كتاب Radio Systems Engineering
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Radio Systems Engineering

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18864
التقييم : 35108
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Radio Systems Engineering  Empty
مُساهمةموضوع: كتاب Radio Systems Engineering    كتاب Radio Systems Engineering  Emptyالأربعاء 21 أغسطس 2019, 8:34 am

أخوانى فى الله
أحضرت لكم كتاب
Radio Systems Engineering
Steven W. Ellingson
Virginia Polytechnic Institute and State University  

كتاب Radio Systems Engineering  R_s_e_13
و المحتوى كما يلي :


CONTENTS
List of illustrations
List of tables
Preface
1 Introduction
1.1 Radio: What and Why
1.2 The Radio Frequency Spectrum
1.3 Radio Link Architecture
1.4 Elements of a Radio Link
1.5 Modern Radio Design: Levels of Integration
1.6 Specifications in Modern Radio Design
1.7 Organization of This Book
Problems
2 Antenna Fundamentals
2.1 Introduction
2.2 Creation of Radio Waves
2.2.1 Physical Origins of Radiation
2.2.2 Radiation from Linear Antennas; Far-Field Approximations
2.2.3 Equivalent Circuit Model for Transmission
2.2.4 The Impedance of Other Types of Antennas
2.3 Reception of Radio Waves
2.3.1 Equivalent Circuit Model for Reception; Effective Length
2.3.2 Effective Aperture
2.4 Pattern and Reciprocity
2.4.1 Transmit Case
2.4.2 Receive Case
2.5 Polarization
2.6 Antenna Integration
2.6.1 Impedance Matching
2.6.2 Current Mode Matching; Baluns
2.7 Dipoles
2.7.1 General Characteristics2.7.2 The Electrically-Thin Half-Wave Dipole
2.7.3 Electrically-Thin Dipoles with λ/2 < L ≤ λ; Off-Center-Fed Dipoles
2.7.4 The Electrically-Thin 5/4-λ Dipole
2.7.5 Equivalent Circuits and Numerical Methods for Straight Dipoles of
Arbitrary Length and Radius
2.7.6 Planar Dipoles; Dipoles on Printed Circuit Boards
2.7.7 Other Dipole-Type Antennas
2.8 Monopoles
2.8.1 General Characteristics
2.8.2 The Ideal Electrically-Thin Electrically-Short Monopole
2.8.3 The Ideal Electrically-Thin Quarter-Wave Monopole
2.8.4 The 5/8-λ Monopole
2.8.5 Practical Monopoles
2.9 Patch Antennas
2.10 High-Gain Antennas
2.10.1 Beam Antennas; The Yagi
2.10.2 Reflectors
2.11 Arrays
2.12 Other Commonly-Encountered Antennas
Problems
3 Propagation
3.1 Introduction
3.2 Propagation in Free Space; Path Loss
3.3 Reflection and Transmission
3.3.1 Reflection from a Planar Interface
3.3.2 Reflection from the Surface of the Earth
3.3.3 Scattering from Terrain and Structures
3.4 Propagation Over Flat Earth
3.4.1 A General Expression for the Wave Arriving at the Receiving Antenna
3.4.2 Flat Earth Path Loss; Breakpoint Analysis
3.5 Multipath and Fading
3.5.1 Discrete Multipath Model for Terrestrial Propagation
3.5.2 The Static Channel: Channel Impulse Response
3.5.3 The Dynamic Channel: Doppler Spread and Fading
3.5.4 Spatial Autocorrelation and Diversity
3.5.5 Summary
3.6 Terrestrial Propagation Between 30 MHz and 6 GHz
3.6.1 Radio Horizon3.6.2 Delay Spread and Coherence Bandwidth
3.6.3 Fading Statistics and Coherence Time
3.6.4 Average Path Loss
3.7 Propagation Above 6 GHz
3.7.1 Increased Path Loss Due to Diminished Effective Aperture
3.7.2 Increased Path Loss Due to Media Losses; Attenuation Rate
3.7.3 Atmospheric Absorption
3.7.4 Rain Fade
3.8 Terrestrial Propagation Below 30 MHz
3.9 Other Mechanisms for Radio Propagation
Problems
4 Noise
4.1 Introduction
4.2 Thermal Noise
4.3 Non-thermal Noise
4.4 Noise Characterization of Two-Port Devices; Noise Figure
4.4.1 Single Two-Port Devices
4.4.2 Cascades of Two-Port Devices
4.5 External Noise
4.5.1 Antenna Temperature
4.5.2 Natural Sources of Noise
4.5.3 Anthropogenic Sources of Noise
Problems
5 Analog Modulation
5.1 Introduction
5.2 Sinusoidal Carrier Modulation
5.3 Complex Baseband Representation
5.4 Complex Baseband Representation of Noise
5.5 Amplitude Modulation (AM)
5.5.1 Modulation and Spectrum
5.5.2 Effect of Propagation
5.5.3 Incoherent Demodulation
5.5.4 Coherent Demodulation
5.5.5 Sensitivity of Coherent and Incoherent Demodulation
5.6 Single Sideband (SSB)
5.6.1 Generation of SSB
5.6.2 SSB as a Quadrature Modulation
5.6.3 Demodulation and Performance of SSB5.6.4 Vestigial Sideband (VSB) Modulation
5.6.5 Pilot-Assisted SSB and VSB
5.7 Frequency Modulation (FM)
5.7.1 Characterization of FM
5.7.2 Generation of FM
5.7.3 Demodulation
5.7.4 Preemphasis
5.7.5 Performance in Varying SNR; Threshold Effect
5.8 Techniques for Improving Audio
Problems
6 Digital Modulation
6.1 Introduction
6.1.1 Overview of a Digital Communications Link and Organization of this
Chapter
6.1.2 Motivation for Digital Modulation
6.2 Source Coding
6.3 Sinusoidal Carrier Modulation, Redux
6.4 Pulse Shapes and Bandwidth
6.4.1 Representation of Symbols as Pulses
6.4.2 Sinc Pulses and Intersymbol Interference
6.4.3 Raised Cosine Pulses
6.4.4 Spectral Efficiency
6.5 Representations of Signal Power, Noise Power, and SNR in Digital Modulations
6.5.1 Symbol Energy and Energy per Bit
6.5.2 The Eb/N0 Concept
6.6 Coherent Demodulation
6.6.1 Optimal Demodulation
6.6.2 Matched Filtering
6.6.3 Square Root Raised Cosine (SRRC) Matched Filtering
6.6.4 The Correlation Receiver
6.7 Demodulation of BPSK and OOK
6.7.1 Optimal Demodulation of BPSK
6.7.2 Optimal Demodulation of OOK
6.7.3 Incoherent Demodulation of OOK
6.8 Demodulation of QPSK
6.9 Demodulation of Higher-Order Phase-Amplitude Modulations
6.9.1 M-ASK
6.9.2 M-QAM6.9.3 M-PSK
6.10 Differential Detection
6.10.1 Concept
6.10.2 Performance
6.11 Frequency-Shift Keying (FSK)
6.11.1 Concept
6.11.2 Minimum-Shift Keying (MSK)
6.11.3 Demodulation and Performance
6.12 Tradeoff Between Spectral Efficiency and Energy Efficiency
6.13 Channel Coding
6.14 Communication in Channels with Flat Fading
6.14.1 Probability of Error in Flat Fading
6.14.2 Interleaving
6.14.3 Space Diversity
6.14.4 Multiple-Input Multiple-Output (MIMO)
6.15 Communication in Channels with Intersymbol Interference
6.15.1 Zero-Forcing Equalization
6.15.2 Maximum Likelihood Sequence Estimation
6.15.3 Minimum Mean Square Error (MMSE) Equalization
6.16 Carrier Frequency, Phase, and Symbol Timing
6.16.1 Carrier Frequency Estimation
6.16.2 Carrier Phase Estimation
6.16.3 Symbol Timing
6.17 ATSC: The North American Digital Television Standard
6.17.1 Transmitter
6.17.2 Receiver
6.18 Direct Sequence Spread Spectrum (DSSS) and Code Division Multiple Access
(CDMA)
6.18.1 Fundamentals
6.18.2 Cellular CDMA
6.19 Orthogonal Frequency Division Multiplexing
6.19.1 Concept
6.19.2 Implementation
Problems
7 Radio Link Analysis
7.1 Introduction
7.2 Friis Transmission Equation Revisited
7.3 Effective Radiated Power (EIRP and ERP)7.4 Signal-to-Noise Ratio at the Input of a Detector
7.5 Sensitivity and G/T
7.6 Link Budget
7.7 Analysis of a 6 GHz Wireless Backhaul; Link Margin
7.8 Analysis of a PCS-Band Cellular Downlink
7.9 Analysis of an HF-Band NVIS Data Link; Fade Margin
7.10 Analysis of a Ku-Band Direct Broadcast Satellite System
7.11 Specification of Radios and the Path Forward
Problems
8 Two-Port Concepts
8.1 Introduction
8.2 s-Parameters
8.2.1 Derivation of s-Parameters
8.2.2 s-Parameters for Series and Shunt Impedances
8.2.3 s-Parameters for Transmission Lines
8.2.4 s-Parameters for Other Two-Ports
8.3 Intrinsic Properties of Two-Ports
8.4 Properties of Embedded Two-Ports
8.4.1 Reflection Coefficient for Embedded Two-Ports
8.4.2 Transducer Power Gain (TPG)
8.5 Stability and Gain
8.5.1 Instability and Oscillation
8.5.2 Determination of Stability
8.5.3 Simultaneous Conjugate Matching
8.5.4 Maximum Stable Gain
8.6 Cascaded Two-Ports
8.7 Differential Circuits
8.7.1 Applications of Differential Circuits
8.7.2 Interfaces between Differential and Single-Ended Circuits
8.7.3 Analysis of Differential Circuits
Problems
9 Impedance Matching
9.1 Introduction
9.2 Some Preliminary Ideas
9.3 Discrete Two-Component (“L”) Matching
9.4 Bandwidth and Q
9.5 Modifying Bandwidth Using Higher-Order Circuits
9.5.1 Increasing Bandwidth using Cascades of Two-Reactance Matching Circuits9.5.2 Decreasing Bandwidth Using “Pi” and “T” Circuits
9.5.3 Other Considerations and Variants
9.6 Impedance Matching for Differential Circuits
9.7 Distributed Matching Structures
9.7.1 Properties of Practical Transmission Lines
9.7.2 Impedance of Single-Port Transmission Line Stubs
9.7.3 Single-Stub Matching
9.7.4 Quarter-Wave Matching
9.8 Impedance Inversion
Problems
10 Amplifiers
10.1 Introduction
10.2 Transistors as Amplifiers
10.2.1 Bipolar Transistors
10.2.2 Field Effect Transistors
10.2.3 Designing with Transistors
10.3 Biasing of Transistor Amplifiers
10.3.1 Bipolar Transistors
10.3.2 FETs
10.3.3 Beyond Common Emitter and Common Source
10.4 Designing for Gain
10.4.1 Bilateral Design to Meet a Gain Requirement
10.4.2 Unilateral Design to Meet a Gain Requirement
10.4.3 Taming Unruly Transistors: Unilateralization and Stabilization
10.5 Designing for Noise Figure
10.6 Designing for VSWR
10.7 Design Example: A UHF-Band LNA
10.7.1 Inductive Degeneration
10.7.2 Selecting an Operating Point and Establishing RF Design Parameters
10.7.3 Transistor Characterization
10.7.4 Transistor Output Conditioning
10.7.5 IMN Design
10.7.6 OMN Design
10.7.7 Bias Scheme
10.7.8 Bias Circuit Integration
10.7.9 Measured Results
10.8 Beyond the Single-Transistor Narrowband Amplifier
10.9 IC ImplementationProblems
11 Linearity, Multistage Analysis, and Dynamic Range
11.1 Introduction
11.2 Characterization of Linearity
11.2.1 Linearity as Independence of Response
11.2.2 Linearity of Systems with Memoryless Polynomial Response
11.2.3 Gain Compression
11.2.4 Intermodulation; Third-Order Intermodulation
11.2.5 Second-Order Intermodulation
11.2.6 AM–PM Conversion
11.3 Linearity of Differential Devices
11.4 Linearity of Cascaded Devices
11.5 Stage/Cascade Analysis; Significance of Stage Order
11.6 Other Common Characterizations of Sensitivity
11.6.1 Minimum Discernible Signal (MDS): Concept and Zero-Input-Noise
Expressions
11.6.2 Minimum Discernible Signal (MDS): Non-Zero-Input-Noise Expressions
11.6.3 Noise Floor
11.7 Dynamic Range
Problems
12 Antenna Integration
12.1 Introduction
12.2 Receive Performance
12.2.1 Antenna Receive Model, Revisited
12.2.2 Signal Power Delivered by an Antenna to a Receiver
12.2.3 SNR Delivered to the Digitizer or Detector Assuming Conjugate Matching
12.2.4 SNR Delivered to the Digitizer or Detector when Two-Port Noise
Parameters are Available
12.3 Transmit Performance
12.3.1 VSWR
12.3.2 Transmit Efficiency
12.4 Antenna–Transceiver Impedance Matching
12.4.1 Fractional Bandwidth Concept
12.4.2 Resonant Antennas
12.4.3 Non-Resonant Broadband Antennas
12.4.4 Electrically-Small Antennas
12.5 How Small Can an Antenna Be?
12.6 Antenna Tuners12.7 Baluns
12.7.1 Consequences of Not Using a Balun
12.7.2 Balun Contraindications
12.7.3 Compact Baluns
12.7.4 Coaxial Choke Baluns
12.7.5 Other Commonly-Used Balun Types
Problems
13 Analog Filters and Multiplexers
13.1 Introduction
13.2 Characterization of Filter Response
13.3 Single-Reactance Lowpass and Highpass Filters
13.4 Single-Resonator Bandpass and Notch Filters
13.5 Discrete (LC) Filters – Specified Response
13.5.1 Butterworth Lowpass Filter Design
13.5.2 Butterworth Highpass Filter Design
13.5.3 Butterworth Bandpass Filter Design
13.5.4 Butterworth Bandstop Filter Design
13.5.5 Chebyshev Filter Design
13.5.6 Phase and Delay Response; Group Delay Variation
13.5.7 Other Specified-Response Designs and Topological Variants
13.6 Diplexers and Multiplexers
13.7 Distributed Filter Structures
13.7.1 Transmission Line Stubs as Single-Reactance Two-Ports
13.7.2 Quarter-Wave Stubs as Single-Resonance Two-Ports
13.7.3 Filters Composed of Quarter-Wave Sections
13.7.4 Specified-Response Filters Using Transmission Line Stubs
13.8 Other Filter Device Technologies
13.8.1 Coupled Resonator and Stepped Impedance Filters
13.8.2 Helical Filters
13.8.3 Coaxial Filters
13.8.4 Crystal Filters
13.8.5 Surface Acoustic Wave Devices and Dielectric Resonators
13.8.6 Mechanical and Ceramic Filters
13.8.7 Electronically-Tunable Filters
Problems
14 Frequency and Quadrature Conversion in the Analog Domain
14.1 Introduction
14.2 Frequency Conversion14.2.1 Downconversion; Low- and High-Side Injection
14.2.2 Upconversion
14.2.3 Image Frequency
14.3 Mixers
14.3.1 Square-Law Processing
14.3.2 Phase-Switching
14.3.3 Double-Balanced Diode Ring Mixers
14.3.4 IC Implementation
14.4 Quadrature Conversion
14.5 Image Rejection Mixers
14.5.1 Hartley Architecture
14.5.2 Weaver Architecture
Problems
15 Receivers
15.1 Introduction
15.2 Analog-to-Digital Conversion
15.2.1 Method of Operation
15.2.2 Sample Rate and Bandwidth
15.2.3 Quantization Noise
15.2.4 Characteristics of Practical ADCs
15.3 Requirements on Gain and Sensitivity
15.4 Preselection
15.5 Selectivity
15.6 Receiver Architectures
15.6.1 Lowpass Direct Sampling
15.6.2 Undersampling
15.6.3 Tuned RF
15.6.4 Single-Conversion Superheterodyne Architecture
15.6.5 The Half-IF Problem
15.6.6 Multiple-Conversion Superheterodyne Architecture
15.6.7 Other Superheterodyne Architectures
15.6.8 Direct Conversion
15.6.9 Near-Zero IF
15.6.10 Superheterodyne Architecture with Quadrature-Conversion Final Stage
15.7 Frequency Planning
15.8 Gain Control
15.8.1 AGC Strategy for a Single-Channel-Output Receivers
15.8.2 AGC Strategy for Multiple-Channel-Output Receivers15.8.3 AGC Strategy for Cellular CDMA Receivers
15.8.4 Power Measurement for AGC
15.8.5 Schemes for Varying Gain
15.9 Case Studies
15.9.1 AM/FM Broadcast Receivers
15.9.2 Television Tuners
15.9.3 HF Receivers
15.9.4 Cellular, WLAN, and Global Navigation Satellite Systems (GNSS)
Receivers
15.9.5 Quadrature Conversion RF/IF Receivers
Problems
16 Frequency Synthesis
16.1 Introduction
16.2 LC Feedback Oscillators
16.2.1 The LC Resonator
16.2.2 Sustaining Resonance Using Feedback
16.3 Design of LC Feedback Oscillators
16.3.1 Colpitts Topology
16.3.2 Analysis and Design of the Grounded Base Colpitts Oscillator
16.3.3 Alternative Implementations and Enhancements
16.4 Phase Noise, Spurious, and Reciprocal Mixing
16.5 Oscillators Using Crystals and Other High-Q Resonators
16.5.1 Crystal Oscillators
16.5.2 Temperature-Stabilized Crystal Oscillators
16.5.3 Resonator Technologies for Higher Frequencies
16.6 Variable-Frequency Oscillators and VCOs
16.7 Negative Resistance Oscillators
16.8 Phase-Locked Loop (PLL) Synthesizers
16.8.1 Integer-N Synthesizers
16.8.2 Fractional-N Synthesizers
16.8.3 Dividers, Phase Comparators, Loop Filters, and Prescalers
16.8.4 PLL Design Considerations
16.9 Direct Digital Synthesis
16.10 IC Implementation of Oscillators and Synthesizers
Problems
17 Transmitters
17.1 Introduction
17.2 Architectures17.3 Digital-to-Analog Conversion
17.3.1 Method of Operation
17.3.2 Sample Rate, Bandwidth, and sinc Distortion
17.3.3 Quantization Noise and Dynamic Range
17.4 Power Amplifiers
17.4.1 Efficiency vs. Linearity
17.4.2 Class A; Linear vs. Quasi-Linear Operation
17.4.3 Harmonic Filtering
17.4.4 Class B
17.4.5 Class AB and Conduction Angle
17.4.6 Class C
17.4.7 The Rest of the Alphabet: High-Efficiency Non-linear PAs
17.4.8 Repurposing Non-Linear PAs as Quasi-Linear PAs
17.5 Considerations in PA Design
17.5.1 Supply Voltage
17.5.2 Load Impedance Matching
17.5.3 Source Impedance Matching, Buffers, and Drivers
17.5.4 PAPR and Back Off
17.5.5 Power Control
17.6 PA Linearization
17.6.1 Consequences of PA Non-Linearity
17.6.2 Predistortion
17.6.3 Feedforward Linearization
17.6.4 Feedback Linearization
17.7 Quadrature-Coupled and Parallelized Amplifiers
17.7.1 Quadrature Hybrids
17.7.2 Combining Using Transformers
Problems
18 Digital Implementation of Radio Functions
18.1 Introduction
18.2 Single-Rate Filters
18.2.1 FIR Filter Fundamentals
18.2.2 FIR Filter Design Using Windows; The Kaiser Method
18.2.3 Other Methods for FIR Filter Design and Applications
18.2.4 Digital Filters with Butterworth, Chebyshev, and Elliptic Responses
18.2.5 Reducing Computational Burden
18.3 Multirate Filters
18.3.1 Integer-Rate Decimating FIR Filters18.3.2 Integer-Rate Interpolating FIR Filters
18.3.3 Non-Integer and Large-R Techniques
18.4 Quadrature Upconversion and Downconversion
18.4.1 FS/4 Quadrature Downconversion
18.4.2 FS/4 Quadrature Upconversion
18.4.3 Multirate Quadrature Downconversion From Other IFs
18.5 Applications in Digital Modulation
18.5.1 Pulse Shaping
18.5.2 Symbol Timing Recovery
18.5.3 Adaptive Equalization
18.5.4 Carrier Frequency Tracking
18.6 DSP Hardware Technologies
18.6.1 CPUs, Their Limitations, and Alternatives
18.6.2 Special-Function ICs
18.6.3 FPGAs
18.6.4 ASICs
Problems
Appendix A Empirical Modeling of Mean Path Loss
A.1 Log-Linear Model for Mean Path Loss
A.2 Hata Model
A.3 COST231-Hata Model
A.4 Other Models
Appendix B Characteristics of Some Common Radio Systems
B.1 Broadcasting
B.2 Land Mobile Radio
B.3 Mobile Telecommunications
B.3.1 General Characteristics
B.3.2 First-, Second-, and Third-Generation Cellular Systems
B.3.3 Fourth-Generation Cellular Systems (“4G”) and LTE
B.3.4 Fifth-Generation Cellular Systems (“5G”)
B.4 Wireless Data Networks
B.4.1 IEEE 802.11 and 802.11b
B.4.2 IEEE 802.11a, -g, and -n
B.4.3 IEEE 802.11ac and -ad
B.4.4 Longer-Range Systems: IEEE 802.16 (WiMAX) and 802.11af (TVWS)
B.4.5 Future Trends
B.5 Short-Range Data CommunicationsB.5.1 Bluetooth
B.5.2 ZigBee
B.5.3 Automotive Applications: RKE and TPMS
B.6 Radio Frequency Identification (RFID)
B.7 Global Navigation Satellite Systems (GNSS)
B.8 Radar, Remote Sensing, and Radio Astronomy
References
Index


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Radio Systems Engineering
رابط مباشر لتنزيل كتاب Radio Systems Engineering
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Radio Systems Engineering
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Engineering Vibration Analysis to Control systems
» كتاب An Engineering Companion to the Mechanics of Materials - A Systems Approach
» كتاب Engineering Vibration Analysis with Application to Control Systems
» كتاب Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems
» Mechanical Engineering Systems

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: