Admin مدير المنتدى
عدد المساهمات : 19002 التقييم : 35506 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Computer Aided Engineering Design الثلاثاء 25 يونيو 2019, 12:51 am | |
|
أخوانى فى الله أحضرت لكم كتاب Computer Aided Engineering Design Anupam Saxena, Birendra Sahay Department of Mechanical Engineering Indian Institute of Technology Kanpur, India
و المحتوى كما يلي :
Contents Foreword vii Preface ix Acknowledgements xiii 1. Introduction 1 1.1 Engineering Design 1 1.2 Computer as an Aid to the Design Engineer 2 1.2.1 Computer as a Participant in a Design Team 2 1.3 Computer Graphics 3 1.3.1 Graphics Systems and Hardware 4 1.3.2 Input Devices 4 1.3.3 Display and Output Devices 5 1.4 Graphics Standards and Software 6 1.5 Designer-Computer Interaction 7 1.6 Motivation and Scope 8 1.7 Computer Aided Mechanism and Machine Element Design 12 Exercises 20 2. Transformations and Projections 23 2.1 Definition 24 2.2 Rigid Body Transformations 24 2.2.1 Rotation in Two-Dimensions 25 2.2.2 Translation in Two-Dimensions: Homogeneous Coordinates 25 2.2.3 Combined Rotation and Translation 27 2.2.4 Rotation of a Point Q (xq, yq, 1) about a Point P (p, q, 1) 29 2.2.5 Reflection 29 2.2.6 Reflection About an Arbitrary Line 30 2.2.7 Reflection through a Point 31 2.2.8 A Preservative for Angles! Orthogonal Transformation Matrices 32 2.3 Deformations 34 2.3.1 Scaling 34 2.3.2 Shear 35 2.4 Generic Transformation in Two-Dimensions 36 2.5 Transformations in Three-Dimensions 372.5.1 Rotation in Three-Dimensions 37 2.5.2 Scaling in Three-Dimensions 40 2.5.3 Shear in Three-Dimensions 41 2.5.4 Reflection in Three-Dimensions 41 2.6 Computer Aided Assembly of Rigid Bodies 44 2.7 Projections 48 2.7.1 Geometry of Perspective Viewing 49 2.7.2 Two Point Perspective Projection 53 2.8 Orthographic Projections 54 2.8.1 Axonometric Projections 55 2.9 Oblique Projections 60 Exercises 62 3. Differential Geometry of Curves 66 3.1 Curve Interpolation 67 3.2 Curve Fitting 70 3.3 Representing Curves 73 3.4 Differential Geometry of Curves 75 Exercises 82 4. Design of Curves 84 4.1 Ferguson’s or Hermite Cubic Segments 87 4.1.1 Composite Ferguson Curves 89 4.1.2 Curve Trimming and Re-parameterization 94 4.1.3 Blending of Curve Segments 96 4.1.4 Lines and Conics with Ferguson Segments 97 4.1.5 Need for Other Geometric Models for the Curve 100 4.2 Three-Tangent Theorem 101 4.2.1 Generalized de Casteljau’s Algorithm 101 4.2.2 Properties of Bernstein Polynomials 103 4.3 Barycentric Coordinates and Affine Transformation 106 4.4 Bézier Segments 107 4.4.1 Properties of Bézier Segments 109 4.4.2 Subdivision of a Bézier Segment 113 4.4.3 Degree-Elevation of a Bézier Segment 116 4.4.4 Relationship between Bézier and Ferguson Segments 117 4.5 Composite Bézier Curves 118 4.6 Rational Bézier Curves 121 Exercises 127 5. Splines 130 5.1 Definition 130 5.2 Why Splines? 132 5.3 Polynomial Splines 132 5.4 B-Splines (Basis-Splines) 136 5.5 Newton’s Divided Difference Method 138 5.5.1 Divided Difference Method of Compute B-Spline Basis Functions 141 5.6 Recursion Relation to Compute B-Spline Basis Functions 143 5.6.1 Normalized B-Spline Basic Functions 145 xvi CONTENTS5.7 Properties of Normalized B-Spline Basis Functions 146 5.8 B-Spline Curves: Definition 151 5.8.1 Properties of B-Spline Curves 152 5.9 Design Features with B-Spline Curves 155 5.10 Parameterization 158 5.10.1 Knot Vector Generation 159 5.11 Interpolation with B-Splines 160 5.12 Non-Uniform Rational B-Splines (NURBS) 161 Exercises 162 6. Differential Geometry of Surfaces 165 6.1 Parametric Representation of Surfaces 166 6.1.1 Singular Points and Regular Surfaces 168 6.1.2 Tangent Plane and Normal Vector on a Surface 169 6.2 Curves on a Surface 171 6.3 Deviation of the Surface from the Tangent Plane: Second Fundamental Matrix 173 6.4 Classification of Points on a Surface 175 6.5 Curvature of a Surface: Gaussian and Mean Curvature 178 6.6 Developable and Ruled Surfaces 181 6.7 Parallel Surfaces 185 6.8 Surfaces of Revolution 188 6.9 Sweep Surfaces 190 6.10 Curve of Intersection between Two Surfaces 193 Exercises 197 7. Design of Surfaces 201 7.1 Tensor Product Surface Patch 202 7.1.1 Ferguson’s Bi-cubic Surface Patch 203 7.1.2 Shape Interrogation 206 7.1.3 Sixteen Point Form Surface Patch 210 7.1.4 Bézier Surface Patches 211 7.1.5 Triangular Surface Patch 216 7.2 Boundary Interpolation Surfaces 218 7.2.1 Coon’s patches 219 7.3 Composite Surfaces 226 7.3.1 Composite Ferguson’s Surface 226 7.3.2 Composite Bézier Surface 229 7.4 B-Spline Surface Patch 241 7.5 Closed B-Spline Surface 243 7.6 Rational B-spline Patches (NURBS) 244 Exercises 245 8. Solid Modeling 247 8.1 Solids 247 8.2 Topology and Homeomorphism 249 8.3 Topology of Surfaces 251 8.3.1 Closed-up Surfaces 251 8.3.2 Some Basic Surfaces and Classification 252 CONTENTS xvii8.4 Invariants of Surfaces 254 8.5 Surfaces as Manifolds 255 8.6 Representation of Solids: Half Spaces 256 8.7 Wireframe Modeling 257 8.8 Boundary Representation Scheme 259 8.8.1 Winged-Edge Data Structure 259 8.8.2 Euler-Poincaré Formula 261 8.8.3 Euler-Poincaré Operators 263 8.9 Constructive Solid Geometry 265 8.9.1 Boolean Operations 267 8.9.2 Regularized Boolean Operations 268 8.10 Other Modeling Methods 269 8.11 Manipulating Solids 271 Exercises 273 9. Computations for Geometric Design 275 9.1 Proximity of a Point and a Line 275 9.2 Intersection Between Lines 277 9.2.1 Intersection Between Lines in Three-dimensions 279 9.3 Relation Between a Point and a Polygon 280 9.3.1 Point in Polygon 280 9.4 Proximity Between a Point and a Plane 282 9.4.1 Point within a Polyhedron 285 9.5 Membership Classification 286 9.6 Subdivision of Space 286 9.6.1 Quadtree Decomposition 287 9.7 Boolean Operations on Polygons 290 9.8 Inter Section Between Free Form Curves 292 Exercises 293 10. Geometric Modeling Using Point Clouds 295 10.1 Reverse Engineering and its Applications 295 10.2 Point Cloud Acquisition 296 10.3 Surface Modeling from a Point Cloud 297 10.4 Meshed or Faceted Models 298 10.5 Planar Contour Models 299 10.5.1 Points to Contour Models 299 10.6 Surface Models 301 10.6.1 Segmentation and Surface Fitting for Prismatic Objects 303 10.6.2 Segmentation and Surface Fitting for Freeform Shapes 305 10.7 Some Examples of Reverse Engineering 308 11. Finite Element Method 309 11.1 Introduction 309 11.2 Springs and Finite Element Analysis 310 11.3 Truss Elements 313 11.3.1 Transformations and Truss Element 315 xviii CONTENTS11.4 Beam Elements 318 11.5 Frame elements 322 11.5.1 Frame Elements and Transformations 324 11.6 Continuum Triangular Elements 325 11.7 Four-Node Elements 331 Exercises 336 12. Optimization 339 12.1 Classical Optimization 339 12.2 Single Variable Optimization 339 12.2.1 Bracketing Methods 340 12.2.2 Open Methods 345 12.3 Multivariable Optimization 348 12.3.1 Classical Multivariable Optimization 348 12.3.2 Constrained Multivariable Optimization 349 12.3.3 Multivariable Optimization with Inequality Constraints 353 12.3.4 Karush-Kuhn-Tucker (KKT) Necessary Conditions for Optimality 355 12.4 Linear Programming 359 12.4.1 Simple Method 360 12.5 Sequential Linear Programming (SLP) 363 12.6 Sequential Quadratic Programming (SQP) 364 12.7 Stochastic Approaches (Genetic Algorithms and Simulated Annealing) 365 Exercises 368 Appendix: Mesh Generation 370 Suggested Projects 378 Bibliography 385 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Computer Aided Engineering Design رابط مباشر لتنزيل كتاب Computer Aided Engineering Design
|
|