Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Simulation of Fluid Power Systems with Simcenter Amesim السبت 03 أغسطس 2019, 6:29 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Simulation of Fluid Power Systems with Simcenter Amesim Nicolae Vasiliu, Daniela Vasiliu, Constantin Călinoiu, Radu Puhalschi
و المحتوى كما يلي :
Contents Preface xvii Acknowledgments xxiii Authors xxv Chapter 1 Overview on the numerical engineering simulation software 1 1.1 Introduction 1 1.2 Free software capabilities 2 1.3 Proprietary software capabilities .5 Bibliography 10 Chapter 2 Capabilities of Simcenter Amesim platform for solving engineering problems 11 2.1 Platform overview 11 2.2 Amesim platform capabilities 12 2.2.1 Personalization features 12 2.2.2 Analysis tools 13 2.2.3 Optimization, Robustness, and Design of Experiments 14 2.2.4 Amesim Simulator Scripting 14 2.2.5 Amesim Customization . 15 2.2.6 Solvers and Numerics 15 2.2.7 Model-in-the-Loop, Software-in-the-Loop, Hardware-in-the-Loop, and Real Time . 16 2.2.8 Amesim Software Interfaces 17 2.2.9 1D/3D CAE 18 2.2.10 Amesim Libraries . 18 2.3 LMS Imagine.Lab Solutions 19 2.3.1 LMS Imagine.Lab Powertrain Transmission 19 2.3.1.1 LMS Imagine.Lab Drivability 20 2.3.1.2 Noise, Vibration, and Harshness .20 2.3.1.3 Performance and Losses . 21 2.3.1.4 LMS Imagine.Lab Hybrid Vehicle . 21 2.3.2 LMS Imagine.Lab Internal Combustion Engine 22 2.3.2.1 Engine Control .22 2.3.2.2 Air Path Management .23 2.3.2.3 Combustion 23 2.3.2.4 Emissions 24 2.3.2.5 Internal Combustion Engine Related Hydraulics 24viii Contents 2.3.3 LMS Imagine.Lab Vehicle System Dynamics .25 2.3.3.1 Vehicle Dynamics 25 2.3.3.2 LMS Imagine.Lab Vehicle Dynamics Control .26 2.3.3.3 LMS Imagine.Lab Braking System 26 2.3.3.4 LMS Imagine.Lab Power Steering .27 2.3.3.5 LMS Imagine.Lab Suspension and Anti-Roll 27 2.3.4 LMS Imagine.Lab Vehicle Thermal Management .28 2.3.4.1 LMS Imagine.Lab Engine Cooling System 29 2.3.4.2 LMS Imagine.Lab Refrigerant Loop 29 2.3.4.3 LMS Imagine.Lab Passenger Comfort 29 2.3.4.4 LMS Imagine.Lab Lubrication .30 2.3.5 LMS Imagine.Lab Aerospace Systems .30 2.3.5.1 LMS Imagine.Lab Landing Gear .30 2.3.5.2 LMS Imagine.Lab Flight Controls Actuations . 31 2.3.5.3 LMS Imagine.Lab Aerospace Engine Equipment . 31 2.3.5.4 LMS Imagine.Lab Environmental Control Systems . 32 2.3.5.5 LMS Imagine.Lab Aircraft Engine 32 2.3.5.6 LMS Imagine.Lab Aircraft Fuel Systems 32 2.3.5.7 LMS Imagine.Lab Electrical Aircraft 33 2.3.6 LMS Imagine.Lab Thermofluid Systems and Components .33 2.3.6.1 LMS Imagine.Lab Hydraulics 33 2.3.6.2 LMS Imagine.Lab Pneumatics .34 2.3.6.3 LMS Imagine.Lab Gas Mixtures 34 2.3.6.4 LMS Imagine.Lab Thermal–Hydraulics .35 2.3.6.5 LMS Imagine.Lab Two-Phase Flow Systems .35 2.3.6.6 LMS Imagine.Lab Mobile Hydraulics Actuation Systems .35 2.3.6.7 LMS Imagine.Lab Thermofluids Systems 36 2.3.7 LMS Imagine.Lab Electromechanical 36 2.3.7.1 LMS Imagine.Lab Electric Storage Systems .36 2.3.7.2 LMS Imagine.Lab Electromechanical Components . 37 2.3.7.3 LMS Imagine.Lab Electrical Systems 37 2.3.7.4 LMS Imagine.Lab Automotive Electrics . 37 2.3.7.5 LMS Imagine.Lab Fuel Cells 38 2.3.8 LMS Imagine.Lab Vehicle Energy Management 38 2.3.8.1 LMS Imagine.Lab Vehicle Energy Management and Thermal .39 2.3.8.2 LMS Imagine.Lab Vehicle Energy Management and Drivability .39 2.3.8.3 LMS Imagine.Lab Engine Integration .39 Bibliography 40 Chapter 3 Numerical simulation of the basic hydraulic components 41 3.1 Flow through orifices . 41 3.2 Three-way flow valves .54 3.3 Four-way flow valves .60 3.3.1 The aim of the simulations .60 3.3.2 Critical lap case .63 3.3.3 Positive lap spool 66 3.3.4 Case of negative lap .71Contents ix 3.4 Hydraulic single-stage pressure relief valves dynamics 73 3.4.1 Problem formulation 73 3.4.2 Mathematic modeling of the valve dynamic behavior .75 3.4.3 Steady-state characteristics . 81 3.4.4 Sizing the valve damper 82 3.4.5 Numerical simulation of the valve dynamics by SIMULINK .85 3.4.6 Conclusion .90 3.5 Simulation of a pressure relief valve by Amesim 91 3.5.1 Building the simulation model . 91 3.5.2 Running the simulation 93 3.5.3 Conclusion .98 3.6 Simulation of the two-stages pressure relief valves 98 3.6.1 The structure of the two-stages pressure relief valves .98 3.6.2 Simulation of a typical piloted pressure relief valve with conical seat and conical pilot . 101 3.6.3 The influence of the geometry of the main valve and the pilot valve 112 Section 1: Bibliography . 116 Section 2: Bibliography . 116 Section 3: Bibliography . 117 Section 4: Bibliography . 117 Section 5: Bibliography . 117 Section 6: Bibliography . 118 Chapter 4 Simulation and identification of the electrohydraulic servovalves .119 4.1 Simulating the behavior of the electrohydraulic servovalves with additional electric feedback . 119 4.1.1 Problem formulation 119 4.1.2 Mathematical modeling 120 4.1.3 Simulations results . 124 4.1.4 Experimental results 127 4.1.5 Conclusion . 130 4.2 Simulation with Amesim as a tool for dynamic identification of the electrohydraulic servovalves 130 4.2.1 Problem formulation 130 4.2.2 Preliminary simulations . 131 4.2.3 Simulation results . 131 4.2.4 Experimental results 134 4.2.5 Conclusion . 135 4.3 Simulation and experimental validation of the overlap influence on the flow servovalves performance 138 4.3.1 Introduction 138 4.3.2 Problem formulation 139 4.3.3 Numerical simulation 141 4.3.4 Experimental validation of the simulations . 147 4.3.5 Conclusion . 150 4.4 Designing the controller of a servovalve by simulation . 152 4.4.1 Introduction . 152 4.4.2 Problem formulation 153 4.4.3 New hardware design 155x Contents 4.4.4 New controller design . 156 4.4.5 Numerical validation of the new design 157 4.4.6 Experimental validation 160 4.4.7 Conclusion . 163 Acknowledgments 166 Section 1: Bibliography . 167 Section 2: Bibliography . 167 Section 3: Bibliography . 168 Section 4: Bibliography . 169 Chapter 5 Numerical simulation and experimental identification of the hydraulic servomechanisms 171 5.1 Signal port approach versus multiport approach in simulating hydraulic servomechanisms . 171 5.1.1 Problem formulation 171 5.1.2 Mathematical modeling of an electrohydraulic servomechanism controlling the displacement of a servopump . 172 5.1.2.1 The steady-state characteristics of the servovalve main stage (four way, critical centre, spool valve) 173 5.1.2.2 The spool motion equation 174 5.1.2.3 The position transducer equation . 175 5.1.2.4 The error amplifier equation 175 5.1.2.5 The servocontroller current generator equation . 175 5.1.2.6 The continuity equation . 175 5.1.2.7 The piston motion equation . 176 5.1.3 Numerical simulation with SIMULINK . 176 5.1.4 Experimental results 181 5.1.5 Conclusion . 183 5.2 Dynamics of the electrohydraulic servomechanisms used in variable valve trains of the diesel engines . 183 5.2.1 Problem formulation 183 5.2.2 EHVS features . 183 5.2.3 EHVS types and performances 184 5.2.4 New patented design description 186 5.2.5 Conclusion . 193 5.3 Modeling and simulation of a hybrid electrohydraulic flight control servomechanism 193 5.3.1 Problem formulation 193 5.3.2 Preliminary study 195 5.3.3 Conclusion . 201 5.4 Increasing the stability of an electrohydraulic flight control servomechanisms by a hydraulic damper . 201 5.4.1 Problem formulation 201 5.4.2 Sine input response of the servomechanism .203 5.4.3 Step input response of the servomechanism .208 5.4.4 Frequency response . 211 5.4.5 Conclusion . 213Contents xi 5.5 Dynamics of the hydromechanical servomechanisms supplied at constant pressure . 213 5.5.1 Applications of hydromechanical servomechanisms constant pressure supplied . 213 5.5.2 Mathematical modeling and dynamic analysis of the hydraulic servomechanisms . 215 5.5.3 Numerical study of the stability 220 5.5.4 The final result of the stability study 223 5.5.5 Experimental results 225 5.5.6 Numerical simulation of a moving body servomechanism 227 5.5.7 Conclusion .233 5.6 Improving the accuracy of the electrohydraulic servomechanisms by additional feedback 233 5.6.1 Problem formulation 233 5.6.2 Introduction 234 5.6.3 Mathematical modeling 236 5.6.4 Numerical simulation with Amesim . 240 5.6.5 Experimental validation of the theoretical developments . 243 5.7 Modeling, simulation, and experimental validation of the synchronized electrohydraulic servomechanisms . 246 5.7.1 Practical problem formulation 246 5.7.2 Dynamics of the synchronization systems with servopumps 247 5.7.3 Dynamics of the synchronization systems with industrial servovalves . 252 5.7.4 Experimental identification of the relation between the synchronizing error and the maximum effort introduced in the structure 256 5.7.5 Conclusion .259 Section 1: Bibliography .259 Section 2: Bibliography .259 Section 3: Bibliography .260 Section 4: Bibliography .260 Section 5: Bibliography .260 Section 6: Bibliography . 261 Section 7: Bibliography . 261 Chapter 6 Numerical simulation of the automotive hydraulic steering systems 263 6.1 Numerical simulation and experimental identification of the car hydraulic steering systems .263 6.1.1 Steady-state behavior of an open-center flow valve 263 6.1.2 Continuity equation for the flow control valve—hydraulic linear motor subsystem 267 6.1.3 Motion equation of the piston of the hydraulic cylinder 268 6.1.4 Equation of the following error 268 6.1.5 Numerical simulation 271 6.1.6 Conclusion .272 6.2 Modeling and simulation of the hydraulic power steering systems with Amesim 273 6.2.1 Nonlinear analysis of a steering system dynamics for a linear input 273 6.2.2 Study of a linear periodical input steering process 275xii Contents 6.2.3 Study of the sine periodical input process . 279 6.2.4 Conclusion .285 6.3 Researches on the electrohydraulic steering systems of the articulated vehicles .286 6.3.1 Defining precision agriculture .286 6.3.2 Options for a new hybrid steering system .289 6.3.3 Numerical simulation 294 6.3.4 Experimental results 297 6.3.5 Conclusion .302 Section 1: Bibliography .302 Section 2: Bibliography .303 Section 3: Bibliography .304 Chapter 7 Modeling, simulation, and identification of the hydrostatic pumps and motors .305 7.1 Numerical simulation of a single-stage pressure compensator 305 7.1.1 Structure of the servopumps 305 7.1.2 Dynamics of a single-stage pressure compensator .309 7.1.3 Dynamics of two-stage pressure compensators 312 7.1.4 Conclusion . 314 7.2 Dynamics of two-stage pressure compensator for swashplate pumps 315 7.2.1 Structure of the swashplate pumps with pressure compensator 315 7.2.2 Numerical simulation of the dynamic behavior 320 7.2.3 Experimental researches . 327 7.2.4 Conclusion .334 7.3 Open-circuits electrohydraulic servopumps dynamics .334 7.3.1 Structure of the electrohydraulic servopumps for open circuits 334 7.3.2 Numeric simulation of open-circuit servopump dynamics 337 7.3.3 Experimental validation of the simulations .345 7.3.4 Conclusion .347 7.4 Numerical simulation of the mechanical feedback servopumps by Amesim 347 7.4.1 Mechanical feedback servopump structure .347 7.4.2 Modeling the kinematics of the servomechanism 349 7.4.3 Modeling and simulation of the servomechanism dynamics . 351 7.4.4 Modeling and simulation of the servopump dynamics .355 7.4.5 Conclusion .360 7.5 Numerical simulation of the dynamics of the electrohydraulic bent axis force feedback servomotors 361 7.5.1 Modern structures for the bent axis force feedback servomotors 361 7.5.2 Mathematical modeling 364 7.5.3 Numerical simulation by SIMULINK . 369 7.5.4 Numerical simulation by Amesim 372 7.5.5 Conclusion . 378 Section 1: Bibliography . 378 Section 2: Bibliography . 378 Section 3: Bibliography . 379 Section 4: Bibliography . 379 Section 5: Bibliography . 379Contents xiii Chapter 8 Numerical simulation of the hydrostatic transmissions 381 8.1 Design problems of the hydrostatic transmissions . 381 8.1.1 Structure and applications of hydrostatic transmissions . 381 8.1.2 Electrohydraulic control systems in automotive powertrains .385 8.1.3 Hydrostatic transmission performances .385 8.1.4 Innovations in the field of the hydrostatic transmissions 389 8.1.5 Approached problems and solving methods . 391 8.2 Dynamics of the hydrostatic transmissions for mobile equipments 392 8.2.1 Design criteria for the hydraulic scheme 392 8.2.2 Optimization of the hydrostatic transmissions by numerical simulation 395 8.2.3 Conclusion . 401 Section 1: Bibliography . 401 Section 2: Bibliography .402 Chapter 9 Design of the speed governors for hydraulic turbines by Amesim .403 9.1 Modeling and simulation of the high-head Francis turbines 403 9.1.1 Problem formulation 403 9.1.2 Mathematical model of a high-head Francis turbine 404 9.1.3 Mathematical modeling of the synchronous generator 411 9.1.4 Main characteristics of the high power servovalves . 414 9.1.5 Numerical simulation of the dynamic behavior of nonlinear electrohydraulic servovalves . 417 9.1.6 Modeling and simulation of a speed governor for high-head turbines with Amesim .420 9.1.7 Synthesis of the speed governor .421 9.1.8 Real-Time simulation with MATLAB/SIMULINK of a speed governor for high-head turbines 423 9.1.9 Simulation of a redundant position control system with Amesim .427 9.1.10 Conclusion .432 9.2 Example of sizing and tuning the speed governors for Kaplan turbines by Amesim 434 9.2.1 General design options 434 9.2.2 Tuning the speed governor .437 9.2.3 Experimental validation of the design 440 9.2.4 Conclusion .446 Section 1: Bibliography .447 Section 2: Bibliography .448 Chapter 10 Numerical simulation of the fuel injection systems .449 10.1 Numerical simulation of common rail injection systems with solenoid injectors . 449 10.1.1 Structure of the common rail fuel injection systems 449 10.1.2 Simulation of a single injector in ideal conditions .449 10.1.3 Using the Discrete Partitioning Technique in high-speed simulation of the common rail fuel injection systems 458 10.1.4 Conclusion .463 10.2 Dynamics of the piezoceramic actuated fuel injectors .463 10.2.1 Progress elements in fuel injection 463xiv Contents 10.2.2 Numerical simulations results 464 10.2.3 Conclusion . 471 10.3 Applications of Amesim in the optimization of the common rail agrofuel injection systems . 471 10.3.1 Agrofuel problems 471 10.3.2 Agrofuel’s sustainability 472 10.3.3 Agrofuel versus “Biodiesel” 473 10.3.4 Agrofuel versus fossil diesel fuel . 474 10.3.5 Materials and methods 474 10.3.6 Main results of the numerical simulations .477 10.3.7 Conclusion .482 Section 1: Bibliography .482 Section 2: Bibliography .483 Section 3: Bibliography .483 Chapter 11 Numerical simulation and experimental validation of ABS systems for automotive systems .485 11.1 Development and validation of ABS/ESP models for braking system components 485 11.1.1 Models and libraries used in the modeling of the road vehicles 485 11.1.2 Basic layouts of the ABS/ESP systems .489 11.1.3 Model inputs and outputs .490 11.1.4 Modeling system components 492 11.1.5 Using Amesim facilities for simplifying the models 495 11.1.6 Conclusion .504 11.2 Brake system model reduction and integration in a HiL environment 504 11.2.1 Problems of reduction of the ABS/ESP system for HiL 504 11.2.2 Reduction of the ABS/ESP global model 512 11.2.3 Conclusion .522 11.3 Validation of the Real-Time global model by comparison with the experimental data . 524 11.3.1 Validation with dry surface (asphalt) experimental data . 524 11.3.2 Validation with compact snow experimental data 524 11.3.3 Validation with very frozen snow experimental data . 525 11.3.4 Validation with mixed surface brake experimental data . 526 11.3.5 Validation on mixed surface acceleration experimental data 526 11.3.6 Conclusion . 527 Section 1: Bibliography . 528 Section 2: Bibliography . 529 Section 3: Bibliography . 529 Chapter 12 Numerical simulation and experimental tuning of the electrohydraulic servosystems for mobile equipments .531 12.1 Structure of the electrohydraulic servosystems with laser feedback used for ground leveling equipments . 531 12.2 Test bench for simulation of the real operational conditions of the laser module on the equipment .534 12.3 Numerical simulation and experimental identification of the laser-controlled modular systems for leveling machine in horizontal plane .535Contents xv 12.4 Experimental identification 541 12.5 Conclusion .543 Bibliography 544 Chapter 13 Using Amesim for solving multiphysics problems .545 13.1 Real-Time systems and Hardware-in-the-Loop testing .545 13.2 Objectives of the Hardware-in-the-Loop simulation of the road vehicles electrical power train .547 13.3 Specific tools used in the development of a test bench for electric power train .548 13.4 Amesim simulation environment features used for Hardware-in-the-Loop .549 13.5 Vehicle modeling in Amesim .550 13.6 Connecting the real electrical motor to the virtual model .553 13.7 Modeling aerodynamic parameters 555 13.8 Determining the vehicle speed 557 13.9 Results obtained using a model with an ideal power source 558 13.10 Results obtained using a model with a nonideal power source .560 13.11 Simulation results for the complete vehicle model in Amesim .563 13.12 Preparing the Amesim models for Real-Time simulation 570 13.13 Hardware-in-the-Loop test stand hardware structure . 573 13.14 Hardware-in-the-Loop test stand software structure 577 13.15 The graphical interface 581 13.16 Simulation results .583 13.17 Conclusion . 594 Bibliography 594 Index .
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Simulation of Fluid Power Systems with Simcenter Amesim رابط مباشر لتنزيل كتاب Simulation of Fluid Power Systems with Simcenter Amesim
|
|
volontardy مهندس تحت الاختبار
عدد المساهمات : 2 التقييم : 2 تاريخ التسجيل : 21/07/2023 العمر : 27 الدولة : turkey العمل : engineer الجامعة : odtu
| موضوع: رد: كتاب Simulation of Fluid Power Systems with Simcenter Amesim الجمعة 21 يوليو 2023, 5:49 pm | |
| |
|