Admin مدير المنتدى
عدد المساهمات : 18959 التقييم : 35383 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب The Finite Element Method for Mechanics of Solids with ANSYS Applications الخميس 11 يوليو 2019, 1:17 pm | |
|
أخوانى فى الله أحضرت لكم كتاب The Finite Element Method for Mechanics of Solids with ANSYS Applications Ellis H. Dill Haym Benaroya Department of Mechanical and Aerospace Engineering Rutgers University
و المحتوى كما يلي :
Contents Preface xiii Author xv Chapter 1 Finite Element Concepts 1 1.1 Introduction .1 1.2 Direct Stiffness Method 2 1.2.1 Merging the Element Stiffness Matrices 3 1.2.2 Augmenting the Element Stiffness Matrix 5 1.2.3 Stiffness Matrix Is Banded 5 1.3 The Energy Method .5 1.4 Truss Example .7 1.5 Axially Loaded Rod Example . 13 1.5.1 Augmented Matrices for the Rod . 16 1.5.2 Merge of Element Matrices for the Rod . 17 1.6 Force Method . 18 1.7 Other Structural Components 21 1.7.1 Space Truss . 21 1.7.2 Beams and Frames . 21 1.7.2.1 General Beam Equations 24 1.7.3 Plates and Shells .26 1.7.4 Two- or Three-Dimensional Solids 26 1.8 Problems 26 References 28 Bibliography .28 Chapter 2 Linear Elasticity .29 2.1 Basic Equations .29 2.1.1 Geometry of Deformation 29 2.1.2 Balance of Momentum .30 2.1.3 Virtual Work 30 2.1.4 Constitutive Relations . 31 2.1.5 Boundary Conditions and Initial Conditions 33 2.1.6 Incompressible Materials . 33 2.1.7 Plane Strain 34 2.1.8 Plane Stress 34 2.1.9 Tensile Test . 35 2.1.10 Pure Shear 36 2.1.11 Pure Bending 36 2.1.12 Bending and Shearing 37vi Contents 2.1.13 Properties of Solutions .38 2.1.14 A Plane Stress Example with a Singularity in Stress 40 2.2 Potential Energy 42 2.2.1 Proof of Minimum Potential Energy 44 2.3 Matrix Notation . 45 2.4 Axially Symmetric Deformations .48 2.4.1 Cylindrical Coordinates .48 2.4.2 Axial Symmetry .49 2.4.3 Plane Stress and Plane Strain .50 2.5 Problems 50 References 51 Bibliography . 52 Chapter 3 Finite Element Method for Linear Elasticity . 53 3.1 Finite Element Approximation 54 3.1.1 Potential Energy . 55 3.1.2 Finite Element Equations . 57 3.1.3 Basic Equations in Matrix Notation .58 3.1.4 Basic Equations Using Virtual Work .59 3.1.5 Underestimate of Displacements 60 3.1.6 Nondimensional Equations 61 3.1.7 Uniaxial Stress .63 3.2 General Equations for an Assembly of Elements 66 3.2.1 Generalized Variational Principle 68 3.2.2 Potential Energy .69 3.2.3 Hybrid Displacement Functional 69 3.2.4 Hybrid Stress and Complementary Energy 70 3.2.5 Mixed Methods of Analysis .72 3.3 Nearly Incompressible Materials . 75 3.3.1 Nearly Incompressible Plane Strain . 78 Bibliography .79 Chapter 4 The Triangle and the Tetrahedron 81 4.1 Linear Functions over a Triangular Region . 81 4.2 Triangular Element for Plane Stress and Plane Strain 84 4.3 Plane Quadrilateral from Four Triangles 88 4.3.1 Square Element Formed from Four Triangles 90 4.4 Plane Stress Example: Short Beam .93 4.4.1 Extrapolation of the Solution 96 4.5 Linear Strain Triangles 97 4.6 Four-Node Tetrahedron .98 4.7 Ten-Node Tetrahedron .99 4.8 Problems 99Contents vii Chapter 5 The Quadrilateral and the Hexahedron 103 5.1 Four-Node Plane Rectangle . 103 5.1.1 Stress Calculations . 109 5.1.2 Plane Stress Example: Pure Bending . 110 5.1.3 Plane Strain Example: Bending with Shear . 112 5.1.4 Plane Stress Example: Short Beam 112 5.2 Improvements to Four-Node Quadrilateral . 115 5.2.1 Wilson–Taylor Quadrilateral 115 5.2.2 Enhanced Strain Formulation 118 5.2.3 Approximate Volumetric Strains . 122 5.2.4 Reduced Integration on the ? Term 125 5.2.5 Reduced Integration on the ? Term 126 5.2.6 Uniform Reduced Integration 127 5.2.7 Example Using Improved Elements . 130 5.3 Numerical Integration . 130 5.4 Coordinate Transformations 133 5.5 Isoparametric Quadrilateral 134 5.5.1 Wilson–Taylor Element 138 5.5.2 Three-Node Triangle as a Special Case of Rectangle 138 5.6 Eight-Node Quadrilateral 139 5.6.1 Nodal Loads . 144 5.6.2 Plane Stress Example: Pure Bending . 145 5.6.3 Plane Stress Example: Bending with Shear . 145 5.6.4 Plane Stress Example: Short Beam 148 5.6.5 General Quadrilateral Element 148 5.7 Eight-Node Block 149 5.8 Twenty-Node Solid 152 5.9 Singularity Element . 152 5.10 Mixed U–P Elements . 154 5.10.1 Plane Strain 154 5.10.2 Alternative Formulation for Plane Strain . 158 5.10.3 3D Elements . 160 5.11 Problems 163 References 168 Bibliography . 169 Chapter 6 Errors and Convergence of Finite Element Solution 171 6.1 General Remarks . 171 6.2 Element Shape Limits 173 6.2.1 Aspect Ratio . 173 6.2.2 Parallel Deviation for a Quadrilateral 174 6.2.3 Large Corner Angle 175 6.2.4 Jacobian Ratio 175viii Contents 6.3 Patch Test . 176 6.3.1 Wilson–Taylor Quadrilateral 178 References 180 Chapter 7 Heat Conduction in Elastic Solids 181 7.1 Differential Equations and Virtual Work 181 7.2 Example Problem: One-Dimensional Transient Heat Flux . 185 7.3 Example: Hollow Cylinder 187 7.4 Problems 188 Chapter 8 Finite Element Method for Plasticity . 191 8.1 Theory of Plasticity . 191 8.1.1 Tensile Test . 194 8.1.2 Plane Stress 195 8.1.3 Summary of Plasticity 196 8.2 Finite Element Formulation for Plasticity . 197 8.2.1 Fundamental Solution 198 8.2.2 Iteration to Improve the Solution 199 8.3 Example: Short Beam 201 8.4 Problems 203 Bibliography .204 Chapter 9 Viscoelasticity 205 9.1 Theory of Linear Viscoelasticity .205 9.1.1 Recurrence Formula for History 210 9.1.2 Viscoelastic Example . 211 9.2 Finite Element Formulation for Viscoelasticity 215 9.2.1 Basic Step-by-Step Solution Method 216 9.2.2 Step-by-Step Calculation with Load Correction 217 9.2.3 Plane Strain Example . 218 9.3 Problems 219 Bibliography .220 Chapter 10 Dynamic Analyses . 221 10.1 Dynamical Equations 221 10.1.1 Lumped Mass . 221 10.1.2 Consistent Mass .222 10.2 Natural Frequencies 224 10.2.1 Lumped Mass .224 10.2.2 Consistent Mass .225 10.3 Mode Superposition Solution 225 10.4 Example: Axially Loaded Rod 227Contents ix 10.4.1 Exact Solution for Axially Loaded Rod .227 10.4.2 Finite Element Model .229 10.4.2.1 One-Element Model 229 10.4.2.2 Two-Element Model .230 10.4.3 Mode Superposition for Continuum Model of the Rod . 232 10.5 Example: Short Beam 236 10.6 Dynamic Analysis with Damping 237 10.6.1 Viscoelastic Damping 238 10.6.2 Viscous Body Force 239 10.6.3 Analysis of Damped Motion by Mode Superposition 240 10.7 Numerical Solution of Differential Equations . 241 10.7.1 Constant Average Acceleration 241 10.7.2 General Newmark Method .243 10.7.3 General Methods 244 10.7.3.1 Implicit Methods in General 244 10.7.3.2 Explicit Methods in General 244 10.7.4 Stability Analysis of Newmark’s Method 245 10.7.5 Convergence, Stability, and Error 246 10.7.6 Example: Numerical Integration for Axially Loaded Rod 247 10.8 Example: Analysis of Short Beam .249 10.9 Problems 251 Bibliography . 253 Chapter 11 Linear Elastic Fracture Mechanics 255 11.1 Fracture Criterion 255 11.1.1 Analysis of Sheet 257 11.1.2 Fracture Modes .258 11.1.2.1 Mode I .258 11.1.2.2 Mode II .259 11.1.2.3 Mode III .259 11.2 Determination of K by Finite Element Analysis .260 11.2.1 Crack Opening Displacement Method .260 11.3 J-Integral for Plane Regions 263 11.4 Problems 267 References 268 Bibliography .268 Chapter 12 Plates and Shells .269 12.1 Geometry of Deformation .269 12.2 Equations of Equilibrium 270 12.3 Constitutive Relations for an Elastic Material . 271x Contents 12.4 Virtual Work 273 12.5 Finite Element Relations for Bending . 276 12.6 Classical Plate Theory .280 12.7 Plate Bending Example .282 12.8 Problems 287 References 288 Bibliography .289 Chapter 13 Large Deformations 291 13.1 Theory of Large Deformations 291 13.1.1 Virtual Work 292 13.1.2 Elastic Materials .293 13.1.3 Mooney–Rivlin Model of an Incompressible Material 297 13.1.4 Generalized Mooney–Rivlin Model .298 13.1.5 Polynomial Formula . 301 13.1.6 Ogden’s Function 303 13.1.7 Blatz–Ko Model .304 13.1.8 Logarithmic Strain Measure 306 13.1.9 Yeoh Model 307 13.1.10 Fitting Constitutive Relations to Experimental Data .308 13.1.10.1 Volumetric Data .308 13.1.10.2 Tensile Test .308 13.1.10.3 Biaxial Test .309 13.2 Finite Elements for Large Displacements .309 13.2.1 Lagrangian Formulation . 311 13.2.2 Basic Step-by-Step Analysis 312 13.2.3 Iteration Procedure . 312 13.2.4 Updated Reference Configuration 313 13.2.5 Example I . 315 13.2.6 Example II 315 13.3 Structure of Tangent Modulus . 317 13.4 Stability and Buckling . 318 13.4.1 Beam–Column . 319 13.5 Snap-Through Buckling 319 13.5.1 Shallow Arch 323 13.6 Problems 324 References 326 Bibliography . 326 Chapter 14 Constraints and Contact . 327 14.1 Application of Constraints . 327 14.1.1 Lagrange Multipliers 327Contents xi 14.1.2 Perturbed Lagrangian Method . 329 14.1.3 Penalty Functions . 331 14.1.4 Augmented Lagrangian Method 332 14.2 Contact Problems . 333 14.2.1 Example: A Truss Contacts a Rigid Foundation 333 14.2.1.1 Load F y > 0 Is Applied with Fx = 0 . 335 14.2.1.2 Loads Are Ramped Up Together: Fx = 27?, F y = 12.8? 336 14.2.2 Lagrange Multiplier, No Friction Force . 337 14.2.2.1 Stick Condition . 338 14.2.2.2 Slip Condition . 338 14.2.3 Lagrange Multiplier, with Friction . 338 14.2.3.1 Stick Condition . 339 14.2.3.2 Slip Condition . 339 14.2.4 Penalty Method .340 14.2.4.1 Stick Condition . 341 14.2.4.2 Slip Condition . 341 14.3 Finite Element Analysis . 341 14.3.1 Example: Contact of a Cylinder with a Rigid Plane . 342 14.3.2 Hertz Contact Problem . 343 14.4 Dynamic Impact 346 14.5 Problems 347 References 348 Bibliography .348 Chapter 15 ANSYS APDL Examples .349 15.1 ANSYS Instructions 349 15.1.1 ANSYS File Names 351 15.1.2 Graphic Window Controls 352 15.1.2.1 Graphics Window Logo 352 15.1.2.2 Display of Model 352 15.1.2.3 Display of Deformed and Undeformed Shape White on White 352 15.1.2.4 Adjusting Graph Colors 352 15.1.2.5 Printing from Windows Version of ANSYS . 353 15.1.2.6 Some Useful Notes . 353 15.2 ANSYS Elements SURF153, SURF154 353 15.3 Truss Example . 354 15.4 Beam Bending . 357 15.5 Beam with a Distributed Load 360 15.6 One Triangle 361 15.7 Plane Stress Example Using Triangles 364 15.8 Cantilever Beam Modeled as Plane Stress 366xii Contents 15.9 Plane Stress: Pure Bending .369 15.10 Plane Strain Bending Example 371 15.11 Plane Stress Example: Short Beam . 376 15.12 Sheet with a Hole . 379 15.12.1 Solution Procedure . 379 15.13 Plasticity Example . 381 15.14 Viscoelasticity Creep Test .387 15.15 Viscoelasticity Example 391 15.16 Mode Shapes and Frequencies of a Rod 394 15.17 Mode Shapes and Frequencies of a Short Beam .397 15.18 Transient Analysis of Short Beam . 398 15.19 Stress Intensity Factor by Crack Opening Displacement 400 15.20 Stress Intensity Factor by J-Integral 402 15.21 Stretching of a Nonlinear Elastic Sheet .405 15.22 Nonlinear Elasticity: Tensile Test 408 15.23 Column Buckling 412 15.24 Column Post-Buckling 415 15.25 Snap-Through 417 15.26 Plate Bending Example .420 15.27 Clamped Plate 423 15.28 Gravity Load on a Cylindrical Shell .425 15.29 Plate Buckling . 429 15.30 Heated Rectangular Rod . 432 15.31 Heated Cylindrical Rod . 434 15.32 Heated Disk . 438 15.33 Truss Contacting a Rigid Foundation 442 15.34 Compression of a Rubber Cylinder between Rigid Plates .446 15.35 Hertz Contact Problem 451 15.36 Elastic Rod Impacting a Rigid Wall 456 15.37 Curve Fit for Nonlinear Elasticity Using Blatz–Ko Model .460 15.38 Curve Fit for Nonlinear Elasticity Using Polynomial Model 464 Bibliography .469 Chapter 16 ANSYS Workbench 471 16.1 Two- and Three-Dimensional Geometry 471 16.2 Stress Analysis . 472 16.3 Short Beam Example . 473 16.3.1 Short Beam Geometry 473 16.3.2 Short Beam, Static Loading . 474 16.3.3 Short Beam, Transient Analysis . 476 16.4 Filleted Bar Example . 477 16.5 Sheet with a Hole .480 Bibliography .482 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب The Finite Element Method for Mechanics of Solids with ANSYS Applications رابط مباشر لتنزيل كتاب The Finite Element Method for Mechanics of Solids with ANSYS Applications
|
|