.28.8 Comparative Track Index Testing (ASTM D-3638/
UL 746 A) 804
11.29 Self and Flash Ignition Temperature Testing (ASTM D-1929) 805
11.29.1 Test Description 805
11.29.2 High Current Arc Ignition Testing (UL 746A) 806
11.29.3 Hot Wire Coil Ignition Testing
(UL 746A/ASTM D-3874) . 807
11.29.4 Hot Mandrel Testing 807
11.29.5 Glow Wire Testing 807
11.30 Flammability Characteristics of Polymers 809
11.30.1 Inherently Flame Retardant Polymers . 810
11.30.2 Less Flame Retardant Polymers . 810
11.30.3 Flammable Polymers 810
11.31 UL 94 Flammability Testing 811
11.31.1 Horizontal Burning Testing, UL 94HB . 811
11.31.2 Vertical Burning Testing, UL 94-V0, UL 94-V1,
UL 94-V2 812
11.31.3 Vertical Burning Testing, UL 94-5V, UL 94-5VA,
UL 94-5VB . 813
11.31.4 Factors Affecting UL 94 Flammability Testing 815
11.32 Limited Oxygen Index Testing (ASTM D-2863) . 815
11.32.1 Test Procedures . 816
11.32.2 Factors Affecting the Test Results . 816
11.33 Smoke Generation Testing 817
11.33.1 Smoke Density Testing (ASTM D-2843) . 817
11.34 Weathering Tests for Thermoplastic Materials 818
ContentsXXI
11.34.1 Weathering Creep Factors (Degradation) 818
11.34.2 Ultraviolet (UV) Radiation 819
11.34.3 Temperature 819
11.34.4 Moisture . 820
11.34.5 Oxidation 820
11.34.6 Micro-Organisms . 820
11.35 Accelerated Weathering Testing (ASTM G 23) 821
11.35.1 Exposure to Fluorescent UV Lamp, Condensation
(ASTM G 53) . 821
11.35.2 Accelerated Weather Testing, Weather-Ometer® 822
11.35.3 Exposure to Carbon Arc Light and Water Testing
(ASTM D-1499) 823
11.35.4 Exposure to Xenon Arc Light and Water Testing
(ASTM D-2565) 825
11.35.5 Outdoor Weathering Testing of Thermoplastics
(ASTM D-1435) 827
11.36 Fungi Resistance Testing of Thermoplastics (ASTM G 21) . 828
11.37 Bacteria Resistance Testing of Thermoplastics (ASTM G 22) . 829
11.38 Fungi and Bacteria Outdoor Exposure Resistance Limitations 829
12 Thermoplastic Product Cost Analysis 831
12.1 Injection Molding Process 832
12.2 Molding Cycle Time . 832
12.3 Material Handling (Regrinds) 833
12.4 Capital Equipment 833
12.5 Injection Molding Machine Size 833
12.6 Injection Molding Machine Cost 836
12.7 Machine Installation and Safety Considerations 837
12.8 Auxiliary Equipment and Automation . 837
12.9 Mold Cost 838
12.10 Molded Products Cost Analysis . 841
12.10.1 Cost Analysis Basic Method 841
12.10.2 Cost Analysis Graph Method . 842
12.10.3 Advanced Cost Analysis Method 843
12.11 Secondary Molding Operations . 848
12.12 Additional Manufacturing Costs 848
Appendix . 849
Acronyms for Polymeric Materials 849
Common Acronyms . 850
Process Acronyms . 851
Reinforcement and Filler Acronyms . 851
Nomenclature 852
English and Metric Units Conversion Guide 853
Subject Index 855
About the Author .


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب The Complete Part Design Handbook
رابط مباشر لتنزيل كتاب The Complete Part Design Handbook

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب The Complete Part Design Handbook
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: