Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب The Complete Part Design Handbook الأربعاء 02 أكتوبر 2019, 8:38 pm | |
|
أخوانى فى الله أحضرت لكم كتاب The Complete Part Design Handbook - For Injection Molding of Thermoplastics E. Alfredo Campo
و المحتوى كما يلي :
Chapter 1 Plastic Materials Selection Guide: Includes an introduction to plastic materials, the beginning of plastics, classifi cation of polymer families. Each resin is discussed by its basic chemistry, properties, processing characteristics, advantages, disadvantages and limitations, typical applications and several product illu strations. Thermoplastic materials (35 generic families), thermoplastic elastomer materials (8 generic families), liquid injection molding of silicone, thermoset materials (16 generic families). Chapter 2 Engineering Product Design: Starts with the introduction to structural product design principles, mechanical strength properties of thermoplastics. Centroid, section area, moment of inertia equations and tables. Beam defl ection analysis methods. Structure analysis of beams, columns, flat circular plates, and torsion. Chapter 3 Structural Design for Thermoplastics: Discusses the product wall thickness, structural rib design, sharp corners, bosses, threads, undercuts, integral life hinges, pin hinges. Encapsulation of inserts, types of metal inserts and anchorage, and electrical lead inserts. Chapter 4 Thermoplastic Gearing Design: An introduction to and classification of gears. Standard spur, helical, bevel, and worm gears; properties required for thermoplastic molded spur gears, mounting gears on metal shafts, tolerances and mold shrinkage of gears. Plastic spur and helical gearing technology design, strength, horsepower rating, equations, tables, analysis examples and gear specifi cation illustrations. Chapter 5 Plastic Journal Bearing Design: An introduction to types of materials for journal bearings. Theory and design for lubrication. Design principles, performances, dimensions, clearances, molding effects, PV limits and surface fi nishing. Self-lubricated thermoplastic bearings. Equations, tables, and analysis examples.VIII Preface Chapter 6 Thermoplastic Spring Design: Introduces cantilever beam spring design, applications, and analysis examples. Locating, fi xing clip, flexible hinges, and torsional spring applications. Belleville spring washers’ equations, tables, and analysis examples. Chapter 7 Thermoplastic Pressure Vessel Design: Discusses thin- and thick-walled pressure vessels’ basic principles, equations, tables, analysis examples, design guidelines, applications, and pressure vessel regulations. Chapter 8 Thermoplastic Assembly Methods: Joining two or more components together: assembly method is selected based on product design geometry, size, end use requirements, thermo plastic material characteristics, automatic or manual assembly operation, and manufacturing costs. Each assembly method provides a description, process sequence, advantages and limitations, typical applications, equipment, product joint design, and its variations. Chapter 9 Thermoplastic Effects on Design: Starts discussing the polymer melt behavior, reinforcement, degradation, moisture characteristics, mold shrinkage and critical properties. The molding process effects caused by molding cycle, melt/mold temperature, injection pressure and speed, etc. on product design dimensions, surface finishing, weld line strength and impact resistance and other molding problems. Chapter 10 Thermoplastic Injection Mold Design: Provides an introduction of injection molds, classification and effects on product design. Types of steels, chemical composition, effects of alloying, heat treatment, properties and characteristics. Types of steels used for mold bases and mold components. Cavity surfaces fi nish procedures and specifications. Types of injection mold designs. Cold runners (two- and three-plate molds, interchangeable mold inserts and vertical insert encapsulation mold). Hot runner molds (internally and externally heated, insulated). Mold design system and other considerations, such as number of cavities, parting line, ejection, cooling, cold runner, gating, venting, cavity inserts sidewall strength, support pillars, molded parts tolerances, mold designer check list, general specifications for mold construction are covered. Chapter 11 Performance Testing of Thermoplastics: It introduces various tests to which thermoplastic polymers are subjected, describes their properties (statistical analysis), such as mechanical, thermal, chemical resistance, rheometer melt viscosity, soldering heat resistance, electrical, flammability, smoke generation, weathering and micro-organism resistance. Test description, procedures, apparatus, test specimen and conditioning, and their signifi cance are discussed here. Chapter 12 Thermoplastic Product Cost Analysis: It discusses molding process variables and capital equipment cost. Three cost analysis methods are used to estimate the molded product user’s price.IX Contents Preface VII 1 Polymeric Materials 1 1.1 Introduction to Plastic Materials 1 1.1.1 Beginning of Plastics 1 1.1.2 Polymer Families . 3 1.2 Thermoplastic Polymers . 4 1.2.1 Classification of Polymers by Performance . 4 1.2.2 Molecular Structure of Plastic Materials . 6 1.2.3 Acrylonitrile-Butadiene-Styrene (ABS) 6 1.2.4 Acetal (POM, Polyacetal) 9 1.2.5 Polymethyl Metacrylate (Acrylic, PMMA) 12 1.2.6 High Temperature Nylon (HTN) 14 1.2.7 Ionomer Polymers . 16 1.2.8 Liquid Crystal Polymer (LCP) . 18 1.2.9 Polyamide (PA, Nylon) . 20 1.2.10 Polyetherimide (PEI) . 23 1.2.11 Polyarylate (PAR) 25 1.2.12 Polyetherether Ketone (PEEK) . 27 1.2.13 Polycarbonate (PC) 28 1.2.14 Modified Polyphenylene Oxide (PPO) 31 1.2.15 Polybutylene Terephthalate (PBT) . 33 1.2.16 Polyethylene Terephthalate (PET) 34 1.2.17 Polyethylene (PE) 36 1.2.18 Polytetrafl uoroethylene (PTFE) . 39 1.2.19 Polyphenylene Sulfi de (PPS) 44 1.2.20 Polypropylene (PP) 46 1.2.21 Polystyrene (PS) . 48 1.2.22 Polysulfone (PSU) . 49 1.2.23 Polyvinyl Chloride (PVC) . 51 1.2.24 Styrene Acrylonitrile (SAN) . 53 1.3 Thermoplastic Elastomers (TPE) . 55 1.3.1 Thermoplastic Elastomer Families . 56 1.3.2 Thermoplastic Polyurethane Elastomer (TPU) 57 1.3.3 Styrenic Block Copolymer (SBS) . 60 1.3.4 Polyolefin Thermoplastic Elastomer (TPO) . 62 1.3.5 Elastomeric Alloy Thermoplastic Vulcanized (TPV) 65 1.3.6 Melt Processible Rubber (MPR) . 69 1.3.7 Copolyester Thermoplastic Elastomer . 71 1.3.8 Polyamide Thermoplastic Elastomer . 75 1.4 Liquid Injection Molding Silicone (LIM) 77 1.4.1 LIM Silicone Processing . 79 1.5 Thermoset Polymers 82 1.5.1 Polyester Alkyd (PAK) 83 1.5.2 Diallyl Phthalate/Isophthalate (DAP, DAIP) . 85 1.5.3 Melamine Formaldehyde (MF) 87 1.5.4 Cellulosic Ester 88 1.5.5 Cyanate . 89 1.5.6 Epoxy (EP) 92 1.5.7 Phenol Formaldehyde (Phenolic, PF) . 94X Contents 1.5.8 Polybutadiene (PB) 97 1.5.9 Bismaleimide (BMI) . 97 1.5.10 Unsaturated Polyester (UP) . 98 1.5.11 Polyimide (PI) 101 1.5.12 Polyxylene . 103 1.5.13 Polyurethane (PUR) . 104 1.5.14 Silicone (SI) 107 1.5.15 Urethane Hybrid 109 1.5.16 Vinyl Ester (BPA) . 111 2 Engineering Product Design . 115 2.1 Understanding the Properties of Materials . 115 2.1.1 Plastics Selection Guidelines . 117 2.2 Structural Design of Thermoplastic Components . 120 2.2.1 Stress-Strain Behavior . 121 2.2.2 Tensile Testing of Viscoelastic Materials 122 2.3 Mechanical Properties of Materials 126 2.4 Tension and Compression Curves . 129 2.5 Modulus of Elasticity (E) . 129 2.6 Stress and Strain Analysis 130 2.7 Thermoplastics Elastic Design Method 131 2.7.1 Working Stress 132 2.7.2 Compressive Stress 133 2.7.3 Flexural Stress 134 2.7.4 Coefficient of Linear Thermal Expansion (α) 135 2.7.5 Poisson’s Ratio (υ) 136 2.7.6 Moisture Effects on Nylon . 136 2.7.7 Effects of Temperature on the Behavior of Thermoplastics . 137 2.8 Stress-Strain Recovery (Hysteresis) 138 2.8.1 Creep Behavior of Thermoplastics 138 2.8.2 Creep and Rupture Under Long-Term Load 139 2.8.3 Creep and Relaxation of Thermoplastics . 139 2.9 Flexural Beam Stress Distribution . 145 2.10 Viscoelastic Modulus Design Method 147 2.11 Centroid, Section Area, and Moment of Inertia . 150 2.12 Radius of Gyration 158 2.13 Stress Analysis of Beams . 158 2.13.1 Types of Loads 158 2.13.2 Normal Stresses in Beams 159 2.13.3 Shearing Force 164 2.14 Beam Defl ection Analysis 168 2.14.1 Beam Deflection by Double Integration Method . 169 2.14.2 Beam Deflection Moment Area Method . 178 2.14.3 Applications of Moment Area and Double Integration Methods . 179 2.14.4 Beam Deflection Superposition Method . 183 2.15 Column Structural Analysis 188 2.15.1 Long Slender Column Critical Load (PCr) 188 2.15.2 Column Slenderness Ratio (L / r) . 188 2.15.3 Eccentrically Loaded Columns . 188 2.16 Flat Circular Plates 194 2.16.1 Classifi cation . 195 2.16.2 Stress Analysis Methods . 195Contents XI 2.16.3 Flat Circular Plate Equations . 196 2.16.4 Flat Circular Plate Stresses . 197 2.16.5 Theory of Flexure Comparison . 198 2.16.6 Circular Plates Simply Supported, Concentrated Center Load 198 2.16.7 Flat Circular Plate under Concentrated Center Load 199 2.16.8 Flat Circular Plate with Fixed Edge 199 2.16.9 Flat Circular Plate Compensation Factor for Defl ection 200 2.16.10 Flat Circular Plate Bending under Edge Boundaries . 200 2.17 Torsion Structural Analysis . 207 3 Structural Designs for Thermoplastics . 211 3.1 Uniform and Symmetrical Wall Thickness . 211 3.1.1 Part Geometries Difficult to Mold 212 3.1.2 Wall Draft Angle per Side 213 3.2 Structural Rib Design 213 3.2.1 Rib Strength Analysis Method 215 3.3 Internal Sharp Corners and Notches . 222 3.4 Injection Molded Thermoplastic Bosses 222 3.5 Injection Molded Thermoplastic Threads 224 3.6 Collapsible Core for Molding Internal Threads . 224 3.7 Preferred Standard Thread Forms for Thermoplastics . 225 3.7.1 Thermoplastic Threads Creep Effects 227 3.8 Injection Molded Products with Undercuts . 227 3.9 Injection Molded Integral Life Hinges . 232 3.9.1 Injection Molded Integral Life Hinge Design . 233 3.9.2 Mold Design Considerations for Hinges . 235 3.9.3 Proper Gate Design for Life Hinges . 236 3.10 Conventional Types of Pin Hinges . 237 3.11 Metal Inserts for Thermoplastic Encapsulation . 239 3.11.1 Machined Metal Threaded Insert Tolerances . 240 3.11.2 Thermoplastic Boss Wall Thickness for Metal Inserts 240 3.11.3 Press/Lock Slotted Metal Insert Installation After Molding . 242 3.11.4 Cold Forged Metal Inserts for Encapsulation . 243 3.11.5 Threaded Female Metal Inserts . 244 3.11.6 Metal Inserts Anchorage for Thermoplastic Encapsulation 246 3.11.7 Metal Insert Encapsulating Process Problems 249 3.11.8 Special Metal Inserts Anchorage for Encapsulation . 250 3.11.9 Electrical Lead Inserts for Encapsulation . 253 3.11.10 Inserts Preparation for Molding Encapsulation . 255 4 Thermoplastic Gearing Design 257 4.1 Classification of Gears . 258 4.1.1 Gears Parallel to the Shaft Axis . 258 4.1.2 Bevel Gears, Nonparallel and Intersecting Shafts 259 4.1.3 Hypoid Gears, Nonparallel and Nonintersecting Shafts 261 4.1.4 Gears for Straight Linear Motion . 262 4.2 Standard Injection Molded Thermoplastic Gears . 263 4.2.1 Selection of Thermoplastic Resins for Gears . 264 4.2.2 Horsepower Equations for Gears . 266XII Contents 4.2.3 Spur Gear Terminology and Defi nitions . 268 4.3 Properties Required for Injection Molded Thermoplastic Gears 272 4.4 Thermoplastic Spur Gear Design Requirements 273 4.4.1 Gating Effects on Thermoplastic Gear Roundness Dimensions 275 4.4.2 Multifunction Designs with Thermoplastic Gears . 277 4.4.3 Mounting Thermoplastic Gears on Metal Shafts 279 4.4.4 Standard Spur Gears, Equations, and Calculations 279 4.4.5 Spur Gear Pitch Backlash 281 4.4.6 Standard Spur Gear Tooth Size Selection 282 4.4.7 Standard Gear Total Composite Tolerances 283 4.5 Tolerances and Mold Shrinkage of Thermoplastic Gears . 287 4.6 Standard Helical Gears . 289 4.7 Standard Straight Bevel Gears 290 4.8 Standard Worm Gears . 292 4.8.1 Standard Worm Gear Analysis 293 4.10 Plastic Gearing Technology Designs . 294 4.10.1 Spur and Helical Gears PGT-1 Tooth Design . 295 4.10.2 Spur and Helical Gears PGT-2 Tooth Design . 297 4.10.3 Spur and Helical Gears PGT-3 Tooth Design . 298 4.10.4 Spur and Helical Gears PGT-4 Tooth Design . 299 4.10.5 Plastic Gearing Technology Tooth Form Design Variables . 300 4.10.6 Maximum Allowable Outside Diameter D O (Max.) . 302 4.10.7 Spur Gear Tooth Form Comparison . 303 4.10.8 Mating Spur Gears Tooth Form Comparison . 304 4.10.9 PGT Spur Mating Gears Strength Balance . 305 4.10.10 PGT Close Mesh Center Distance Between Spur Gears 308 4.10.11 Maximum Close Mesh Center Distance . 309 4.11 PGT Helical Thermoplastic Gearing . 314 4.11.1 PGT-1 Helical Mating Gears Strength Balance 319 4.11.2 PGT-1 Helical Mating Gears Center Distance 322 4.12 PGT Spur and Helical Gears Horsepower Rating 323 4.12.1 PGT Gear Horsepower Equation Basic Parameters 324 4.13 PGT Spur and Helical Gear Specifi cations 328 5 Plastic Journal Bearing Design 335 5.1 Introduction 335 5.2 Materials Used for Journal Bearings . 335 5.2.1 Babbitt Journal Bearings . 336 5.2.2 Bronze Journal Bearings . 336 5.2.3 Sintered Porous Metal Journal Bearings . 336 5.2.4 Plugged Bronze Journal Bearings . 336 5.2.5 Carbon-Graphite Journal Bearings 337 5.2.6 Cast-iron Journal Bearings . 337 5.2.7 Wooden Journal Bearings 337 5.2.8 Rubber Journal Bearings . 337 5.2.9 Self-Lubricated Thermoplastic Journal Bearings 338 5.3 Hydrodynamics of Lubrication . 339 5.4 Journal Bearings Design for Lubrication . 342 5.5 Journal Bearing Design Principles . 345 5.5.1 Journal Bearing Nomenclature and Equations 345XIII 5.5.2 Thermoplastic Journal Bearing Axial Wall Thickness 347 5.5.3 Mounting Thermoplastic Journal Bearings 347 5.6 Split Bushing Thermoplastic Journal Bearings 348 5.7 Self-Centering Thermoplastic Journal Bearings . 348 5.8 Journal Bearing Load Carrying Contact Surface (C) . 350 5.9 Load Reaction Across the Length of Thermoplastic Bearing 350 5.10 Injection Molded Journal Bearings Process Defects 351 5.11 Factors Affecting Journal Bearing Performance . 352 5.12 Factors Affecting Journal Bearing Dimensions 353 5.12.1 Length-to-Inside Diameter Ratio of Journal Bearings . 354 5.12.2 Types of Service and Motion of Journal Bearings . 354 5.12.3 Thermoplastic Journal Bearing Annealing Effects . 354 5.12.4 Acetal Homopolymer Moisture Absorption Effects . 355 5.12.5 TFE and Nylon 6/6 Moisture Absorption Effects 355 5.12.6 Temperature Effects on Thermoplastic Journal Bearings . 356 5.12.7 Thermal Effects on Thermoplastic Journal Bearing Clearances . 357 5.13 Journal Bearing Pressure-Velocity (PV) Limits 358 5.13.1 Methods to Determine the PV Limits of Plastics 359 5.13.2 Journal Bearing Coefficient of Friction 359 5.13.3 Journal Bearing Failures Due to Small Clearances . 360 5.13.4 Definition of Different Types of Wear . 361 5.14 Mating Material Hardness and Surface Finishing 362 5.15 Self-Lubricated Thermoplastic Journal Bearings 363 5.15.1 Vespel Polyimide Bearings 366 5.15.2 Journal Bearing Pressure Equation 367 5.15.3 Vespel Wear Factor Effects Caused by Temperature 368 5.15.4 Vespel Wear Transition Temperature . 369 5.15.5 Frictional Behavior of Vespel 369 5.15.6 Vespel Journal Bearings Length to Inside Diameter Ratio 370 5.15.7 Vespel Thrust Bearing Ratio Between Diameters 370 5.15.8 Vespel Journal Bearing Initial Clearance (cI) 370 5.15.9 Vespel Journal Bearing Inside Diameter (dB) 371 5.16 Teflon (TFE) Fabric Composite Bearings . 373 5.16.1 Bearing Physical Properties 374 5.16.2 Bearing PV Limit Rating . 374 5.16.3 Journal Bearing Clearances (c) . 375 5.17 Thermoplastic Kevlar Reinforced Bearings 375 6 Thermoplastic Molded Spring Design 377 6.1 Introduction 377 6.2 Thermoplastic Molded Spring Design Considerations . 378 6.3 Thermoplastic Helical Compression Springs . 378 6.4 Thermoplastic Molded Cantilever Beam Springs 379 6.5 Cantilever Beam Spring Design Analysis . 381 6.5.1 Initial Modulus of Elasticity Cantilever Beam Analysis Method 381 6.5.2 Stress-Strain Curve Cantilever Beam Analysis Method 381 6.5.3 Empirical Data Cantilever Spring Analysis Method . 382 6.6 Thermoplastic Cantilever Spring Applications 385 6.7 Thermoplastic Belleville Spring Washers . 388 ContentsXIV 6.7.1 Acetal Homopolymer Belleville Spring Washer Analysis 389 6.7.2 Belleville Spring Washer Loading Rate . 392 6.7.3 Belleville Spring Washer Long-Term Loading Characteristics 392 7 Thermoplastic Pressure Vessel Design 393 7.1 Thermoplastic Thin-Walled Pressure Vessels . 393 7.2 Thin-Walled Cylinder Basic Principles . 394 7.3 Thick-Walled Pressure Vessels 396 7.3.1 Lame’s Equation for Thick-Walled Cylinders . 396 7.3.2 Maximum Stresses with Internal and External Pressures . 398 7.3.3 Maximum Stresses for Internal Pressure Only 398 7.4 Designing Cylinders for Cost Reduction . 400 7.5 Thermoplastic Pressure Vessels Design Guidelines 400 7.5.1 Preliminary Pressure Vessel Design 400 7.6 Testing Prototype Thermoplastic Pressure Vessels . 402 7.6.1 Redesign and Retesting the Pressure Vessels 402 7.7 Pressure Vessel Regulations . 402 7.7.1 ASME Pressure Vessel Code 403 8 Thermoplastic Assembly Methods . 405 8.1 Introduction 405 8.2 Cold Heading Method . 405 8.2.1 Cold Heading Procedure and Equipment 406 8.3 Electro Fusion Fitting System . 408 8.3.1 The SEF-System 409 8.4 Hot Plate Welding Method . 410 8.4.1 Hot Plate Welding Joint Design . 412 8.4.2 Flash or Weld Bead 413 8.5 Solvent and Adhesive Bonding Methods . 413 8.5.1 Solvents Used to Bond Thermoplastic Polymers 414 8.6 Adhesive Bonding Method . 416 8.6.1 Adhesive Families . 416 8.6.2 Adhesive Concerns 419 8.6.3 Adhesives Bonding Selection . 420 8.6.4 Ultra Violet Curable Adhesives . 421 8.6.5 Adhesive Surface Preparation . 424 8.6.6 Adhesive Application and Curing Methods 425 8.6.7 Joint Design for Adhesive Bonding 425 8.7 Metal Fasteners Method 427 8.7.1 Thermoplastic Bosses and Self-Tapping Screws . 429 8.7.2 Thread Forming and Thread Cutting Screws . 430 8.8 Press Fitting Method . 437 8.8.1 Press Fitting Interference 439 8.8.2 Circular Press Fitting Assembly Method . 441 8.9 Snap Fitting Methods 444 8.9.1 Circular Undercut Snap Fitting Joints . 445 8.9.2 Suggestions for Stripping Circular Undercut Snap Fitting . 446 8.9.3 Cantilevered Latch Snap Fitting Joint 447 8.9.4 Cantilever Snap Fit Latch Design Guidelines . 449 8.9.5 Cantilever Latch Snap Fit Mathematical Model . 450 ContentsXV 8.9.6 Cantilever Snap Latch Beam Permissible Defl ection (δ) 452 8.9.7 Cantilever Latch Beam Assembly Force (W) 453 8.9.8 Design and Material Considerations 454 8.9.9 Uniform Cross Section Cantilever Beam . 454 8.9.10 Tapered Cross Section Cantilever Beam . 455 8.10 Electromagnetic Welding Method . 458 8.10.1 Electromagnetic Welding Process . 459 8.10.2 Electromagnetic Welding Coil Design . 460 8.10.3 Electromagnetic Welding Joint Design 463 8.10.4 Available Welding Gasket Shapes and Forms . 464 8.11 Vibration Welding Method . 465 8.11.1 High Frequency Vibration Welding . 465 8.11.2 Vibration Welding Modes 466 8.11.3 Comparing Vibration Welding to Other Assembly Methods . 469 8.11.4 Vibration Welding Equipment 471 8.11.5 Vibration Welding Joint Design . 472 8.11.6 Vibration Welding Aligning and Fixturing . 473 8.11.7 Vibration Welding Tolerances 474 8.11.8 Vibration Welding Equipment 474 8.12 Spin Welding Method 476 8.12.1 Applications 476 8.12.2 Basic Spin Welding Equipment . 476 8.12.3 Spin Welding Variables 477 8.12.4 Types of Spin Welding Processes 477 8.12.5 Spin Welding Joint Designs 480 8.12.6 Spin Welding Process Suggestions . 480 8.13 Ultrasonic Welding Method 482 8.13.1 Ultrasonic Welding Basic Principles . 482 8.13.2 Ultrasonic Welding Basic Components 483 8.13.3 Ultrasonic Welding Equipment . 483 8.13.4 Ultrasonic Welding Process Variables 487 8.13.5 Ultrasonic Welding Joint Designs . 489 8.13.6 Ultrasonic Welding Energy Director Butt Joint . 492 8.13.7 Ultrasonic Welding Method Design Limitations 494 8.13.8 Weldability of Thermoplastic Materials 496 8.13.9 Effects Caused by Thermoplastic Additives on Ultrasonic Welding 497 8.14 Ultrasonic Insertion . 500 8.14.1 Applications 500 8.14.2 Ultrasonic Insertion Confi gurations 501 8.14.3 Ultrasonic Insertion Product Design 502 8.14.4 Ultrasonic Insertion Equipment Requirements . 502 8.14.5 Ultrasonic Insertion Process Guidelines . 503 8.15 Ultrasonic Stud Staking Method 503 8.15.1 Ultrasonic Stud Staking Joint Design 503 8.16 Ultrasonic Stud Heading Method . 506 8.16.1 Thermoplastic Stud Profiles for Ultrasonic Heading 506 8.17 Ultrasonic Spot Welding Method 509 8.17.1 Hand-Held Ultrasonic Spot Welder . 510 9 Thermoplastic Effects on Product Design . 511 9.1 Polymer Melt Behavior . 511 ContentsXVI 9.1.1 Thermoplastics Glass Transition Temperature 513 9.2 General Characteristics of Polymers . 513 9.2.1 Critical Properties of Thermoplastics 514 9.3 Polymer Reinforcements . 515 9.3.1 Types of Fiber Reinforcements . 516 9.3.2 Isotropic Warpage of Fiber Reinforced Resins 517 9.3.3 Fiber Glass Reinforcement Limitations 517 9.3.4 Injection Molding Process Effects on Fiber Glass Orientation . 517 9.3.5 Tensile Stress Effects Caused by Fiber Glass Orientation 518 9.3.6 Flexural Modulus Effects Caused by Fiber Glass Orientation 519 9.4 Chemical and Environmental Resistance . 520 9.4.1 Effects of the Environment . 521 9.5 Types of Degradations . 522 9.5.1 Oxidative Degradation 522 9.5.2 Radiation Degradation 522 9.5.3 Photo Oxidation 522 9.5.4 Mechanical Degradation . 522 9.5.5 Microbial Degradation 523 9.6 Moisture Effects on Nylon Molded Parts . 523 9.7 Aqueous Potassium Acetate for Moisture Conditioning Nylon 527 9.8 Injection Molding Cycles . 528 9.9 Mold Cavity Surface Temperature . 529 9.10 Mold Cavity Temperature Control 530 9.10.1 Mold and Post-Mold Shrinkage . 531 9.11 Process Condition Effects on Mold Shrinkage 533 9.12 Post-Mold Shrinkage 538 9.13 Weld Lines 541 10 Injection Mold Design 545 10.1 Classification of Injection Molds 545 10.2 Effects of Product Design on the Injection Molding Process 546 10.2.1 Uniform Wall Thickness . 547 10.2.2 Balance Geometrical Confi guration . 547 10.2.3 Smooth Internal Sharp Corners 547 10.2.4 Draft Walls . 547 10.2.5 Feather Edges . 547 10.2.6 Proportional Boss Geometries 548 10.2.7 Gate Type and Location . 548 10.2.8 Molded Product Ejection Surface Area 548 10.2.9 Molded Product Tolerances 548 10.2.10 Surface Finish of Molded Product 549 10.3 Effects of Mold Design on the Injection Molding Process 549 10.3.1 Runner System . 549 10.3.2 Mold Cooling System 549 10.3.3 Ejector System 550 10.3.4 Mold Venting . 550 10.3.5 Other Mold Devices . 550 10.4 Design Considerations for Injection Molds . 550 10.4.1 Preliminary Mold Design 551 10.4.2 Detailed Mold Design . 552 10.5 Types of Steels Required for Injection Molds . 553 ContentsXVII 10.5.1 Major Steel Families . 553 10.6 Steels for Thermoplastic Injection Molds 557 10.6.1 General Steel Selection Procedures 558 10.6.2 Properties and Characteristics of Tool Steels . 559 10.6.3 Effects of Alloying Elements on Tool Steel Properties 559 10.6.4 Chemical Composition of Steels Used for Molds . 559 10.6.5 Effects of Alloying on Tool Steels . 560 10.6.6 Effects of Heat Treatment on Tool Steel Properties 562 10.6.7 Prehardened Tool Steels . 564 10.6.8 Carburizing Tool Steels 566 10.6.9 Oil and Air Hardening Tool Steels . 567 10.6.10 Stainless Steels 568 10.6.11 Steels Used in Thermoplastic Injection Mold Components . 569 10.7 Mold Cavity Surface Finishing 571 10.7.1 Mold Surface Finishing Process Procedures 573 10.8 Thermoplastic Injection Mold Bases . 578 10.8.1 Standard Mold Base Components . 578 10.8.2 Functions of the Mold Base Components 579 10.8.3 Types of Standard Mold Bases 582 10.9 Types of Thermoplastic Injection Molds . 583 10.9.1 Two-Plate Molds 584 10.9.2 Round Mate Interchangeable Insert Molds . 585 10.9.3 Master Unit Die Interchangeable Insert Molds . 585 10.9.4 Three-Plate Mold Cold Runner System 586 10.9.5 Vertical Insert Mold for Thermoplastic Encapsulations . 587 10.9.6 Hot Runner Molding Systems 588 10.9.7 Hot Runner Mold Temperature Control Systems . 589 10.9.8 Hot Runner Mold Gates (Drops) . 590 10.9.9 Types of Hot Runner Molding Systems 593 10.9.10 Thermoplastic Stack Injection Molds 601 10.9.11 Lost Core Thermoplastic Injection Molds 602 10.10 Number of Mold Cavities 606 10.10.1 Cavity Number Limitations 606 10.10.2 Number of Mold Cavities Equation . 606 10.11 Mold Parting Line . 607 10.11.1 Flat Mold Parting Line . 607 10.11.2 Non-Flat Mold Parting Line 608 10.11.3 Balancing of Mold Parting Line Surfaces . 610 10.12 Mold Ejection Systems . 610 10.12.1 Ejector Plate Assembly . 611 10.12.2 Ejector Plate 611 10.12.3 Retaining Plate . 611 10.12.4 Ejector Sleeves 611 10.12.5 Types of Mold Ejection Systems 612 10.13 Injection Mold Cooling 615 10.13.1 Mold Temperature Control 616 10.13.2 Factors Affecting Mold Cooling . 617 10.13.3 Effects Caused by Elevated Mold Temperature . 617 10.13.4 Effects Caused by Too Low a Mold Temperature 618 10.13.5 Mold Heat Transfer Methods . 618 10.13.6 Mold Cavity Insert Cooling 631 10.14 Injection Molding Machine Nozzle 639 ContentsXVIII 10.14.1 Mold Cold Runner System . 639 10.14.2 Determining the Injection Pressure Needed 653 10.14.3 Cold Runner Flow Tab . 654 10.15 Mold Cavity Gating . 655 10.15.1 Types of Mold Cavity Gates 656 10.15.2 Different Types of Hot Runner Gates 663 10.16 Gate Molding Effects 664 10.17 Mold Venting Systems . 666 10.17.1 Product Design for Venting 667 10.17.2 Venting Characteristics of Thermoplastic Polymers . 669 10.17.3 Mold Deposit Problems . 669 10.17.4 How to Avoid Venting Problems 670 10.17.5 Planning Mold Venting 671 10.17.6 Mold Venting Process Problems 672 10.17.7 Mold Venting Design 674 10.17.8 Mold Venting Using Sintered Porous Insert Plugs . 690 10.17.9 Logic Seal (Negative Coolant Pressure) Mold Venting . 691 10.17.10 Mold Cavity Vacuum Venting System . 693 10.18 Mold Cavity Insert Contact Area Strength 698 10.18.1 Cavity Insert Sidewall Strength . 699 10.18.2 Methods to Calculate the Strength of Cavity Insert Sidewall 700 10.19 Mold Layout Case Studies 704 10.20 Mold Support Pillars 705 10.21 Tolerances for Thermoplastic Molded Parts 705 10.21.1 Factors Affecting Dimensional Control Tolerances 707 10.22 General Specifications for Mold Construction for Thermoplastic Injection Molding Resins . 709 10.22.1 Mold Design Requirements 709 10.22.2 Mold Drawing Standards 709 10.22.3 Required Types of Tool Steels for Mold Construction . 711 10.22.4 Mold Construction Requirements 713 10.23 Mold Tryout – Debug – Approvals – “MQ1” Requirements . 720 10.23.1 Mold Tryout or Evaluation . 720 10.23.2 Mold Debug Procedures . 720 10.23.3 Approval of Molded Parts and Pre-Production Molding Process 720 10.23.4 Mold Cavity and Core Surface Temperatures . 720 10.23.5 “MQ1” Requirements . 721 11 Performance Testing of Thermoplastics 723 11.1 Property Data Sheet for Thermoplastics . 724 11.2 Tensile Testing (ASTM D-638) 725 11.2.1 Tensile Testing Equipment . 725 11.2.2 Tensile Test Specimen . 726 11.2.3 Specimen Conditioning . 726 11.2.4 Tensile Strength Test Procedures 726 11.2.5 Tensile Modulus and Elongation 727 11.2.6 Molecular Orientation Effects 728 11.2.7 Crosshead Speed Effects . 729 11.2.8 Temperature Effects . 729 11.2.9 Moisture Absorption Effects 729 11.2.10 Stress-Strain Effects Caused by Creep . 730 11.3 Flexural Testing (ASTM D-790) . 730 ContentsXIX 11.3.1 Apparatus 731 11.3.2 Test Procedures and Equations . 732 11.3.3 Modulus of Elasticity 733 11.4 Compressive Strength Testing (ASTM D-695) 733 11.4.1 Compressive Testing Apparatus . 734 11.4.2 Test Specimens and Conditioning . 734 11.4.3 Test Procedures . 734 11.4.4 Stress-Strain Tension and Compression Curves . 735 11.5 Shear Strength Testing (ASTM D-732) . 735 11.5.1 Test Specimen and Apparatus 735 11.5.2 Test Procedures . 736 11.5.3 Significance and Limitations . 736 11.6 Surface Hardness Testing . 736 11.6.1 Rockwell Hardness Testing (ASTM D-785-60T) 737 11.6.2 Barcol Hardness Testing (ASTM D-2583) 739 11.6.3 Factors Affecting the Test Results . 740 11.7 Abrasion Resistance Testing (ASTM D-1044) . 740 11.7.1 Taber Abrasion Testing 741 11.7.2 Theoretical Analysis of Wear . 741 11.8 Coefficient of Friction (ASTM D-1894) 742 11.8.1 Coefficient of Friction of Thermoplastic Materials 743 11.8.3 Effects of Lubricants 744 11.9 Mold Shrinkage Test (ASTM D-955) 744 11.9.1 Purpose of the Mold Shrinkage Test . 744 11.9.2 Factors Affecting Mold Shrinkage . 745 11.9.3 Injection Molding Effects on Shrinkage 745 11.9.4 Requirements for Sampling 745 11.9.5 Test Procedures . 746 11.10 Specific Gravity Testing (ASTM D-792) 748 11.10.1 Test Procedures . 749 11.11 Density Gradient Testing (ASTM D-1505) . 750 11.12 Water Absorption Testing (ASTM D-570) 750 11.12.1 Test Specimen 751 11.12.2 Test Procedure 751 11.13 Impact Resistance Testing 751 11.13.1 Pendulum Impact Tests 753 11.13.2 Charpy Impact Testing (ASTM D-256) 755 11.13.3 Chip Impact Testing . 755 11.13.4 Tensile Impact Testing (ASTM D-1822) . 755 11.13.5 Drop Weight Impact Testing (ASTM D-3029) 756 11.13.6 Falling Weight Impact Testing 757 11.13.7 Instrumented Impact Testing . 758 11.14 Creep, Rupture, Relaxation, and Fatigue . 761 11.14.1 Tensile Creep Testing 761 11.14.2 Flexural Creep Testing . 762 11.14.3 Procedure for Applying Creep Modulus . 764 11.15 Melting Point Test (ASTM D-795) 767 11.16 Vicat Softening Point (ASTM D-1525) . 767 11.16.1 Melting Point, Glass Transition Temperature . 768 11.17 Brittleness Temperature (ASTM D-746) . 768 11.17.1 Test Apparatus and Procedures . 768 11.18 UL – Temperature Index . 770 11.18.1 Relative Thermal Indices . 770 11.18.2 Long Term Thermal Aging Index . 772 ContentsXX 11.18.3 Creep Modulus/Creep Rupture Tests 773 11.19 Heat Deflection Temperature (ASTM D-648) . 774 11.19.1 Apparatus and Test Specimens . 774 11.19.2 Test Procedure 775 11.19.3 Test Variables and Limitations 775 11.20 Soldering Heat Resistance 775 11.21 Coefficient of Linear Thermal Expansion Testing . 776 11.21.1 Test Procedure 777 11.22 Thermal Conductivity Testing (ASTM C-177) 777 11.23 Melt Flow Testing . 779 11.23.1 Moisture Content . 780 11.24 Melt Index Testing (ASTM D-1238) . 780 11.24.1 Melt Flow Rate . 781 11.25 Capillary Rheometer Melt Viscosity Testing (ASTM D-1703) . 782 11.25.1 Melt Viscosity vs. Shear Rate Curves . 783 11.26 Electrical Properties Testing 784 11.26.1 Underwriter’s Laboratories (UL) Yellow Cards . 785 11.26.2 How to Read and Interpret the “UL Yellow Card” . 786 11.26.3 “UL Insulation Systems Recognition” . 791 11.27 Electrical Insulation Properties . 792 11.28 Electrical Resistance Properties . 792 11.28.1 Volume Resistivity Testing (ASTM D-257) . 793 11.28.2 Surface Resistivity Testing (ASTM D-257) . 794 11.28.3 Dielectric Strength Testing (ASTM D-149) . 795 11.28.4 Dielectric Constant Testing (ASTM D-150) 797 11.28.5 Dissipation Factor Testing (ASTM D-150) . 800 11.28.6 Arc Resistance Testing (ASTM D-495) . 801 11.28.7 High Voltage Arc Tracking Rate (UL-746 A) 803 11.28.8 Comparative Track Index Testing (ASTM D-3638/ UL 746 A) 804 11.29 Self and Flash Ignition Temperature Testing (ASTM D-1929) 805 11.29.1 Test Description 805 11.29.2 High Current Arc Ignition Testing (UL 746A) 806 11.29.3 Hot Wire Coil Ignition Testing (UL 746A/ASTM D-3874) . 807 11.29.4 Hot Mandrel Testing 807 11.29.5 Glow Wire Testing 807 11.30 Flammability Characteristics of Polymers 809 11.30.1 Inherently Flame Retardant Polymers . 810 11.30.2 Less Flame Retardant Polymers . 810 11.30.3 Flammable Polymers 810 11.31 UL 94 Flammability Testing 811 11.31.1 Horizontal Burning Testing, UL 94HB . 811 11.31.2 Vertical Burning Testing, UL 94-V0, UL 94-V1, UL 94-V2 812 11.31.3 Vertical Burning Testing, UL 94-5V, UL 94-5VA, UL 94-5VB . 813 11.31.4 Factors Affecting UL 94 Flammability Testing 815 11.32 Limited Oxygen Index Testing (ASTM D-2863) . 815 11.32.1 Test Procedures . 816 11.32.2 Factors Affecting the Test Results . 816 11.33 Smoke Generation Testing 817 11.33.1 Smoke Density Testing (ASTM D-2843) . 817 11.34 Weathering Tests for Thermoplastic Materials 818 ContentsXXI 11.34.1 Weathering Creep Factors (Degradation) 818 11.34.2 Ultraviolet (UV) Radiation 819 11.34.3 Temperature 819 11.34.4 Moisture . 820 11.34.5 Oxidation 820 11.34.6 Micro-Organisms . 820 11.35 Accelerated Weathering Testing (ASTM G 23) 821 11.35.1 Exposure to Fluorescent UV Lamp, Condensation (ASTM G 53) . 821 11.35.2 Accelerated Weather Testing, Weather-Ometer 822 11.35.3 Exposure to Carbon Arc Light and Water Testing (ASTM D-1499) 823 11.35.4 Exposure to Xenon Arc Light and Water Testing (ASTM D-2565) 825 11.35.5 Outdoor Weathering Testing of Thermoplastics (ASTM D-1435) 827 11.36 Fungi Resistance Testing of Thermoplastics (ASTM G 21) . 828 11.37 Bacteria Resistance Testing of Thermoplastics (ASTM G 22) . 829 11.38 Fungi and Bacteria Outdoor Exposure Resistance Limitations 829 12 Thermoplastic Product Cost Analysis 831 12.1 Injection Molding Process 832 12.2 Molding Cycle Time . 832 12.3 Material Handling (Regrinds) 833 12.4 Capital Equipment 833 12.5 Injection Molding Machine Size 833 12.6 Injection Molding Machine Cost 836 12.7 Machine Installation and Safety Considerations 837 12.8 Auxiliary Equipment and Automation . 837 12.9 Mold Cost 838 12.10 Molded Products Cost Analysis . 841 12.10.1 Cost Analysis Basic Method 841 12.10.2 Cost Analysis Graph Method . 842 12.10.3 Advanced Cost Analysis Method 843 12.11 Secondary Molding Operations . 848 12.12 Additional Manufacturing Costs 848 Appendix . 849 Acronyms for Polymeric Materials 849 Common Acronyms . 850 Process Acronyms . 851 Reinforcement and Filler Acronyms . 851 Nomenclature 852 English and Metric Units Conversion Guide 853 Subject Index 855 About the Author .
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب The Complete Part Design Handbook رابط مباشر لتنزيل كتاب The Complete Part Design Handbook
|
|