كتاب Fundamentals of Laser Micromachining
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب Fundamentals of Laser Micromachining

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15506
التقييم : 26040
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Fundamentals of Laser Micromachining Empty
مُساهمةموضوع: كتاب Fundamentals of Laser Micromachining   كتاب Fundamentals of Laser Micromachining Emptyالخميس 18 أبريل 2019, 8:20 pm

أخوانى فى الله
أحضرت لكم كتاب
Fundamentals of Laser Micromachining
Ronald D. Schaeffer  

كتاب Fundamentals of Laser Micromachining F_o_l_11
ويتناول الموضوعات الأتية :


Contents
List of Figures .xi
Acknowledgments Xix
The Author . Xxi
1. Introduction .1
2. Laser Theory and Operation 5
2.1 Brief Review of Laser Physics 5
2.1.1 Quantum Theory of Light 5
2.1.2 Photon Interactions With Matter 5
2.1.3 Laser Physics and Population Inversion .6
2.1.4 Essential Elements of a Laser Oscillator .8
2.1.5 Important Characteristics of a Laser Beam 11
2.2 Co2 Lasers 13
2.2.1 Characteristics of Carbon Dioxide Lasers 13
2.2.2 Co2 Laser Operational Theory 14
2.2.3 Types of Co2 Lasers . 15
2.3 Solid-state Nd3+ Lasers . 16
2.3.1 Important Characteristics of Nd Lasers . 16
2.3.2 Q-switching 17
2.3.3 Nd:ylf Versus Nd:yag Versus Nd:yvo4 . 18
2.3.4 Harmonic Generation 18
2.4 Excimer Lasers .20
2.4.1 Excimer Laser Energy Transitions and Pump Scheme 20
2.4.2 Gas Discharge .22
2.4.3 Excimer Laser Energy Monitoring 23
2.4.4 Operation and Maintenance Costs 26
2.5 Fiber Lasers 26
2.6 Disk Lasers .29
2.7 Ultrashort Pulse (Usp) Lasers .30
2.8 Comparisons of Laser Sources 31
3. Optics 37
3.1 Optics 37
3.1.1 the Law of Refraction (Snell’s Law) 37
3.1.2 Simple Optics—materials, Substrates, Coatings,
Lenses, and Prisms 38
3.1.3 Beam Splitters .42
3.1.4 Telescopes .43
3.1.5 Beam Profilometry .45vi Contents
3.1.6 Homogenizers 46
3.1.7 Polarizers .47
3.2 Beam Delivery Systems—imaging and Focusing 48
3.2.1 Focal Point Machining—fixed Beam 48
3.2.2 Focal Point Machining—galvanometers .49
3.2.3 Near-field Imaging . 52
3.2.4 Masks . 52
3.2.5 Thin Lens Equation and Demagnification .54
3.2.6 Beam Compression 54
3.2.7 Beam Utilization Factor 55
3.2.8 Beam Optimizing Considerations .56
3.2.9 Coordinated Opposing Motion Imaging .57
3.2.10 Direct-write Machining 58
3.2.11 Contact Mask Processing 59
3.2.12 Multiple Laser Beams 60
3.3 Steps to an Effective Optical Setup 61
4. Light–material Interaction .63
4.1 Photoablation and Material Interaction With Uv Light 63
4.2 Thermal Effects .64
4.3 Taper 67
4.4 Fluence 70
5. System Integration .71
5.1 Processing System Considerations .71
5.2 General Requirements 72
5.3 Part Viewing Systems . 74
5.3.1 Long Working Distance Optical Systems . 74
5.3.2 Microscope Imaging Systems 78
5.4 Motion Control 79
5.4.1 Motors 79
5.4.2 Transmission Methods 80
5.4.3 Bearing Technology .80
5.4.4 Other Motion Elements . 81
5.4.5 Power/control Electronics 82
5.4.6 Controllers and Motion Software 84
5.5 Part Handling 85
5.6 Laser Support Systems .88
5.7 Software 90
5.8 Safety 93
5.8.1 Laser Safety .93
5.8.2 Mechanical Safety 94
5.8.3 Electrical Safety 94
5.8.4 Materials Safety 95contents Vii
6. Discussion of Some Processing Techniques .97
6.1 Aligning to Fiducials 97
6.2 Laser Drilling Large Numbers of Really Small, High-aspect
Ratio Holes . 100
6.3 Gas Assist . 104
6.4 Micromarking 106
6.5 Patterning Thin Films 110
6.6 Multiple Hole Drilling Using Galvos . 113
6.7 in-volume Selective Laser Etching (Isle) . 117
7. Applications . 121
7.1 Microelectronics and Semiconductors . 121
7.1.1 Microvia Drilling . 121
7.1.2 Dielectric Removal From Conductive Surfaces 122
7.1.3 Solder Mask Stencils 124
7.1.4 Short Repair 126
7.1.5 Indium Tin Oxide and Conductive Metal Structuring 126
7.1.6 Wire Stripping 128
7.1.7 Resistor Trimming . 129
7.1.8 Radio Frequency Identification 130
7.1.9 Microelectromechanical Systems Components . 130
7.2 Medical Devices 131
7.2.1 Diabetes Test Strips 131
7.2.2 Atomizers and Nebulizers—drug Delivery 133
7.2.3 Microfluidics . 133
7.2.4 Angioplasty and Stents . 136
7.2.5 Catheters—drug Delivery 137
7.2.6 Microfilters 138
7.2.7 Transdermal (Patch/perforations) . 138
7.2.8 Fluid Metering Devices—orifices . 139
7.2.9 Cutting Flat Sheet Stock 140
7.2.10 Three-dimensional Surface Structuring 141
7.2.11 Marking . 141
7.3 Defense/aerospace . 143
7.3.1 Cutting and Drilling Composites—carbon or Glass
Fiber . 143
7.3.2 Wire Stripping and Marking 144
7.3.3 Hole Drilling in Aircraft Engine Components 144
7.3.4 Removal of Thermal Barrier Coatings 145
7.3.5 Thin Film Processing (Large Panel Format) 148
7.4 Renewable Energy . 148
7.4.1 Light-emitting Diodes . 149
7.4.2 Batteries . 151
7.4.3 Microtexturing for Friction Reduction . 152
7.4.4 Fuel Cells . 152viii Contents
7.4.5 Thin Film Pv (Photovoltaic) . 152
7.4.6 Copper Indium Gallium Selenide . 155
7.4.7 Edge Deletion . 155
7.4.8 Emitter Wrap-through and Metal Wrap-through . 155
7.4.9 Organic Pv 156
7.5 Other . 156
7.5.1 Automobiles 156
7.5.2 Ink-jets . 157
7.5.3 Cutting and Scoring Display Glass . 157
8. Materials . 159
8.1 Metals 159
8.1.1 Stainless Steel . 159
8.1.2 Copper . 161
8.1.3 Molybdenum 163
8.1.4 Aluminum 164
8.1.5 Titanium 165
8.1.6 Nickel and Nitinol . 167
8.1.7 Thin Metallic Films . 168
8.2 Ceramics . 169
8.2.1 Alumina 169
8.2.2 Silicon Carbide and Silicon Nitride . 173
8.2.3 Zirconia . 173
8.3 Glasses 173
8.4 Silicon and Gallium Arsenide . 177
8.5 Polymers . 178
8.5.1 Parylene —poly(P-xylylene) Polymers . 179
8.5.2 Teflons —polytetrafluoroethylene and Nylons
(Polyamides) . 179
8.5.3 Silicone . 181
8.5.4 Kapton and Upilex (Polyimides) . 181
8.5.5 Mylar . 182
8.6 Diamond . 183
9. Metrology and Cleaning . 185
9.1 Metrology . 185
9.2 Postlaser Cleaning 188
9.2.1 Physical Scrub 189
9.2.2 Chemical Bath 189
9.2.3 Electropolishing . 190
9.2.4 Plasma Etch . 190
9.2.5 Sacrificial Coatings 192contents Ix
10. Conclusion 193
Appendix: Additional Reading . 195
Problems 203xi
List of Figures
Figure 2.1 Photon Absorption and Stimulated Emission. .7
Figure 2.2 Population Inversion in a Four-level System (N2 > N1) .8
Figure 2.3 Essential Elements of a Laser 8
Figure 2.4 the Electromagnetic Spectrum. 10
Figure 2.5 Divergence Characteristics of a Laser Beam, Normally
Given in Units of Milliradians. 11
Figure 2.6 a Simple Wave. 12
Figure 2.7 the Relationship Between Wavelength and Frequency in
The Electromagnetic Spectrum. . 13
Figure 2.8 a Typical Laser Temporal Profile 14
Figure 2.9 Q-switching, Step by Step. . 18
Figure 2.10 Harmonic Generation of a Laser Beam Through an
Anisotropic Medium. 19
Figure 2.11 Energy Diagram and Pumping Scheme for Krf Excimer
Laser. 21
Figure 2.12 Simplified Diagram of Molecular Transitions in the Krf
Excimer Laser. .22
Figure 2.13 (a) Normal Beam Profile With New Gas Fill (Top); (B) Beam
Profile of an Old Gas Fill (Middle Left); (C) Beam Profile of
A Laser With Dirty Optics (Middle Right); (D) Beam Profile
Of a Laser With Misaligned Resonator Optics (Bottom
Left); (E) Beam Profile of a Laser With Worn Electrodes or
Preionization Pins (Bottom Right). 25
Figure 2.14 Simple Fiber Laser Diagram .27
Figure 2.15 Simple Disk Laser Diagram. 30
Figure 2.16 (a–i) Polyimide Processed With Different Lasers. 32
Figure 2.17 (a–i) Pet Processed With Different Lasers. .33
Figure 2.18 Stainless Steel and Alumina Processed With 355 and 266
Nm Lasers. .34
Figure 2.19 Laser-cutting Comparisons in Carbon-based Substrate. 34xii List of Figures
Figure 3.1 (a–c) Snell’s Law. .38
Figure 3.2 Positive Spherical Lens. .40
Figure 3.3 Negative Spherical Lens. .40
Figure 3.4 (a) Positive and (B) Negative Cylinder Lenses 41
Figure 3.5 (a–c) Prisms. .42
Figure 3.6 Dielectric Beam Splitter. .42
Figure 3.7 Physical Beam Splitter .43
Figure 3.8 Telescopes .44
Figure 3.9 Keplerian Telescope .44
Figure 3.10 Galilean Telescope. 44
Figure 3.11 Beam Profilometry. .45
Figure 3.12 Homogenizers: (a) Rooftop Prism; (B) Cylinder Lens; (C)
Crossed Cylinder .47
Figure 3.13 (a) Gaussian Beam Profile; (B) Homogenized Flat Top. 48
Figure 3.14 Fixed-beam Delivery 49
Figure 3.15 Two-dimensional Galvo Beam Delivery 50
Figure 3.16 Three-dimensional Galvo Scanning Beam Delivery 52
Figure 3.17 Near-field Imaging 53
Figure 3.18 Beam Utilization Factor. 56
Figure 3.19 Simple and Gull Wing Attenuators. .57
Figure 3.20 Coordinated Opposing Motion Imaging 58
Figure 3.21 Direct-write Machining 59
Figure 3.22 Contact Mask Processing. 60
Figure 3.23 Online Marking With Seven Beamlets 61
Figure 4.1 Etch Rate Versus Fluence 64
Figure 4.2 Photoablation Process by Exposure to Uv Light. 65
Figure 4.3 Gaussian Laser Beam Profile. .66
Figure 4.4 Taper 68
Figure 4.5 Laser Drilling Techniques .68
Figure 5.1 Off-axis Camera Arrangement 76list of Figures Xiii
Figure 5.2 on-axis Camera Arrangement 76
Figure 5.3 on-axis, Off-line Camera Arrangement. 77
Figure 5.4 on-axis, in-line Camera Arrangement. .78
Figure 5.5 Microscope Objectives and Part Viewing .79
Figure 5.6 Gantry-style Motion Platform. 83
Figure 5.7 (a) Standard Al and (B) Porous Ceramic Vacuum Chucks. .86
Figure 5.8 (a) Four-zone and (B) Round Vacuum Chucks 86
Figure 5.9 Front Surface Location Part Holding. .87
Figure 5.10 “v” Block Part Holder 88
Figure 5.11 Roll-to-roll Part Processing 88
Figure 5.12 Conveyor System for Glass Processing. 89
Figure 5.13 Top-level Diagram of Pmi C++ Program. 90
Figure 5.14 Module-level Diagram of Pmi C++ Program. . 91
Figure 5.15 Pmi Main Screen. 92
Figure 5.16 Front Panel With Interlock Key Switch and Emo Button .95
Figure 5.17 Four-color Safety Light. .95
Figure 6.1 Local and Global Alignment .98
Figure 6.2 One- and Two-point Alignment Schematics .98
Figure 6.3 Different Marker Types .99
Figure 6.4 Cross Sections of Laser Drilled Holes: (a) Idealized
Drawings; (B) “trumpet” Shape in Polyimide. 101
Figure 6.5 End-point Detection Using Integrating Spheres. . 102
Figure 6.6 Assembled Probe Card Made From Alumina Ceramic. . 103
Figure 6.7 Screen Shot of Mark File 108
Figure 6.8 Mark of Screen Shot on Anodized Al 109
Figure 6.9 355 Nm Mark on White Plastic. 109
Figure 6.10 1 ?m Fiber Laser Mark on White Plastic . 110
Figure 6.11 Gobo Patterned Using 355 Nm Laser 112
Figure 6.12 25 ?m Wide Lines Etched in Gold-coated Mylar . . 112
Figure 6.13 Alignment Mask 114xiv List of Figures
Figure 6.14 Expanded View of the Lasers and Telescopes . 115
Figure 6.15 Four Holes Drilled Simultaneously 115
Figure 6.16 8 × 8 Array of Holes Etched in a Flat Substrate. . 116
Figure 6.17 Colorful Marking in the Volume of Fused Silica; Detail at
Right . 118
Figure 6.18 Cross Section of a Microslit in Sapphire . 118
Figure 6.19 Cylinder With 500 ?m Diameter (Left) and the Substrate
From Which It Was Removed (Right). 119
Figure 6.20 1.4 ?m Kerf Before Cube Removal. . 120
Figure 6.21 Gears Etched From 1 Mm Thick Fused Silica. 120
Figure 7.1 Plated Laser-drilled Microvias in Fr4 .122
Figure 7.2 (a) 30, 40, and 50 ?m Diameter Vias in Resin-coated Copper;
(B) Oblique View. 122
Figure 7.3 Excimer Laser Dielectric Material Removal. 123
Figure 7.4 Co2–tea Dielectric Material Removal. . 124
Figure 7.5 (a) Co2–tea Laser Removing Solder Mask From a Pcb; (B)
Laser-processed Area on Right . 124
Figure 7.6 Mechanical (Left) and Laser (Right) Removal of Solder Mask .125
Figure 7.7 Stainless Steel Solder Mask Stencil Produced With an Ir
Laser. 125
Figure 7.8 Polymeric Solder Mask Stencil. 126
Figure 7.9 Ito Removal From Glass 127
Figure 7.10 Co2 Laser Wire Stripping . 128
Figure 7.11 Optical Schematic for Wire Stripping 128
Figure 7.12 Unprocessed, Stripped, and Tinned Wires. 129
Figure 7.13 355 Nm Laser-etched Gold on Polymer. . 132
Figure 7.14 1 Mm Thick Ferrite Plugs Laser Etched With 355 Nm Laser . 132
Figure 7.15 Microfludic Channels in Quartz. . 135
Figure 7.16 (a) Femtosecond Laser-processed Gold Metal and (B)
Ptga Bioabsorbable Stents. . 137
Figure 7.17 Excimer Laser-drilled Biofilter 138list of Figures Xv
Figure 7.18 Uv Laser-drilled Hole in Plastic Injection Molded Part: (a)
Top View; (B) Side View. . 139
Figure 7.19 266 Nm Laser on Production Floor. . 140
Figure 7.20 Different Products Cut From Flat Sheet Stock 141
Figure 7.21 Three-dimensional Structure in Polyimide . 142
Figure 7.22 (a) Bar Code on Catheter; (B) Bar Code on Polypropylene
Vial . 142
Figure 7.23 Laser-drilled Carbon Fiber Epoxy . 144
Figure 7.24 Uv Laser-marked Aircraft Wire. . 145
Figure 7.25 Laser-drilled Jet Engine Turbine Blade 146
Figure 7.26 Shaped Holes: (a) on Flat Stock; (B) on Actual Engine Vane. 146
Figure 7.27 Laser Drilling of Engine Components. 147
Figure 7.28 (a) Uncleaned Engine Turbine Airfoil; (B) Cleaned Engine
Turbine Airfoil . 148
Figure 7.29 Modified Laser System to Process 2 × 10 Ft Panels. . 149
Figure 7.30 2.5 ?m Wide Laser Scribe . 150
Figure 7.31 Scribed Gaas Wafer. . 151
Figure 7.32 Schematic of Led Liftoff and the Resulting Nine-die Liftoff
With One Laser Pulse 151
Figure 7.33 Typical Thin Film Solar Cell Stack-up 153
Figure 7.34 P1 Scribe 153
Figure 7.35 P2 Scribe 154
Figure 7.36 P3 Scribe 154
Figure 7.37 Multiple Lasers Removing Conductive Ink in a Roll-to-roll
Process. . 156
Figure 7.38 Laser-drilled Ink-jets. . 157
Figure 8.1 (a–c) Stainless Steel Hypo Tube . 160
Figure 8.2 (a, B) 304 Stainless Steel Stencil Edges. 161
Figure 8.3 355 Nm Laser-cut Stainless Steel Parts: (a) Implantable Gear;
(B) Complex Shape; (C) Eye of a Needle . 161
Figure 8.4 Cuts in 100 ?m Thick Stainless Steel Using Different Lasers:
(a) 355 Nm, 50 Ns; (B) 355, 532, and 1064 Nm, 12 Ps; (C) 1030
Nm, 300 Fs. 162xvi List of Figures
Figure 8.5 Cuts in 125 ?m Thick Copper Using Different Lasers: (a) 355
Nm, 50 Ps; (B) 1064 Nm, 12 Ps; (C) 1030 Nm, 300 Fs. 163
Figure 8.6 Laser-cut Shapes in Copper Compounds: (a) Becu (355 Nm,
50 Ns), 150 ?m Thick; (B) Phosphor/bronze (355 Nm, 50 Ns),
300 ?m Thick; (C) Brass (355 Nm, 12 Ps), 100 ?m Thick . 163
Figure 8.7 Cuts in 50 ?m Thick Molybdenum Using Different Lasers:
(a) 355 Nm, 50 Ns; (B) 1064 Nm, 12 Ps; (C) 355 Nm, 12 Ps. . 164
Figure 8.8 (a, B) Serpentine Pattern in 50 ?m Thick Molybdenum 164
Figure 8.9 Cuts in 300 ?m Thick Aluminum Using Two Different
Lasers: (a) 355 Nm, 50 Ns; (B) 1030 Nm, 300 Fs 165
Figure 8.10 Laser-marked Catheter With Tio2 Pigment 165
Figure 8.11 Laser Processing of Titanium With 100 W Fiber Laser: (a)
Laser Cut Heart Valves (0.8 Mm Wall Thickness); (B) Laser
Cut Features in Cylinder (0.8 Mm Wall Thickness); (C) Laser
Cut Bone Plate . 166
Figure 8.12 Laser-patterned Electroformed Nickel (355 Nm, 50 Ns) . 167
Figure 8.13 (a, B) Nozzle and Cone Shapes in Chromium Nickel 168
Figure 8.14 (a, B) Fiber Laser Cut Nitinol Stent. 168
Figure 8.15 (a, B) Femtosecond Laser-cut Nitinol Stent. . 169
Figure 8.16 Cuts in 200 ?m Thick Alumina Using Three Different Lasers:
(a) 355 Nm, 20 Ns; (B) 355 Nm, 12 Ps; (C) 532 Nm, 12 Ps . 170
Figure 8.17 High-aspect Ratio 100 ?m Diameter Holes in 1.5 Mm Thick
Alumina . 171
Figure 8.18 Pyramids 10 ?m on a Side on a Ceramic Tip . 171
Figure 8.19 Holes Drilled in 400 ?m Thick Alumina: (a) Randomly
Selected Entrance Holes Ranging From 205 to 214 ?m; (B)
Randomly Selected Exit Holes Ranging From 162 to 169 ?m 172
Figure 8.20 (a–c) Dense Array of 100 ?m Holes in 200 ?m Thick
Alumina, Including Entrance and Exit Holes 172
Figure 8.21 (a, B) Uv Laser-marked Ceramic Capacitors. . 173
Figure 8.22 100 ?m Diameter Holes in 500 ?m Thick Glass . 174
Figure 8.23 Co2 Cut Quartz . 175
Figure 8.24 Thin Glass Sheet Cut With Co2 Laser 175
Figure 8.25 Picosecond Laser Processing of Mesas in Sapphire. . 176list of Figures Xvii
Figure 8.26 Picosecond Laser Processing of Stepped Concentric Rings
In Sapphire. 176
Figure 8.27 Cuts With Two Lasers in 500 ?m Thick Silicon: (a) 100
W Cw Fiber Laser With Gas Assist; (B) 10 W, 355 Nm
Nanosecond Laser. . 178
Figure 8.28 Femtosecond Laser Cuts in Si: (a) Cut Area With Chad
Removed; (B) Chad. 178
Figure 8.29 Laser Removal of Parylene From Coated Ic Pads. . 180
Figure 8.30 Edge of 1 Mm Diameter Hole Cut in 200 ?m Thick Ptfe
Using Picosecond Laser. 180
Figure 8.31 (a, B) High-resolution Image Showing Cones in Kapton . . 182
Figure 8.32 Femtosecond Laser Processing: (a) 50 ?m Thick Kapton ;
(B) 75 ?m Thick Mylar . 182
Figure 8.33 Three Cuts in Cvd Diamond: (a) 20 W Q-switched Fiber
Laser; (B) 248 Nm Excimer Laser; (C) 524 Nm Doubled
Nd:ylf Laser. . 184
Figure 9.1 Drawing File With Complete Information . 186
Figure 9.2 (a) Uncleaned and (B) Cleaned Laser-etched Polyimide. 191
Figure 9.3 (a) Uncleaned and (B) Cleaned Laser-etched Glass . 191
Figure 9.4 (a) Uncleaned Stainless Steel; (B) Stainless Steel Cleaned
With Ipa Wipe; (C) Stainless Steel Cleaned Ultrasonically. 192
Figure 9.5 Electropolished Stainless Steel


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Laser Micromachining
رابط مباشر لتنزيل كتاب Fundamentals of Laser Micromachining

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Fundamentals of Laser Micromachining
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: