Admin مدير المنتدى
عدد المساهمات : 19004 التقييم : 35512 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Engineering Materials and Modeling الجمعة 11 يناير 2019, 10:52 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Engineering Materials and Modeling من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari, N. Arul Murugan and Rajeev Ahuja
ويتناول الموضوعات الأتية :
Contents Preface xiii Part 1 Engineering of Materials, Characterizations, and Applications 1 Mechanical Behavior and Resistance of Structural Glass Beams in Lateral–Torsional Buckling (LTB) with Adhesive Joints 3 Chiara Bedon and Jan Belis 1.1 Introduction 4 1.2 Overview on Structural Glass Applications in Buildings 5 1.3 Glass Beams in LTB 5 1.3.1 Susceptibility of Glass Structural Elements to Buckling Phenomena 5 1.3.2 Mechanical and Geometrical In?uencing Parameters in Structural Glass Beams 8 1.3.3 Mechanical Joints 9 1.3.4 Adhesive Joints 10 1.4 Teoretical Background for Structural Members in LTB 14 1.4.1 General LTB Method for Laterally Unrestrained (LU) Members 14 1.4.2 LTB Method for Laterally Unrestrained (LU) Glass Beams 17 1.4.2.1 Equivalent Tickness Methods for Laminated Glass Beams 18 1.4.3 Laterally Restrained (LR) Beams in LTB 23 1.4.3.1 Extended Literature Review on LR Beams 23 1.4.3.2 Closed-form Formulation for LR Beams in LTB 24 1.4.3.3 LR Glass Beams Under Positive Bending Moment M y 28vi Contents 1.5 Finite-element Numerical Modeling 31 1.5.1 FE Solving Approach and Parametric Study 32 1.5.1.1 Linear Eigenvalue Buckling Analyses (lba) 32 1.5.1.2 Incremental Nonlinear Analyses (inl) 35 1.6 LTB Design Recommendations 38 1.6.1 LR Beams Under Positive Bending Moment M y 38 1.6.2 Further Extension and Developments of the Current Outcomes 39 1.7 Conclusions 42 References 44 2 Room Temperature Mechanosynthesis of Nanocrystalline Metal Carbides and Teir Microstructure Characterization 49 S.K. Pradhan and H. Dutta 2.1 Introduction 50 2.1.1 Application 50 2.1.2 Di?erent Methods for Preparation of Metal Carbide 50 2.1.3 Mechanical Alloying 51 2.1.4 Planetary Ball Mill 51 2.1.5 Te Merits and Demerits of Planetary Ball Mill 52 2.1.6 Review of Works on Metal Carbides by Other Authors 53 2.1.7 Signifcance of the Study 54 2.1.8 Objectives of the Study 55 2.2 Experimental 56 2.3 Teoretical Consideration 58 2.3.1 Microstructure Evaluation by X-ray Di?raction 58 2.3.2 General Features of Structure 60 2.4 Results and Discussions 60 2.4.1 XRD Pattern Analysis 60 2.4.2 Variation of Mol Fraction 65 2.4.3 Phase Formation Mechanism 69 2.4.4 Is Ball-milled Prepared Metal Carbide Contains Contamination? 71 2.4.5 Variation of Particle Size 72 2.4.6 Variation of Strain 74 2.4.7 High-Resolution Transmission Electron Microscopy Study 76 2.4.8 Comparison Study between Binary and Ternary Ti-based Metal Carbides 76Contents vii 2.5 Conclusion 80 Acknowledgment 80 References 80 3 Toward a Novel SMA-reinforced Laminated Glass Panel 87 Chiara Bedon and Filipe Amarante dos Santos 3.1 Introduction 87 3.2 Glass in Buildings 89 3.2.1 Actual Reinforcement Techniques for Structural Glass Applications 92 3.3 Structural Engineering Applications of Shape-Memory Alloys (SMAs) 93 3.4 Te Novel SMA-Reinforced Laminated Glass Panel Concept 94 3.4.1 Design Concept 94 3.4.2 Exploratory Finite-Element (FE) Numerical Study 96 3.4.2.1 General FE Model Assembly Approach and Solving Method 96 3.4.2.2 Mechanical Characterization of Materials 98 3.5 Discussion of Parametric FE Results 101 3.5.1 Roof Glass Panel (M1) 101 3.5.1.1 Short-term Loads and Temperature Variations 102 3.5.1.2 First-cracking Confguration 106 3.5.2 Point-supported Façade Panel (M2) 109 3.5.2.1 Short-term Loads and Temperature Variations 111 3.6 Conclusions 114 References 117 4 Sustainable Sugarcane Bagasse Cellulose for Papermaking 121 Noé Aguilar-Rivera 4.1 Pulp and Paper Industry 122 4.2 Sugar Industry 123 4.3 Sugarcane Bagasse 124 4.4 Advantageous Utilizations of SCB 129 4.5 Applications of SCB Wastes 130 4.6 Problematic of Nonwood Fibers in Papermaking 131 4.7 SCB as Raw Material for Pulp and Paper 134 4.8 Digestion 135 4.9 Bleaching 135viii Contents 4.10 Properties of Bagasse Pulps 136 4.10.1 Pulp Strength 137 4.10.2 Pulp Properties 137 4.10.3 Washing Technology 138 4.10.4 Paper Machine Operation 138 4.11 Objectives 138 4.12 Old Corrugated Container Pulps 139 4.13 Synergistic Delignifcation SCB–OCC 141 4.14 Elemental Chlorine-Free Bleaching of SCB Pulps 150 4.15 Conclusions 156 References 158 5 Bio-inspired Composites: Using Nature to Tackle Composite Limitations 165 F. Libonati 5.1 Introduction 166 5.2 Bio-inspiration: Bone as Biomimetic Model 169 5.3 Case Studies Using Biomimetic Approach 172 5.3.1 Fiber-reinforced Bone-inspired Composites 172 5.3.2 Fiber-reinforced Bone-inspired Composites with CNTs 176 5.3.3 Bone-inspired Composites via 3D Printing 177 5.4 Methods 179 5.4.1 Composite Lamination 180 5.4.2 Additive Manufacturing 181 5.4.3 Computational Modeling 182 5.5 Conclusions 183 References 185 Part 2 Computational Modeling of Materials 6 Calculation on the Ground State Quantum Potentials for the ZnS x Se 1-x (0 < x < 1) 193 G.H.E Alshabeeb and A.K. Arof 6.1 Introduction 193 6.2 Ground State in D-Dimensional Confguration Space for ZnS x Se 1-x Zincblende Structure 194 6.3 Ground States in the Case of Momentum Space 196 6.4 Results and Discussion 199Contents ix 6.5 Conclusions 201 Acknowledgment 201 References 201 7 Application of First Principles Teory to the Design of Advanced Titanium Alloys 203 Y. Song, J. H. Dai, and R. Yang 7.1 Introduction 203 7.2 Basic Concepts of First Principles 204 7.3 Teoretical Models of Alloy Design 207 7.3.1 Te Hume-Rothery Teory 207 7.3.2 Discrete Variational Method and d-Orbital Method 212 7.3.2.1 Discrete Variational Method 212 7.3.2.2 d-Electrons Alloy Teory 214 7.4 Applications 215 7.4.1 Phase Stability 215 7.4.1.1 Binary Alloy 215 7.4.1.2 Multicomponent Alloys 218 7.4.2 Elastic Properties 219 7.4.3 Examples 222 7.4.3.1 Gum Metal 222 7.4.3.2 Ti2448 (Ti–24Nb–4Zr–8Sn) 223 7.5 Conclusions 226 Acknowledgment 226 References 226 8 Digital Orchid: Creating Realistic Materials 229 Ifikhar B. Abbasov 8.1 Introduction 230 8.2 Concept Development 230 8.3 Tree-dimensional Modeling of Decorative Light Fixture 231 8.4 Materials Creating and Editing 232 8.5 Conclusion 239 References 240 9 Transformation Optics-based Computational Materials for Stochastic Electromagnetics 241 Ozlem Ozgun and Mustafa Kuzuoglu 9.1 Introduction 242 9.2 Teory of Transformation Optics 245x Contents 9.3 Scattering from Rough Sea Surfaces 248 9.3.1 Numerical Validation and Monte Carlo Simulations 252 9.4 Scattering from Obstacles with Rough Surfaces or Shape Deformations 254 9.4.1 Numerical Validation and Monte Carlo Simulations 259 9.4.2 Combining Perturbation Teory and Transformation Optics for Weakly Perturbed Surfaces 260 9.5 Scattering from Randomly Positioned Array of Obstacles 264 9.5.1 Separate Transformation Media 265 9.5.1.1 Numerical Validation & Monte Carlo Simulations 267 9.5.2 A Single Transformation Medium 269 9.5.2.1 Numerical Validation & Monte Carlo Simulations 271 9.5.3 Recurring Scaling and Translation Transformations 272 9.5.3.1 Numerical Validation & Monte Carlo Simulations 274 9.6 Propagation in a Waveguide with Rough or Randomly Varying Surface 274 9.6.1 Numerical Validation and Monte Carlo Simulations 279 9.7 Conclusion 283 References 284 10 Superluminal Photons Tunneling through Brain Microtubules Modeled as Metamaterials and Quantum Computation 287 Luigi Maxmilian Caligiuri and Takaaki Musha 10.1 Introduction 288 10.2 QED Coherence in Water: A Brief Overview 291 10.3 “Electronic” QED Coherence in Brain Microtubules 297 10.4 Evanescent Field of Coherent Photons and Teir Superluminal Tunneling through MTs 301 10.5 Coupling between Nearby MTs and their Superluminal Interaction through the Exchange of Virtual Superradiant Photons 308 10.6 Discussion 312Contents xi 10.7 Brain Microtubules as “Natural” Metamaterials and the Amplifcation of Evanescent Tunneling Wave Amplitude 315 10.8 Quantum Computation by Means of Superluminal Photons 321 10.9 Conclusions 325 References 326 11 Advanced Fundamental-solution-based Computational Methods for Termal Analysis of Heterogeneous Materials 331 Hui Wang and Qing-Hua Qin 11.1 Introduction 332 11.2 Basic Formulation of MFS 334 11.2.1 Standard MFS 334 11.2.2 Modifed MFS 336 11.2.2.1 RBF Interpolation for the Particular Solution 337 11.2.2.2 MFS for the Homogeneous Solution 338 11.2.2.3 Complete Solution 339 11.3 Basic Formulation of HFS-FEM 340 11.3.1 Problem Statement 340 11.3.2 Implementation of the HFS-FEM 342 11.3.4 Recovery of Rigid-body Motion 345 11.4 Applications in Functionally Graded Materials 345 11.4.1 Basic Equations in Functionally Graded Materials 345 11.4.2 MFS for Functionally Graded Materials 346 11.4.3 HFS-FEM for Functionally Graded Materials 349 11.5 Applications in Composite Materials 353 11.5.1 Basic Equations of Composite Materials 353 11.5.2 MFS for Composite Materials 356 11.5.2.1 MFS for the Matrix Domain 356 11.5.2.2 MFS for the Fiber Domain 356 11.5.2.3 Complete Linear Equation System 357 11.5.3 HFS-FEM for Composite Materials 358 11.5.3.1 Special Fundamental Solutions 358 11.5.3.2 Special n-Sided Fiber/Matrix Elements 359 11.6 Conclusions 361Acknowledgments 362 Con?ict of Interest 362 References 362 12 Understanding the SET/RESET Characteristics of Forming Free TiO x /TiO 2–x Resistive-Switching Bilayer Structures through Experiments and Modeling 369 P. Bousoulas and D. Tsoukalas 12.1 Introduction 370 12.2 Experimental Methodology 372 12.3 Bipolar Switching Model 376 12.3.1 Resistive-Switching Performance 376 12.3.2 Resistive-Switching Model 379 12.4 RESET Simulations 385 12.4.1 I–V Response 385 12.4.2 In?uence of TE on the CFs Broken Region 389 12.5 SET Simulations 394 12.6 Simulation of Time-dependent SET/RESET Processes 397 12.7 Conclusions 399 Acknowledgments 400 References 400 13 Advanced Materials and Tree-dimensional Computer-aided Surgical Work?ow in Cranio-maxillofacial Reconstruction 407 Luis Miguel Gonzalez-Perez, Borja Gonzalez-Perez-Somarriba Gabriel Centeno, Carp?foro Vallellano and Juan Jose Egea-Guerrero 13.1 Introduction 408 13.2 Methodology 409 13.3 Findings 414 13.4 Discussion 423 References 432 14 Displaced Multiwavelets and Splitting Algorithms 435 Boris M. Shumilov 14.1 An Algorithm with Splitting of Wavelet Transformation of Splines of the First Degree 439 14.1.1 “Lazy” Wavelets 440 14.1.2 Examples of Wavelet Decomposition of a Signal of Length 8 443 xii ContentsContents xiii 14.1.3 “Orthonormal” Wavelets 446 14.1.4 An Example of Function of Harten 450 14.2 An Algorithm for Constructing Orthogonal to Polynomials Multiwavelet Bases 452 14.2.1 Creation of System of Basic Multiwavelets of Any Odd Degree on a Closed Interval 452 14.2.2 Creation of the Block of Filters 455 14.2.3 Example of Orthogonal to Polynomials Multiwavelet Bases 457 14.2.4 Te Discussion of Approximation on a Closed Interval 459 14.3 Te Tridiagonal Block Matrix Algorithm 460 14.3.1 Inverse of the Block of Filters 460 14.3.2 Example of the Hermite Quintic Spline Function Supported on [?1, 1] 461 14.3.3 Example of the Hermite Septimus Spline Function Supported on [?1, 1] 463 14.3.4 Numerical Example of Approximation of Polynomial Function 466 14.3.5 Numerical Example with Two Ruptures of the First Kind and a Corner 467 14.4 Problem of Optimization of Wavelet Transformation of Hermite Splines of Any Odd Degree 471 14.4.1 An Algorithm with Splitting for Wavelet Transformation of Hermite Splines of Fifh Degree 474 14.4.2 Examples 481 14.5 Application to Data Processing of Laser Scanning of Roads 486 14.5.1 Calculation of Derivatives on Samples 486 14.5.2 Example of Wavelet Compression of One Track of Data of Laser Scanning 486 14.5.3 Modeling of Surfaces 486 14.5.4 Functions of a Package of Applied Programs for Modeling of Routes and Surfaces of Highways 488 14.6 Conclusions 490 References 490 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Engineering Materials and Modeling رابط مباشر لتنزيل كتاب Advanced Engineering Materials and Modeling
|
|