كتاب Advanced Engineering Materials and Modeling
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب Advanced Engineering Materials and Modeling

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15369
التقييم : 25663
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Advanced Engineering Materials and Modeling   Empty
مُساهمةموضوع: كتاب Advanced Engineering Materials and Modeling    كتاب Advanced Engineering Materials and Modeling   Emptyالجمعة 11 يناير 2019, 10:52 pm

أخوانى فى الله
أحضرت لكم كتاب
Advanced Engineering Materials and Modeling  
من سلسلة علم المواد المتقدمة
Advanced Material Series
Ashutosh Tiwari, N. Arul Murugan and Rajeev Ahuja

كتاب Advanced Engineering Materials and Modeling   A_e_m_11
ويتناول الموضوعات الأتية :


Contents
Preface xiii
Part 1 Engineering of Materials, Characterizations,
and Applications
1 Mechanical Behavior and Resistance of Structural Glass Beams
in Lateral–Torsional Buckling (LTB) with Adhesive Joints 3
Chiara Bedon and Jan Belis
1.1 Introduction 4
1.2 Overview on Structural Glass Applications in Buildings 5
1.3 Glass Beams in LTB 5
1.3.1 Susceptibility of Glass Structural Elements to
Buckling Phenomena 5
1.3.2 Mechanical and Geometrical In?uencing
Parameters in Structural Glass Beams 8
1.3.3 Mechanical Joints 9
1.3.4 Adhesive Joints 10
1.4 Teoretical Background for Structural Members in LTB 14
1.4.1 General LTB Method for Laterally
Unrestrained (LU) Members 14
1.4.2 LTB Method for Laterally Unrestrained (LU)
Glass Beams 17
1.4.2.1 Equivalent Tickness Methods for
Laminated Glass Beams 18
1.4.3 Laterally Restrained (LR) Beams in LTB 23
1.4.3.1 Extended Literature Review on
LR Beams 23
1.4.3.2 Closed-form Formulation for LR Beams
in LTB 24
1.4.3.3 LR Glass Beams Under Positive Bending
Moment M
y
28vi Contents
1.5 Finite-element Numerical Modeling 31
1.5.1 FE Solving Approach and Parametric Study 32
1.5.1.1 Linear Eigenvalue Buckling Analyses (lba) 32
1.5.1.2 Incremental Nonlinear Analyses (inl) 35
1.6 LTB Design Recommendations 38
1.6.1 LR Beams Under Positive Bending Moment M
y
38
1.6.2 Further Extension and Developments
of the Current Outcomes 39
1.7 Conclusions 42
References 44
2 Room Temperature Mechanosynthesis of Nanocrystalline
Metal Carbides and Teir Microstructure Characterization 49
S.K. Pradhan and H. Dutta
2.1 Introduction 50
2.1.1 Application 50
2.1.2 Di?erent Methods for Preparation of
Metal Carbide 50
2.1.3 Mechanical Alloying 51
2.1.4 Planetary Ball Mill 51
2.1.5 Te Merits and Demerits of Planetary Ball Mill 52
2.1.6 Review of Works on Metal Carbides by
Other Authors 53
2.1.7 Signifcance of the Study 54
2.1.8 Objectives of the Study 55
2.2 Experimental 56
2.3 Teoretical Consideration 58
2.3.1 Microstructure Evaluation by X-ray Di?raction 58
2.3.2 General Features of Structure 60
2.4 Results and Discussions 60
2.4.1 XRD Pattern Analysis 60
2.4.2 Variation of Mol Fraction 65
2.4.3 Phase Formation Mechanism 69
2.4.4 Is Ball-milled Prepared Metal Carbide Contains
Contamination? 71
2.4.5 Variation of Particle Size 72
2.4.6 Variation of Strain 74
2.4.7 High-Resolution Transmission Electron
Microscopy Study 76
2.4.8 Comparison Study between Binary and Ternary
Ti-based Metal Carbides 76Contents vii
2.5 Conclusion 80
Acknowledgment 80
References 80
3 Toward a Novel SMA-reinforced Laminated Glass Panel 87
Chiara Bedon and Filipe Amarante dos Santos
3.1 Introduction 87
3.2 Glass in Buildings 89
3.2.1 Actual Reinforcement Techniques for Structural
Glass Applications 92
3.3 Structural Engineering Applications of Shape-Memory
Alloys (SMAs) 93
3.4 Te Novel SMA-Reinforced Laminated Glass
Panel Concept 94
3.4.1 Design Concept 94
3.4.2 Exploratory Finite-Element (FE) Numerical Study 96
3.4.2.1 General FE Model Assembly Approach
and Solving Method 96
3.4.2.2 Mechanical Characterization of Materials 98
3.5 Discussion of Parametric FE Results 101
3.5.1 Roof Glass Panel (M1) 101
3.5.1.1 Short-term Loads and Temperature
Variations 102
3.5.1.2 First-cracking Confguration 106
3.5.2 Point-supported Façade Panel (M2) 109
3.5.2.1 Short-term Loads and Temperature
Variations 111
3.6 Conclusions 114
References 117
4 Sustainable Sugarcane Bagasse Cellulose for Papermaking 121
Noé Aguilar-Rivera
4.1 Pulp and Paper Industry 122
4.2 Sugar Industry 123
4.3 Sugarcane Bagasse 124
4.4 Advantageous Utilizations of SCB 129
4.5 Applications of SCB Wastes 130
4.6 Problematic of Nonwood Fibers in Papermaking 131
4.7 SCB as Raw Material for Pulp and Paper 134
4.8 Digestion 135
4.9 Bleaching 135viii Contents
4.10 Properties of Bagasse Pulps 136
4.10.1 Pulp Strength 137
4.10.2 Pulp Properties 137
4.10.3 Washing Technology 138
4.10.4 Paper Machine Operation 138
4.11 Objectives 138
4.12 Old Corrugated Container Pulps 139
4.13 Synergistic Delignifcation SCB–OCC 141
4.14 Elemental Chlorine-Free Bleaching of SCB Pulps 150
4.15 Conclusions 156
References 158
5 Bio-inspired Composites: Using Nature to Tackle Composite
Limitations 165
F. Libonati
5.1 Introduction 166
5.2 Bio-inspiration: Bone as Biomimetic Model 169
5.3 Case Studies Using Biomimetic Approach 172
5.3.1 Fiber-reinforced Bone-inspired Composites 172
5.3.2 Fiber-reinforced Bone-inspired Composites
with CNTs 176
5.3.3 Bone-inspired Composites via 3D Printing 177
5.4 Methods 179
5.4.1 Composite Lamination 180
5.4.2 Additive Manufacturing 181
5.4.3 Computational Modeling 182
5.5 Conclusions 183
References 185
Part 2 Computational Modeling of Materials
6 Calculation on the Ground State Quantum Potentials for the
ZnS
x
Se
1-x (0 < x < 1) 193
G.H.E Alshabeeb and A.K. Arof
6.1 Introduction 193
6.2 Ground State in D-Dimensional Confguration Space
for ZnS
x
Se
1-x Zincblende Structure 194
6.3 Ground States in the Case of Momentum Space 196
6.4 Results and Discussion 199Contents ix
6.5 Conclusions 201
Acknowledgment 201
References 201
7 Application of First Principles Teory to the Design of
Advanced Titanium Alloys 203
Y. Song, J. H. Dai, and R. Yang
7.1 Introduction 203
7.2 Basic Concepts of First Principles 204
7.3 Teoretical Models of Alloy Design 207
7.3.1 Te Hume-Rothery Teory 207
7.3.2 Discrete Variational Method and d-Orbital
Method 212
7.3.2.1 Discrete Variational Method 212
7.3.2.2 d-Electrons Alloy Teory 214
7.4 Applications 215
7.4.1 Phase Stability 215
7.4.1.1 Binary Alloy 215
7.4.1.2 Multicomponent Alloys 218
7.4.2 Elastic Properties 219
7.4.3 Examples 222
7.4.3.1 Gum Metal 222
7.4.3.2 Ti2448 (Ti–24Nb–4Zr–8Sn) 223
7.5 Conclusions 226
Acknowledgment 226
References 226
8 Digital Orchid: Creating Realistic Materials 229
Ifikhar B. Abbasov
8.1 Introduction 230
8.2 Concept Development 230
8.3 Tree-dimensional Modeling of Decorative
Light Fixture 231
8.4 Materials Creating and Editing 232
8.5 Conclusion 239
References 240
9 Transformation Optics-based Computational Materials for
Stochastic Electromagnetics 241
Ozlem Ozgun and Mustafa Kuzuoglu
9.1 Introduction 242
9.2 Teory of Transformation Optics 245x Contents
9.3 Scattering from Rough Sea Surfaces 248
9.3.1 Numerical Validation and Monte Carlo
Simulations 252
9.4 Scattering from Obstacles with Rough Surfaces or
Shape Deformations 254
9.4.1 Numerical Validation and Monte Carlo
Simulations 259
9.4.2 Combining Perturbation Teory and
Transformation Optics for Weakly Perturbed
Surfaces 260
9.5 Scattering from Randomly Positioned Array of Obstacles 264
9.5.1 Separate Transformation Media 265
9.5.1.1 Numerical Validation & Monte Carlo
Simulations 267
9.5.2 A Single Transformation Medium 269
9.5.2.1 Numerical Validation & Monte Carlo
Simulations 271
9.5.3 Recurring Scaling and Translation
Transformations 272
9.5.3.1 Numerical Validation & Monte Carlo
Simulations 274
9.6 Propagation in a Waveguide with Rough or
Randomly Varying Surface 274
9.6.1 Numerical Validation and Monte Carlo
Simulations 279
9.7 Conclusion 283
References 284
10 Superluminal Photons Tunneling through Brain Microtubules
Modeled as Metamaterials and Quantum Computation 287
Luigi Maxmilian Caligiuri and Takaaki Musha
10.1 Introduction 288
10.2 QED Coherence in Water: A Brief Overview 291
10.3 “Electronic” QED Coherence in Brain Microtubules 297
10.4 Evanescent Field of Coherent Photons and
Teir Superluminal Tunneling through MTs 301
10.5 Coupling between Nearby MTs and their Superluminal
Interaction through the Exchange of Virtual
Superradiant Photons 308
10.6 Discussion 312Contents xi
10.7 Brain Microtubules as “Natural” Metamaterials and
the Amplifcation of Evanescent Tunneling Wave
Amplitude 315
10.8 Quantum Computation by Means of Superluminal
Photons 321
10.9 Conclusions 325
References 326
11 Advanced Fundamental-solution-based Computational
Methods for Termal Analysis of Heterogeneous Materials 331
Hui Wang and Qing-Hua Qin
11.1 Introduction 332
11.2 Basic Formulation of MFS 334
11.2.1 Standard MFS 334
11.2.2 Modifed MFS 336
11.2.2.1 RBF Interpolation for the Particular
Solution 337
11.2.2.2 MFS for the Homogeneous Solution 338
11.2.2.3 Complete Solution 339
11.3 Basic Formulation of HFS-FEM 340
11.3.1 Problem Statement 340
11.3.2 Implementation of the HFS-FEM 342
11.3.4 Recovery of Rigid-body Motion 345
11.4 Applications in Functionally Graded Materials 345
11.4.1 Basic Equations in Functionally Graded
Materials 345
11.4.2 MFS for Functionally Graded Materials 346
11.4.3 HFS-FEM for Functionally Graded Materials 349
11.5 Applications in Composite Materials 353
11.5.1 Basic Equations of Composite Materials 353
11.5.2 MFS for Composite Materials 356
11.5.2.1 MFS for the Matrix Domain 356
11.5.2.2 MFS for the Fiber Domain 356
11.5.2.3 Complete Linear Equation System 357
11.5.3 HFS-FEM for Composite Materials 358
11.5.3.1 Special Fundamental Solutions 358
11.5.3.2 Special n-Sided Fiber/Matrix
Elements 359
11.6 Conclusions 361Acknowledgments 362
Con?ict of Interest 362
References 362
12 Understanding the SET/RESET Characteristics of Forming
Free TiO
x
/TiO
2–x Resistive-Switching Bilayer Structures
through Experiments and Modeling 369
P. Bousoulas and D. Tsoukalas
12.1 Introduction 370
12.2 Experimental Methodology 372
12.3 Bipolar Switching Model 376
12.3.1 Resistive-Switching Performance 376
12.3.2 Resistive-Switching Model 379
12.4 RESET Simulations 385
12.4.1 I–V Response 385
12.4.2 In?uence of TE on the CFs Broken Region 389
12.5 SET Simulations 394
12.6 Simulation of Time-dependent SET/RESET Processes 397
12.7 Conclusions 399
Acknowledgments 400
References 400
13 Advanced Materials and Tree-dimensional Computer-aided
Surgical Work?ow in Cranio-maxillofacial Reconstruction 407
Luis Miguel Gonzalez-Perez, Borja Gonzalez-Perez-Somarriba
Gabriel Centeno, Carp?foro Vallellano and
Juan Jose Egea-Guerrero
13.1 Introduction 408
13.2 Methodology 409
13.3 Findings 414
13.4 Discussion 423
References 432
14 Displaced Multiwavelets and Splitting Algorithms 435
Boris M. Shumilov
14.1 An Algorithm with Splitting of Wavelet
Transformation of Splines of the First Degree 439
14.1.1 “Lazy” Wavelets 440
14.1.2 Examples of Wavelet Decomposition
of a Signal of Length 8 443
xii ContentsContents xiii
14.1.3 “Orthonormal” Wavelets 446
14.1.4 An Example of Function of Harten 450
14.2 An Algorithm for Constructing Orthogonal to
Polynomials Multiwavelet Bases 452
14.2.1 Creation of System of Basic Multiwavelets
of Any Odd Degree on a Closed Interval 452
14.2.2 Creation of the Block of Filters 455
14.2.3 Example of Orthogonal to Polynomials
Multiwavelet Bases 457
14.2.4 Te Discussion of Approximation on a Closed
Interval 459
14.3 Te Tridiagonal Block Matrix Algorithm 460
14.3.1 Inverse of the Block of Filters 460
14.3.2 Example of the Hermite Quintic Spline
Function Supported on [?1, 1] 461
14.3.3 Example of the Hermite Septimus Spline
Function Supported on [?1, 1] 463
14.3.4 Numerical Example of Approximation
of Polynomial Function 466
14.3.5 Numerical Example with Two Ruptures
of the First Kind and a Corner 467
14.4 Problem of Optimization of Wavelet Transformation
of Hermite Splines of Any Odd Degree 471
14.4.1 An Algorithm with Splitting for Wavelet
Transformation of Hermite Splines of
Fifh Degree 474
14.4.2 Examples 481
14.5 Application to Data Processing of Laser Scanning
of Roads 486
14.5.1 Calculation of Derivatives on Samples 486
14.5.2 Example of Wavelet Compression of
One Track of Data of Laser Scanning 486
14.5.3 Modeling of Surfaces 486
14.5.4 Functions of a Package of Applied Programs for
Modeling of Routes and Surfaces of Highways 488
14.6 Conclusions 490
References 490
Index


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Advanced Engineering Materials and Modeling  
رابط مباشر لتنزيل كتاب Advanced Engineering Materials and Modeling  

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Advanced Engineering Materials and Modeling
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: