Admin مدير المنتدى
عدد المساهمات : 18962 التقييم : 35392 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Intelligent Nanomaterials الخميس 17 يناير 2019, 12:19 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Intelligent Nanomaterials Second Edition من سلسلة علم المواد المتقدمة Advanced Material Series Edited by Ashutosh Tiwari, Yogendra Kumar Mishra, Hisatoshi Kobayashi and Anthony P. F. Turner
ويتناول الموضوعات الأتية :
Contents Preface xvii Part 1 Nanomaterials, Fabrication and Biomedical Applications 1 Electrospinning Materials for Skin Tissue Engineering 3 Beste Kinikoglu 1.1 Skin Tissue Engineering Sca?olds 4 1.1.1 Materials Used in Skin Tissue Engineering Sca?olds 5 1.1.1.1 Natural Sca?olds 6 1.1.1.2 Synthetic Sca?olds 7 1.1.2 Sca?old Production Techniques Used in Skin Tissue Engineering 9 1.1.2.1 Freeze-drying 9 1.1.2.2 Electrospinning 11 1.2 Conclusions 14 References 15 2 Electrospinning: A Versatile Technique to Synthesize Drug Delivery Systems 21 Xueping Zhang, Dong Liu and Tianyan You 2.1 Introduction 21 2.2 Te Types of Delivered Drugs 22 2.2.1 Antitumor/Anticancer Drugs 22 2.2.2 Antibiotic 24 2.2.3 Growth Factors 26 2.2.4 Nucleic Acids 27 2.2.5 Proteins 28vi Contents 2.3 Polymers Used in Electrospinning 29 2.3.1 Natural Polymers 30 2.3.1.1 Chitosan 30 2.3.1.2 Silk Fibroin 30 2.3.1.3 Cellulose Acetate 32 2.3.2 Synthetic Polymers 32 2.3.2.1 Synthetic Homopolymers 32 2.3.2.2 Synthetic Copolymers 33 2.3.3 Polymer Blends 34 2.3.3.1 Blends of Natural Polymers 34 2.3.3.2 Blends of Natural and Synthetic Polymers 35 2.3.3.3 Blends of Synthetic Polymers 36 2.3.3.4 Other Multicomponent Polymer Mixtures 36 2.4 Te Development of Electrospinning Process for Drug Delivery 36 2.4.1 Coaxial Electrospinning 37 2.4.2 Emulsion Electrospinning 38 2.4.3 Multilayer Electrospinning 39 2.4.4 Magnetic Nanofber 40 2.4.5 Post-modifcation of Electrospun Sca?olds 41 2.5 Conclusions 41 Acknowledgment 42 References 42 3 Electrospray Jet Emission: An Alternative Interpretation Invoking Dielectrophoretic Forces 51 Francesco Aliotta, Oleg Gerasymov and Pietro Calandra 3.1 Introduction 52 3.2 Electrospray: How It Works? 54 3.3 Historical Background 63 3.4 How the Current (and Wrong) Description of the Electrospray Process Has Been Generated? 65 3.5 What Is Wrong in the Current Description? 68 3.6 Some Results Shedding More Light 70 3.7 Discriminating between Electrophoretic and Dielectrophoretic Forces 72 3.8 Some Teoretical Aspects of Dielectrophoresis 76 3.9 Conclusions 83 References 86Contents vii 4 Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production 91 Anita Kova? Kralj 4.1 Introduction 92 4.2 Te Catalysis 93 4.2.1 Limited Hybrid Catalyst Methodology 94 4.3 Case Study 95 4.3.1 Silver Process 95 4.3.2 Oxide Process 96 4.4 Limited Hybrid Catalyst Method for Formaldehyde Production 97 4.4.1 Analyzing the Pure Catalyst Process 97 4.4.2 Graphical Presentation of Catalyst Process 97 4.4.3 Advanced Hybrid Catalyst Process 98 4.4.4 Choosing the Best Advanced Hybrid Catalyst Process 101 4.4.5 Simulation of the Best Advanced Hybrid Catalyst Process 102 4.5 Conclusion 104 4.6 Nomenclatures 105 References 105 5 Physico-chemical Characterization and Basic Research Principles of Advanced Drug Delivery Nanosystems 107 Natassa Pippa, Stergios Pispas and Costas Demetzos 5.1 Introduction 108 5.2 Basic Research Principles and Techniques for the Physicochemical Characterization of Advanced Drug Delivery Nanosystems 108 5.2.1 Microscopy 108 5.2.1.1 Optical Microscopy 108 5.2.1.2 Electron Microscopy 109 5.2.1.3 Scanning Probe Microscopy 109 5.2.2 Termal Analysis 111 5.2.2.1 Classifcation of Thermal Analysis Techniques 111 5.2.2.2 Di?erential Scanning Calorimetry 113viii Contents 5.2.3 Measurements of Size Distribution and ?-Potential of Nanocolloidal Dispersion Systems and Teir Evaluation 117 5.2.3.1 Photon Correlation Spectroscopy (PCS) and Other Light-scattering Techniques 118 5.3 Conclusions 122 References 122 6 Nanoporous Alumina as an Intelligent Nanomaterial for Biomedical Applications 127 Moom Sinn Aw and Dusan Losic 6.1 Introduction 127 6.2 Nanoporous Anodized Alumina as a Drug Nano-carrier 129 6.2.1 Intelligent Properties of NAA for Drug Delivery 129 6.3 Biocompatibility of NAA and NNAA Materials 138 6.4 NAA for Diabetic and Pancreatic Applications 143 6.5 NAA Applications in Orthopedics 144 6.6 NAA Applications for Heart, Coronary, and Vasculature Treatment 148 6.7 NAA in Dentistry 150 6.8 Conclusions and Future Prospects 152 Acknowledgment 153 References 154 7 Nanomaterials: Structural Peculiarities, Biological E?ects, and Some Aspects of Application 161 N.F. Starodub, M.V. Taran, A.M. Katsev, C. Bisio and M. Guidotti 7.1 Introduction 162 7.2 Physicochemical Properties Determining the Bioavailability and Toxicity of Nanoparticles 164 7.3 Current Nanoecotoxicological Knowledge 168 7.3.1 Main Causes of NPs Toxicity 169 7.3.2 Risk Assessment for NPs in the Environment 170 7.3.3 Peculitiaries of E?ects of Some NPs on the Living Objects 171 7.3.3.1 Experiments with Luminescent Bacteria 171 7.3.3.2 Daphnias as Indicators of In?uence of Nanostructured Material 174Contents ix 7.3.3.3 Investigations with Model Plants 174 7.3.3.4 Experiments with Plants under Real Conditions 176 7.3.3.5 E?ect of NPs of Some Oxide Metals on the Bioluminescent Bacteria 177 7.3.3.6 Reaction of Daphnias on the E?ect of Some NPs 180 7.3.3.7 E?ect of the Nanostructured Solids on the Physiological Characteristics of the Common Bean (Phaseolus vulgaris) 181 7.3.3.8 E?ect of the Colloidal NPs on the Plants at Grow under Carbonate Chlorosis Conditions 182 7.4 Modern Direction of the Application of Nanostructured Solids in Detoxication Processes 186 7.4.1 From Conventional Decontamination to Innovative Nanostructured Systems 186 7.5 Conclusions 188 Acknowledgments 189 References 189 8 Biomedical Applications of Intelligent Nanomaterials 199 M. D. Fahmy, H. E. Jazayeri, M. Razavi, M. Hashemi, M. Omidi, M. Farahani, E. Salahinejad, A. Yadegari, S. Pitcher and Lobat Tayebi 8.1 Introduction 200 8.2 Polymeric Nanoparticles 202 8.2.1 General Features 202 8.2.2 Poly-d,l-lactide-co-glycolide 203 8.2.3 Polylactic Acid 203 8.2.4 Polycaprolactone (PCL) 204 8.2.5 Chitosan 204 8.2.6 Gelatin 204 8.2.7 Potential and Challenges 205 8.3 Lipid-based Nanoparticles 206 8.3.1 Di?erent Types 206 8.3.2 Applications 207 8.3.2.1 Intrinsic Stimuli 207 8.3.2.2 Extrinsic Stimuli 208 8.3.3 Potential and Challenges 211x Contents 8.4 Carbon Nanostructures 213 8.4.1 General Feature 213 8.4.2 Zero-dimensional Carbon Nanostructures 213 8.4.3 One-dimensional Carbon Nanostructures 215 8.4.4 Two-dimensional Carbon Nanostructures 216 8.4.5 Tree-dimensional Carbon Nanostructures 217 8.4.6 Potential and Challenges 218 8.5 Nanostructured Metals 219 8.5.1 Nitinol 219 8.5.2 Other Metallic Nanoparticles 220 8.5.3 Potential and Challenges 221 8.6 Hybrid Nanostructures 223 8.6.1 Smart Nanostructured Platforms for Drug Delivery 224 8.6.1.1 Metal-based Smart Composite and Hybrid Nanostructures 224 8.6.1.2 Carbon-based Smart Composite and Hybrid Nanostructures 225 8.6.2 Smart Nanostructures for Diagnostic Imaging 226 8.6.2.1 Metal-based Smart Composite and Hybrid Nanostructures 227 8.6.2.2 Carbon-based Smart Composite and Hybrid Nanostructures 227 8.7 Concluding Remarks 228 References 229 Part 2 Nanomaterials for Energy, Electronics, and Biosensing 9 Phase Change Materials as Smart Nanomaterials for Termal Energy Storage in Buildings 249 M. Kheradmand, M. Abdollahzadeh, M. Azenha and J.L.B. de Aguiar 9.1 Introduction 250 9.2 Phase Change Materials: Defnition, Principle of Operation, and Classifcations 252 9.3 PCM-enhanced Cement-based Materials 254 9.4 Hybrid PCM for Termal Storage 255Contents xi 9.5 Numerical Simulations 267 9.5.1 Numerical Simulation of Heat Transfers in the Context of Building Physics 267 9.5.2 Governing Equations 268 9.6 Termal Modeling of Phase Change 269 9.6.1 Te Enthalpy-porosity Method 269 9.6.2 Te E?ective Heat Capacity Method 270 9.6.3 Numerical Simulation of Small-scale Prototype 271 9.6.4 Results of the Numerical Simulations of Prototype 272 9.6.5 Case Study of a Simulated Building 273 9.6.6 Results of Termal Behavior and Energy Saving 276 9.6.7 Global Performance of a Building Systems with Hybrid PCM 277 9.7 Nanoparticle-enhanced Phase Change Material 280 9.7.1 Modeling nanoparticle-enhanced PCM 282 9.7.2 Defnition of the Case study 283 9.7.3 Results of Case Study with Nanoparticleenhanced Phase Change Material 284 9.8 Conclusions (General Remarks) 288 References 289 10 Nano?uids with Enhanced Heat Transfer Properties for Termal Energy Storage 295 Manila Chieruzzi, Adio Miliozzi, Luigi Torre and José Maria Kenny 10.1 Introduction 296 10.2 Termal Energy Storage 298 10.2.1 Sensible Heat Termal Storage 301 10.2.2 Latent Heat Termal Storage 303 10.2.3 Termochemical Storage 309 10.2.4 Final Remarks 313 10.3 Nano?uids for Termal Energy Storage 313 10.3.1 Base Fluid 316 10.3.2 Nanoparticles 318 10.3.3 Methods of Nano?uid Preparation 327 10.4 Nano?uids Based on Molten Salts: Enhancement of Termal Properties 330 10.4.1 Specifc Heat 331 10.4.2 Latent Heat of Fusion and Melting Temperature 340xii Contents 10.4.3 Termal Conductivity 344 10.4.4 Termal Storage 347 10.5 Conclusions 349 References 351 11 Resistive Switching of Vertically Aligned Carbon Nanotubes for Advanced Nanoelectronic Devices 361 O.A. Ageev, Yu. F. Blinov, M.V. Il’ina, B.G. Konoplev and V.A. Smirnov 11.1 Introduction 362 11.2 Teoretical Description of Resistive Switching Mechanism of Structures Based on VACNT 363 11.2.1 Te Modeling of the Deformation of the VACNT A?ected by a Local External Electric Field 364 11.2.2 Te Modeling of the Processes of Polarization and Piezoelectric Charge Accumulation in a Vertically Aligned Carbon Nanotube 370 11.2.3 Te Modeling of the Memristor E?ect in the Structure Based on a Vertically Aligned Carbon Nanotube 374 11.3 Techniques for Measuring the Electrical Resistivity and Young’s Modulus of VACNT Based on Scanning Probe Microscopy 377 11.3.1 Techniques for Measuring Young’s Modulus of VACNT Based on Nanoindentation 378 11.3.2 Techniques for Measuring the Electrical Resistivity of VACNT Based on Scanning Tunnel Microscopy 382 11.4 Experimental Studies of Resistive Switching in Structures Based on VACNT Using Scanning Tunnel Microscopy 384 References 391 12 Multi-objective Design of Nanoscale Double Gate MOSFET Devices Using Surrogate Modeling and Global Optimization 395 Toufk Bentrcia, Fayçal Dje?al and Elasaad Chebaki 12.1 Introduction 396 12.2 Downscaling Parasitic E?ects 400Contents xiii 12.2.1 Short Channel E?ect 401 12.2.1.1 Drain-induced Barrier Lowering 401 12.2.1.2 Channel Length Modulation 401 12.2.1.3 Carrier Mobility Reduction 402 12.2.2 Quantum Mechanical Confnement E?ect 402 12.2.2.1 Inversion Charge Displacement 403 12.2.2.2 Poly-silicon Gate Depletion 403 12.2.2.3 Treshold Voltage Shif 403 12.2.3 Hot-carrier E?ect 404 12.2.3.1 Impact-ionization 404 12.2.3.2 Carrier Injection 405 12.2.3.3 Interface Trap Formation 405 12.3 Modeling Framework 405 12.3.1 Design of Computer Experiments 406 12.3.2 Metamodel Development 408 12.3.3 Multi-objective Optimization 410 12.4 Simulation and Results 412 12.5 Concluding Remarks 422 References 422 13 Graphene-based Electrochemical Biosensors: New Trends and Applications 427 Georgia-Paraskevi Nikoleli, Stephanos Karapetis, Spyridoula Bratakou, Dimitrios P. Nikolelis, Nikolaos Tzamtzis and Vasillios N. Psychoyios 13.1 Introduction 428 13.2 Scope of Tis Review 429 13.3 Graphene and Sensors 430 13.4 Graphene Nanomaterials Used in Electrochemical (Bio)sensors Fabrication 430 13.5 Graphene-based Enzymatic Electrodes 432 13.5.1 Graphene-based Electrochemical Enzymatic Biosensors for Glucose Detection 432 13.5.2 Graphene-based Electrochemical Enzymatic Biosensors for Hydrogen Peroxide Detection 434 13.5.3 Graphene-based Electrochemical Enzymatic Biosensors for NADH Detection 435 13.5.4 Graphene-based Electrochemical Enzymatic Biosensors for Cholesterol Detection 435 13.5.5 Graphene-based Electrochemical Enzymatic Biosensors for Urea Detection 43713.6 Graphene-based Electrochemical DNA Sensors 437 13.7 Graphene-based Electrochemical Immunosensors 439 13.7.1 Graphene-based Electrochemical Immunosensors for Biomarker Detection 440 13.7.2 Graphene-based Electrochemical Immunosensors for Pathogen Detection 441 13.8 Commercial Activities in the Field of Graphene Sensors 442 13.9 Recent Developments in the Field of Graphene Sensors 442 13.10 Conclusions and Future Prospects 443 Acknowledgments 445 References 445 Part 3 Smart Nanocomposites, Fabrication, and Applications 14 Carbon Fibers-based Silica Aerogel Nanocomposites 451 Agnieszka ?losarczyk 14.1 Introduction to Nanotechnology 451 14.2 Chemistry of Sol–gel Process 454 14.2.1 Characterization and Application of Silica Aerogels 454 14.2.2 Synthesis of Silica Gels via Sol–gel Process 456 14.2.3 Aging of Silica Gels 459 14.2.4 Methods of Drying of Silica Gels 460 14.3 Types of Silica Aerogel Nanocomposites 462 14.3.1 Reinforcing the Silica Aerogel and Xerogel Structure in the Synthesis Stage 462 14.3.2 Metal- and Metal Oxide-based Silica Aerogels 464 14.3.3 Polymer-based Silica Aerogels 466 14.3.4 Fiber-based Silica Aerogels 468 14.4 Carbon Fiber-based Silica Aerogel Nanocomposites 476 14.4.1 Characterization of Carbon Fibers and Chemical Modifcation of Teir Surface 478 14.4.2 Synthesis of Silica Aerogel: Carbon Fiber Nanocomposites in Relation to the Type of Precursor 481 14.4.3 Drying of Silica Gel: Carbon Fiber Nanocomposites 482 xiv Contents14.4.4 Research Methods Applied 484 14.4.5 Physical and Chemical Characterization of Silica Aerogel and Xerogel Nanocomposites 485 14.5 Conclusions 493 References 494 15 Hydrogel–Carbon Nanotubes Composites for Protection of Egg Yolk Antibodies 501 Bellingeri Romina, Alustiza Fabrisio, Picco Natalia, Motta Carlos, Grosso Maria C, Barbero Cesar, Acevedo Diego and Vivas Adriana 15.1 Introduction 502 15.2 Polymeric Hydrogels 504 15.2.1 Synthetic and Natural Hydrogels 504 15.2.2 Intelligent Hydrogels 505 15.2.3 Characterization of Hydrogels 506 15.3 Carbon Nanotubes 507 15.3.1 Dispersion of Carbon Nanotubes 508 15.3.2 Toxicity of Carbon Nanotubes 509 15.3.3 Noncovalent Functionalization Strategies 509 15.3.4 Covalent Functionalization Strategies 510 15.4 Polymer–CNT Composites 511 15.4.1 Drug Delivery 512 15.4.2 Tissue Engineering 513 15.4.3 Electrical Cell Stimulation 514 15.4.4 Antimicrobial Materials 515 15.5 Egg Yolk Antibodies Protection 515 15.6 In Vitro Evaluation of Nanocomposite Performance 517 15.7 In Vivo Evaluation of Nanocomposite Performance 518 15.7.1 Nanotechnology for Bovine Production Applications 519 15.7.2 Nanotechnology for Porcine Production Applications 519 15.7.3 Nanotechnology Applications in Other Animal Species 520 15.8 Concluding Remarks and Future Trends 521 References 522 Contents xvxvi Contents 16 Green Fabrication of Metal Nanoparticles 533 Anamika Mubayi, Sanjukta Chatterji and Geeta Watal 16.1 Introduction 533 16.2 Development of Herbal Medicines 535 16.3 Green Synthesis of Nanoparticles 536 16.4 Characterization of Phytofabricated Nanoparticles 539 16.5 Impact of Plant-mediated Nanoparticles on Terapeutic Efcacy of Medicinal Plants 540 16.5.1 Antidiabetic Potential 543 16.5.2 Antioxidant Potential 545 16.5.3 Antimicrobial Potential 548 16.6 Conclusions 550 References 551 Index 555
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Intelligent Nanomaterials رابط مباشر لتنزيل كتاب Intelligent Nanomaterials
|
|