كتاب Advanced Electrical and Electronics Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب Advanced Electrical and Electronics Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15369
التقييم : 25663
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Advanced Electrical and Electronics Materials  Empty
مُساهمةموضوع: كتاب Advanced Electrical and Electronics Materials    كتاب Advanced Electrical and Electronics Materials  Emptyالخميس 10 يناير 2019, 10:31 pm

أخوانى فى الله
أحضرت لكم كتاب
 Advanced Electrical and Electronics Materials
Processes and Applications
من سلسلة علم المواد المتقدمة
Advanced Material Series
K.M. Gupta and Nishu Gupt

كتاب Advanced Electrical and Electronics Materials  A_e_e_10
ويتناول الموضوعات الأتية :


Contents
Preface xxxv
Acknowledgement xxxvii
About the Authors xxxix
Abbreviations xli
1 General Introduction to Electrical and Electronic Materials 1
1.1 Importance of Materials 1
1.2 Importance of Electrical and Electronic Materials 2
1.3 Classifcation of Electrical and Electronic Materials 3
1.3.1 Conductors 4
1.3.2 Semiconductors 4
1.3.3 Dielectrics 5
1.3.4 Superconductors 6
1.3.5 Magnetic Materials 7
1.3.6 Ferrites 7
1.3.7 Ferroelectrics 8
1.3.8 Piezoelectrics 8
1.3.9 Perovskites (Titanates, Zirconates, Hafnates) 8
1.3.10 Spinels, Garnets, and Magnetoplumbite 9
1.4 Scope of Electrical and Electronic Materials 9
1.5 Requirements of Engineering Materials 11
1.6 Operational Requirements of Electrical and
Electronic Materials 13
1.6.1 High and Low Temperature (Service) Materials 14
1.6.2 High Voltage (Service) Materials 14
1.7 Classifcation of Solids on the Basis of Energy Gap 15
1.7.1 Energy Gap for Di?erent Solids 16viii Contents
1.7.2 Comparison among Conductors, Semiconductors
and Insulators 17
1.8 Glimpse of Some Electronic Products, Teir
Working Principles and Choicest Materials 18
1.9 Di?erent Types of Engineering Materials 19
1.9.1 Metals 19
1.9.2 Non-Ferrous Metals 19
1.9.3 Ceramics 19
1.9.4 Organic Polymers 20
1.9.5 Alloys 20
1.9.6 Composites 21
1.10 Di?erent Levels of Materials Structure 21
1.10.1 Micro-Structure Levels 21
1.10.2 Dimensional Range and Examples 22
1.11 Spintronics (Te Electronics of Tomorrow)
and Spintronic Materials 22
1.11.1 Major Fields of Spintronic Research 23
1.11.2 Operational Mechanisms of Spintronic Devices 23
1.11.3 Working Principle of Spintronic Devices 24
1.11.4 Emerging and Futuristic Spintronic Materials 24
1.12 Ferromagnetic Semiconductor 24
1.12.1 Emerging Wide Bandgap Semiconductors 25
1.13 Lef-Handed (LH) Materials 26
1.14 Solved Examples 27
Review Questions 29
Objective Questions 30
2 Atomic Models, Bonding in Solids, Crystal Geometry, and
Miller Indices 33
2.1 Atomic Models 33
2.2 Bohr’s Quantum Atomic Model 33
2.2.1 Radii of Orbits, Velocity and Frequency of Electrons 35
2.2.2 Normal, Excited and Ionized Atoms 36
2.2.3 Kinetic and Potential Energy of Electron 36
2.3 Modern Concept of Atomic Model 37
2.3.1 De Broglie Wave 37
2.3.2 Wavelength of Electron Wave 37
2.3.3 Concept of Standing Wave 38Contents ix
2.4 Electron Confguration 39
2.5 Meaning of Chemical (or Atomic) Bonding 40
2.6 Classifcation of Chemical Bonds 40
2.7 Ionic Bond 41
2.8 Covalent Bonds 42
2.8.1 Types of Covalent Bonds 42
2.8.2 Bond Angle 43
2.8.3 Directional and Non-Directional Bonds 44
2.8.4 Mixed bonds 44
2.9 Monocrystalline and Polycrystalline Crystal Structures 45
2.9.1 Construction of a solid 45
2.10 Space Lattice 46
2.11 Basis 46
2.12 Unit Cell and Crystal 47
2.13 Bravais Crystal System 48
2.14 Primitive and Non-Primitive Unit Cells 51
2.15 Coordination Number 52
2.16 Atomic Packing Fraction 52
2.17 Calculation of Density (or Bulk Density) 55
2.18 Miller Indices 55
2.18.1 Determining the Miller Indices
of a Given Plane 56
2.18.2 Drawing a Plane Whose Miller
Indices are Given 58
2.18.3 Drawing a Plane which is Parallel to an Axis 58
2.18.4 Planes with Negative Indices 59
2.18.5 Family of Planes 59
2.18.6 Miller Indices: Crystallographic Notation of
Atomic Crystal Directions 60
2.19 Interplaner Spacing 61
2.20 Linear Density 62
2.21 Planer Density 63
2.21.1 Planer Density in Face Centred Cube (FCC) on
(100) Plane 63
2.21.2 Planer Density in FCC on (110) Plane 63
2.21.3 Planer Density in FCC on (111) Plane 64
Quick Revision Summary 64
Review Questions 64x Contents
Numerical Questions 66
Objective Questions 69
3 Solid Structures, Characterization of Materials, Crystal
Imperfections, and Mechanical Properties of Materials 71
3.1 Crystallography 71
3.2 Crystalline and Non-Crystalline Structures 72
3.3 Hexagonally Closed Packed Structure (HCP) 73
3.4 VOIDS 74
3.4.1 Tetrahedral Voids 74
3.4.2 Octahedral Void 74
3.5 Covalent Solids 75
3.5.1 Diamond Cubic (DC) Structure 75
3.6 Bragg’s Law of X-Rays Di?raction 76
3.6.1 Bragg’s Equation 77
3.6.2 Re?ections from Various Sets 78
3.7 Structure Determination 78
3.8 Microscopy 79
3.8.1 Microscopic Principle 80
3.8.2 Ray Diagram and Principle of Magnifcation 81
3.8.3 Magnifying Power of Microscope 82
3.9 Di?erent Types of Metallurgical Microscopes
and Teir Features 82
3.10 Working Principle of Electron Microscope 84
3.10.1 Formation of Magnifed Image 84
CRYSTAL IMPERFECTIONS 85
3.11 Ideal and Real Crystals, and Imperfections 85
3.11.1 Disadvantageous E?ects of Imperfections 85
3.11.2 Advantageous E?ect of Imperfection 86
3.12 Classifcation of Imperfections 86
3.13 Point Imperfections 87
3.13.1 Vacancy 87
3.13.2 Substitutional Impurity 87
3.13.3 Interstitial Impurity 88
3.13.4 Frenkel’s Defect 88
3.13.5 Schottky’s Defect 89
3.14 E?ects of Point Imperfections 89
3.15 Line Imperfections 90Contents xi
3.16 Features of Edge Dislocation 90
3.17 Screw Dislocation 90
3.17.1 Stress-Strain Field in Screw Dislocation 90
3.18 Characteristics of Dislocations 92
3.18.1 Burgers Vectors of Dislocations
in Cubic Crystals 93
3.19 Sources of Dislocations, Teir E?ects and Remedies 93
3.19.1 E?ects of Dislocations 94
3.19.2 Remedies to Minimize the Dislocations 94
3.20 Grain Boundary 95
3.20.1 Mechanism of grain boundary formation 95
3.21 Twin or Twinning 96
3.21.1 Annealing Twin and Deformation Twin 96
3.22 Mechanical Properties of Metals 97
3.22.1 Isotropic Anisotropic and Orthotropic Materials 97
3.22.2 Homogeneity and Heterogeneity 97
3.22.3 Strain Energy Absorbed by the Materials 98
3.22.4 Strength 99
3.22.5 Sti?ness 100
3.22.6 Resilience, Proof Resilience and Toughness 100
3.22.7 Elasticity and Plasticity 101
3.22.8 Ductility and Brittleness 101
3.22.9 Malleability 103
3.22.10 Fatigue 103
3.22.11 Creep 103
3.22.12 Need of Di?erent Properties for Di?erent
Applications 104
3.22.13 Hardness 104
3.22.14 Impact 104
3.22.15 Factors A?ecting Mechanical Properties 104
Review Questions 105
Numerical Problems 108
4 Conductive Materials: Electron Teories, Properties and
Behaviour 109
4.1 Electrons and Teir Role in Conductivity 109
4.1.1 Valence and Free Electrons 109
4.2 Electron Teories of Solids 110xii Contents
4.3 Free Electron Teory 110
4.3.1 Kinetic Energy in Terms of Wave Number 111
4.3.2 Kinetic Energy in Terms of Length of the Solid 112
4.3.3 Energy Equation for 3-Dimensional Solid 113
4.3.4 Mechanism of Conduction by Free Electrons 114
4.3.5 Drif Velocity and Collision Time 115
4.3.6 Mean Free Path (or Mean Free Length) 117
4.3.7 E?ect of Temperature on Mean Free Path 117
4.4 Energy Band Teory 118
4.4.1 Critical Conditions 119
4.4.2 Magnitude of Energy Gap 120
4.5 Brillouin Zone Teory 120
4.5.1 Meaning of Di?erent Brillouin Zones 121
4.5.2 First and Second Brillouin Zones 122
4.5.3 Brillouin Zones for Simple Cubic Lattice 123
4.5.4 Brillouin Zones for BCC, FCC and HCP Lattices 124
4.6 Conductors 125
4.6.1 Characteristics of a Good Conductor 126
4.7 Factors A?ecting Conductivity
(and Resistivity) of Metals 126
4.7.1 Temperature E?ect on Conductivity 127
4.7.2 Nordheim Equation for Impurity and
Alloying E?ects on Resistivity 129
4.7.3 E?ect of Plastic Deformation and Cold Working 129
4.7.4 Matthilseen Rule of Total Resistivity 129
4.8 Termal Conductivity 130
4.8.1 Salient Features of Di?erent Materials Regarding
Termal Conductivity 131
4.9 Heating E?ect of Current 132
4.9.1 Joule’s Law of Electrical Heating 132
4.9.2 Applications of Heating E?ect 133
4.10 Termoelectric E?ect (or Termoelectricity) 133
4.11 Seebeck E?ect 134
4.11.1 Seebeck Series 134
4.11.2 Seebeck e.m.f. 135
4.11.3 Applications of Termoelectric E?ect 136
4.12 Peltier E?ect 136
4.12.1 Peltier Coefcient 136Contents xiii
4.13 Tomson E?ect 137
4.13.1 Types of Materials on the Basis of
Tomson E?ect 138
4.13.2 Materials for Termocouples and Termopiles 138
4.14 Wiedemann-Franz Law and Lorentz Relation 138
4.14.1 Determining the Termal Conductivity 139
4.14.2 Consideration of Electron Collision 140
4.14.3 Consideration of Fermi Energy 141
4.14.4 Lorentz Number 142
4.15 Solved Examples 143
Quick Revision Summary 146
Review Questions 147
Numerical Problems 149
Objective Questions 151
True and False Type Questions 151
Fill in the Blank Type Questions 152
Multiple Choice Type Questions 152
5 Conductive Materials: Types and Applications 153
5.1 Mechanically Processed Forms of Electrical Materials 153
5.1.1 Cladded Metals 153
5.1.2 Bimetals 153
5.1.3 Sintered Materials 154
5.1.4 Hot Rolled and Cold Rolled Metals 154
5.1.5 Hard Drawn and Sof Drawn Metals 154
5.1.6 Annealed Metals 155
5.2 Types of Conducting Materials 155
5.3 Low Resistivity Materials 156
5.3.1 Characteristics of Low Resistivity Materials 156
5.3.2 Copper and its Types 157
5.3.3 Types of Aluminium and their Applications 158
5.3.4 Comparison among Di?erent Low
Resistivity Conducting Materials 160
5.3.5 Copper Alloys (Brass and Bronze) 160
5.4 High Resistivity Materials 161
5.4.1 Characteristics of High Resistivity Materials 163
5.4.2 Nickel 163xiv Contents
5.4.3 Tantalum 164
5.4.4 High Resistivity Alloys 164
5.4.5 Salient Applications of High Resistivity Materials 164
5.5 Contact Materials 165
5.5.1 Requirements of a Good Contact Material 166
5.5.2 Types of Contact Materials 166
5.5.3 Common Contact Metals 168
5.5.4 Salient Applications of Contact Materials 169
5.6 Fusible (or Fuse) Materials 170
5.6.1 Requirements of Fuse Materials 170
5.6.2 Fusible Metals and Alloys 171
5.7 Filament Materials 172
5.7.1 Requirements of a Good Filament Material 172
5.7.2 Tungsten Filament 172
5.8 Carbon As Filamentary and Brush Material 173
5.8.1 Carbon Graphite 174
5.8.2 Main Applications of Carbon Materials 174
5.9 Conductors, Cables, and Wires: Types and Materials 175
5.9.1 Stranded Conductors 176
5.9.2 Types of Stranded Conductors 176
5.9.3 Specifcations of Stranded Conductors 177
5.9.4 Core Cable 177
5.9.5 Reinforced Conductor 178
5.10 Solder Materials for Joining Wires and Joints
in Power Apparatuses 178
5.10.1 Sof Solder 178
5.10.2 Hard Solder 178
5.11 Sheathing Materials 179
5.12 Sealing Materials 180
5.13 Solved Examples 180
Review Questions 181
Objective Questions 183
6 Semiconducting Materials: Properties and Behaviour 185
6.1 Introduction to Semiconductors 185
6.1.1 Properties of Semiconductors 186
6.2 Di?erent Types of Semiconducting Materials 186
6.2.1 Merits of Semiconducting Materials 186
6.2.2 Characteristics of Semiconducting Materials 187Contents xv
6.3 Determining the Percentage Ionic Character of
Compound Semiconductor 188
6.4 Fermi Energy Level 189
6.4.1 Fermi-Dirac Probability Function and
Temperature E?ect 189
6.5 Intrinsic Semiconductors 191
6.5.1 Energy Diagram of Intrinsic Semiconductor 192
6.5.2 Holes, Mobility and Conductivity 193
6.6 Extrinsic Semiconductors 194
6.6.1 n-Type Semiconductors and their
Energy Diagram 194
6.6.2 Law of Mass Action 195
6.6.3 p-Type Semiconductors and their
Energy Diagram 195
6.7 E?ective Mass 199
6.8 Density of State 200
6.9 Temperature Dependency of Carrier Concentrations 202
6.9.1 Temperature Dependency of ni 204
6.10 E?ects of Temperature on Mobility of Carriers 205
6.10.1 E?ects of Doping on Mobility 206
6.11 Direct and Indirect Energy Band Semiconductors 206
6.11.1 Di?erences between Direct and Indirect
Semiconductors 208
6.12 Variation of E
g
with Alloy Composition 208
6.12.1 E?ect of Alloying on GaAs1-xPx 209
6.12.2 Applications 210
6.13 Degenerate Semiconductors 210
6.13.1 E?ect of Heavy Doping 211
6.13.2 Degenerate Types 211
6.14 Hall E?ect 212
6.14.1 Explanation of the Phenomenon 213
6.14.2 Hall Voltage 213
6.14.3 Signifcance of Hall E?ect, Hall Coefcient etc. 214
6.15 Analysis of Drif and Di?usion Currents 216
6.15.1 Einstein Relation 217
6.16 Continuity Equation 218
6.17 Solved Examples 219
Quick Revision Summary 223
Review Questions 224xvi Contents
Numerical Problems 225
Objective Type Questions 226
7 Semiconducting Materials: Types and Applications 229
7.1 Element Form Semiconducting Materials 229
7.1.1 Silicon 229
7.1.2 Germanium 230
7.1.3 Selenium (Se) 231
7.1.4 Antimony (Sb) 231
7.1.5 Other Elements 231
7.1.6 Comparison between Silicon and Germanium 232
7.2 Formulated (Compound and Alloyed) Semiconducting
Materials 232
7.2.1 Gallium Arsenide (GaAs) 232
7.2.2 Indium Antimonide (InSb) 234
7.2.3 Oxides, Sulphides, Halides,
Tellurides and Sellurides 234
7.2.4 Cadmium Sulphide (CdS) 234
7.2.5 Silicon Carbide (SiC) 235
7.2.6 Lead Sulphide (PbS) 235
7.3 Lattice Structures of Some Compound Semiconductors 235
7.3.1 Structure of Zinc Sulphide 237
7.4 Solar Cells 237
7.4.1 Working Principle 238
7.4.2 Construction and Working 238
7.4.3 Factors A?ecting the Ef ciency of Solar Cells 239
7.4.4 Solar Cell Fabrication and Materials 240
7.4.5 Advantages and Limitations of Solar Cells 241
7.4.6 Applications of Solar Cells 242
7.5 Semiconductor Lasers 242
7.5.1 Merits of Semiconductor Lasers 243
7.5.2 Characteristics and Working 243
7.5.3 Laser Applications 243
7.5.4 Materials for Semiconductor Lasers 245
7.6 Optical Materials in Light Emitting Diodes 247
7.6.1 Construction and Working of LED 247
7.6.2 Advantages, Applications and Specifcations
of LEDs 247Contents xvii
7.6.3 Applications and Specif cations of LEDs 248
7.6.4 Light Emitting Materials 248
7.7 Materials for Optical Fibres 249
7.7.1 Construction 250
7.7.2 Types of Optical Fibres 250
7.7.3 Suitable Materials and their Requirements 251
7.7.4 Advantages and Applications 252
7.7.5 Applications of Optical Fibres 252
7.8 Choicest Materials for Di? erent Semiconductor Devices 253
7.9 Solved Examples 254
Quick Revision Summary 257
Review Questions 258
Objective Questions 259
8 Semiconducting Materials: Processing and Devices 263
8.1 Production of Element Form Of Silicon (Si) 263
8.2 Semiconductor Crystal Growth 264
8.2.1 Bridgman Method 264
8.2.2 Czochralski Method 265
8.3 Processing of Semiconducting Materials 266
8.4 Zone Refning 266
8.4.1 Zone Refning Apparatus 268
8.5 Manufacturing of Wafers 268
8.5.1 Photolithography 269
8.6 Semiconductors Fabrication Technology 269
8.6.1 Microelectronic Circuit Construction 270
8.6.2 Tin Film Circuit Fabrication 270
8.7 Fabrication of a Semiconductor P-N Junction 271
8.8 Transistor Manufacturing Processes 271
8.9 Semiconducting Devices and Teir Operating Principle 271
8.10 Important Applications of Semiconductor Devices 274
8.11 Brief Description of Some Semiconductor Devices 275
8.12 P-N Junction Diode 276
8.12.1 Applications of P-N Diode 277
8.12.2 Biasing 277
8.13 Working of P-N Diode When not Connected
to a Battery 279
8.13.1 Di?usion of Holes and Electrons in P-N Diode 279xviii Contents
8.13.2 Set-up of Barrier in P-N Diode 279
8.13.3 Formation of Depletion (or Space Charge)
Region in P-N Diode 279
8.13.4 Flow of Drif and Di?usion
Current in P-N Diode 280
8.14 Di?erent Types of P-N Junction Diodes 280
8.14.1 Te Gunn Diode Materials and Fabrication 281
8.15 Junction Transistors 281
8.15.1 Di?erent Categories of Transistors 282
8.16 Bipolar Junction Transistor (BJT) 282
8.16.1 Construction of BJT 282
8.17 Field-E?ect Transistor (FET) 285
8.17.1 Advantages of FETs over BJTs 285
8.17.2 Di?erences between FETs and BJTs 285
8.17.3 Applications of FETs 285
8.18 Metal-Semiconductor Field-E?ect
Transistors (MESFET) 286
8.18.1 Basic Construction of MESFETs 286
8.18.2 Basic Types of MESFETs 287
8.19 Insulated Gate Field E?ect Transistor (IGFET) or
Metal-Insulator-Semiconductor Field-E?ect
Transistor (MISFET) 288
8.19.1 Construction of IGFET 289
8.20 Charge Coupled Devices 289
8.20.1 Salient Uses 290
8.21 Solved Examples 290
Quick Revision Summary 294
Review Questions 296
Objective Questions 298
9 Dielectric Materials: Properties and Behaviour 301
9.1 Introduction to Dielectric Materials 301
9.2 Classifcation of Dielectric (or Insulating) Materials 302
9.3 Main Properties 304
9.4 Dielectric Constant 304
9.4.1 Factors A?ecting Dielectric Constant 304
9.5 Dielectric Strength 305
9.5.1 Types of Dielectric Breakdown 305Contents xix
9.6 Dielectric Loss 307
9.6.1 Factors A?ecting Dielectric Loss 308
9.6.2 Calculation of Loss Factor 309
9.7 Polarization 310
9.7.1 Expression for Polarization under Static
Electric Field 311
9.7.2 Measurement of Polarization 311
9.8 Mechanism of Polarization 314
9.8.1 Electronic Polarization 314
9.8.2 Ionic Polarization 315
9.8.3 Orientation (Molecular) Polarization 315
9.8.4 Space Charge (or Interfacial) Polarization 315
9.9 Comparison of Di?erent Polarization Processes 316
9.9.1 Polarizability 316
9.10 Factors A?ecting Polarization 317
9.10.1 Time E?ects and Relaxation Time 317
9.10.2 Frequency E?ects 318
9.11 Spontaneous Polarization 318
9.11.1 Polarization Curve 319
9.11.2 Polarization Hysteresis Loop 320
9.11.3 Salient Features of Spontaneous Polarization 320
9.12 Behaviour of Polarization Under Impulse and Frequency
Switching 320
9.12.1 E?ect on Polarization When Electric Field is
Switched-o? 321
9.12.2 E?ect on Polarization When Electric Field is
Switched-on 322
9.13 Decay and Build-Up of Polarization Under
Alternating Current (A.C.) Field 322
9.13.1 Conclusion 324
9.14 Complex Dielectric Constant 324
9.15 Determining the Internal Field Due to Polarization
Inside the Dielectric 325
9.15.1 Formulation of the Problem for
Solid Dielectric 325
9.15.2 Contribution of Dipoles on Internal Field 327
9.15.3 Determining Ei for 3-dimensional Case and
Lorentz Expression 327xx Contents
9.16 Clausius-Mossotti Relation 329
9.16.1 Relation between Electronic Polarizability
and Polarization 329
9.17 Solved Examples 332
Quick Revision Summary 337
Review Questions 338
Numerical Problems 339
Objective Questions 340
10 Dielectric Materials: Types and Applications 343
10.1 Solid Insulating Materials and their Applications 343
10.1.1 Ceramic Insulating Materials 344
10.1.2 Mica 344
10.1.3 Porcelain 346
10.1.4 Glass 346
10.1.5 Micanite 347
10.1.6 Glass Bonded Mica 348
10.2 Polymeric Insulating Materials 348
10.2.1 Bakelite 349
10.2.2 Polyethylene 350
10.3 Natural and Synthetic Rubber as Insulating Material 350
10.3.1 Synthetic Rubber 350
10.4 Paper as a Fibrous Insulating Material 351
10.5 Choices of Solid Insulating Materials for
Di?erent Applications 351
10.6 Liquid Insulating Materials 354
10.6.1 Requirements of a Good Insulating Liquid 354
10.6.2 Transformer Oil 354
10.6.3 Bubble Teory for Breakdown of Liquid
Insulation 355
10.6.4 Ageing of Mineral Insulating Oils 355
10.7 Gaseous Insulating Materials 356
10.7.1 Air 356
10.7.2 Nitrogen 357
10.7.3 Vacuum 357
10.7.4 Vacuum as Re?ective Insulation 358
10.8 Ferroelectric Materials 358
10.8.1 Anti-Ferroelectric Materials 359Contents xxi
10.9 Barium Titanate: A Ferroelectric Ceramic 359
10.9.1 E?ect of Temperature on Structure of BaTiO3 360
10.10 Modifed Barium Titanate 361
10.11 PLZT as an Electro-Optic Material 362
10.12 Piezoelectricity 363
10.12.1 Characteristics and Uses 363
10.12.2 Mechanism of Piezoelectricity 364
10.12.3 Inverse Piezoelectric E?ect 364
10.12.4 Piezoelectric Materials 365
10.12.5 E?ect of Temperature on Piezoelectric Crystal 365
10.13 Piezoelectrics in Transducer Uses 366
10.13.1 Working of Piezoelectric Transducer 366
10.14 Relation Between Young’s Modulus and Electric Field
in Piezoelectric Material 367
10.15 Electrostriction 370
10.16 Pyroelectricity 370
10.16.1 Pyroelectric E?ect 371
10.16.2 Pyroelectric Coefcient 371
10.16.3 Pyroelectric Devices 371
10.17 Lead Zirconate Titanate (PZT):
A Piezoelectric Ceramic 372
10.17.1 Di?erent Types of PZTs and Teir Uses 372
10.18 Lead Lanthanum Zirconate Titanate (PLZT) 373
10.18.1 General Formula and Hysteresis
Loop of PLZT 373
10.19 Solved Examples 374
Quick Revision Summary 375
Review Questions 376
Numerical Problems 377
Objective Questions 378
11 Magnetic Materials: Properties and Behaviour 379
11.1 Origin of Permanent Magnetic Dipole 379
11.1.1 Spinning Electrons Acting as Extremely
Small Magnets 379
11.2 Terminologies Defned 380
11.2.1 Relation between Relative Permeability and
Magnetic Susceptibility 382xxii Contents
11.3 Classifcation of Magnetic Materials 384
11.3.1 Distribution of Magnetic Moments 385
11.4 Diamagnetism and Diamagnetic Materials 386
11.4.1 Negative Susceptibility 386
11.5 Paramagnetism and Paramagnetic Materials 386
11.5.1 Rare-earth Based Paramagnetic Salts 387
11.6 Ferromagnetism and Ferromagnetic Materials 387
11.7 Antiferromagnetism and Antiferromagnetic Materials 387
11.7.1 Maximum Susceptibility and Neel Temperature 388
11.8 Ferrimagnetism and Ferrites 389
11.8.1 Properties of Ferrites 389
11.8.2 Applications of Ferrites 389
11.8.3 Sof and Hard Ferrites 390
11.8.4 Spinel, Garnet and Magnetoplumbite 390
11.8.5 Normal and Inverse Spinel 391
11.8.6 Garnets 391
11.8.7 Ferrites in Memory Devices 391
11.9 Curie Temperature 392
11.9.1 Requirement of Higher and Lower Curie
Temperature for Di?erent Applications 393
11.10 Laws of Magnetic Materials 394
11.10.1 E?ect of Temperature on Magnetic
Susceptibility 395
11.11 Magnetization Curve, and Initial and Maximum
Permeability 395
11.11.1 Magnetic Hysteresis Loop
(or Cycle Magnetization) 396
11.12 Hysteresis and Eddy Current Losses 398
11.12.1 Eddy Current Loss per Unit Volume 398
11.13 Domain Teory 401
11.14 Magnetostriction 402
11.14.1 Salient Features of Magnetostriction 402
11.14.2 Mechanism of Magnetostriction 403
11.14.3 Magnetostrictive Materials 403
11.15 Ferromagnetic Anisotropy 404
11.15.1 Anisotropy in Single Crystal 405
11.15.2 Sof and Hard Directions 405
11.15.3 Methods of Inducing Magnetic Anisotropy 405Contents xxiii
11.16 Domain Growth and Domain Wall Rotation 406
11.17 Derivation of Langevin’s T eory of Diamagnetism
and Expression For Diamagnetic Susceptibility 407
11.17.1 Larmor Precession 408
11.17.2 Determining the Diamagnetic Susceptibility 409
11.18 Derivation of Langevin’s T eory of Paramagnetism
and Expression for Paramagnetic Susceptibility 410
11.18.1 Determining the Intensity of Magnetization 410
11.18.3 Determining the Paramagnetic Susceptibility 411
11.19 Solved Examples 412
Quick Revision Summary 413
Review Questions 415
Numerical Problems 417
Objective Questions 419
12 Magnetic Materials: Types and Applications 423
12.1 Types of Magnetic Materials 423
12.2 Magnetic Materials 424
12.3 Sof Magnetic Materials 425
12.3.1 Transformer Purpose Sheet Form Magnetic
Material 425
12.3.2 Powder Form Magnetic Material 425
12.4 Hard Magnetic Materials 426
12.4.1 Sof Magnetic Materials Versus Hard
Magnetic Materials 427
12.5 High Energy (Product) Hard Magnetic
Materials (HEHMMs) 428
12.5.1 Samarium-Cobalt Rare Earth 428
12.5.2 Neodymium-Iron-Boron Alloy 429
12.6 Commercial Grade Sof Magnetic Materials 430
12.7 Commercial Grade Hard Magnetic Materials 431
12.8 Ferrites in Memory Devices 433
12.9 Magnetic Storage 434
12.9.1 Magnetic Tapes and Films 435
12.10 Metallic Glasses 435
12.10.1 Interesting Amorphous Material 435
12.10.2 Unusual Properties of Metallic Glasses 436
12.10.3 Fabrication of Metallic Glass 436xxiv Contents
12.10.4 Materials System and Salient Applications of
Metallic Glasses 438
12.10.5 Applications 438
12.10.6 Metallic Glasses in Electronic Uses 438
12.11 Magnetic Bubbles 439
12.11.1 Working Principle 439
12.11.2 Moving the Magnetic Bubble 440
12.11.3 Information Storage Density 441
12.12 E?ects of Alloying Elements on Magnetic Properties 441
12.13 Textured Magnetic Materials 441
12.14 Amorphous (or Oxide) Magnetic Materials 442
12.15 Powder Magnetic Materials 442
12.16 Solved Examples 442
Quick Revision Summary 443
Review Questions 445
Objective Questions 446
13 Superconductive Materials 449
13.1 Concept of Superconductors 449
13.1.1 Meaning of the Phenomenon of
Superconductivity 449
13.2 Properties of Superconductors 450
13.2.1 Meissner E?ect 450
13.3 Types of Superconductors 453
13.3.1 E?ect of Pressure and Temperature on
Superconductivity 453
13.4 Critical Magnetic Field and Critical Temperature 454
13.4.1 E?ect of Isotopic Mass on Critical Temperature 454
13.4.2 Silsbee Rule 455
13.4.3 Important Terminologies 456
13.5 Ideal and Hard Superconductors 456
13.6 Mechanism of Superconduction 456
13.6.1 Various Teories of Superconductivity 457
13.7 London’s Teory For Type I Superconductors 457
13.8 GLAG Teory For Type II Superconductors 458
13.8.1 Distinguishing Between the Type I and
Type II Superconductors 458
13.8.2 Variation of Magnetic Field 459Contents xxv
13.9 BCS Teory 460
13.9.1 Supercurrent 460
13.9.2 Phonon and Photon 460
13.9.3 Electron-Phonon Interaction 461
13.9.4 Reason of Two Electrons Forming a Pair 461
13.9.5 Cause of Resistance for Superconductor
being Zero 461
13.9.6 Relationship between Coherence Length and
Energy Gap 462
13.9.7 Debye Temperature 462
13.10 Current Applications and Limitations 464
13.10.1 Limitations of Superconductors 464
13.10.2 Likely Futuristic Scenario 464
13.11 Milestones in Research and Development
of Superconductors 465
13.11.1 Modern Ceramic Superconductors 466
13.12 Present Scenario of the Main Applications of
High Temperature Superconductors 467
13.13 Producing the Superconducting Solenoids
and Magnets 468
13.14 MRI for Medical Diagnostics 469
13.14.1 Magnet as a Critical Component 469
13.14.2 Superconducting Magnet 469
13.15 Solved Examples 470
Quick Revision Summary 472
Review Questions 472
Numerical Problems 473
Objective Questions 473
14 Passive Components (Resistors) 477
14.1 Passive and Active Components 477
14.2 Introduction to Resistors 478
14.2.1 Characteristics of Resistors 479
14.3 Manufacturing Method of a Resistor 481
14.4 Basic Classifcation of Resistors 482
14.4.1 Specifc Types of Resistors 483
14.4.2 Di?erent Types of Resistors: Materials
and Applications 484xxvi Contents
14.5 Constructional Details of Di?erent Kinds
of Fixed Resistors 484
14.5.1 Construction of Carbon Composition Resistor 484
14.5.2 Construction of Carbon Film Resistor 485
14.5.3 Construction of Metal Film Resistors 486
14.5.4 Construction of Wire-Wound Resistor 487
14.5.5 Construction of Circuit Breaker Resistors 488
14.5.6 Construction of High Value Resistors 489
14.6 Comparison Among Di?erent Types of Fixed Resistors 490
14.7 Specifcations of Resistors 490
14.7.1 Symbolic Representation of Resistors 491
14.7.2 Identifcation of Resistors 491
14.8 Variable Resistors (i.e. Varistors) 493
14.8.1 Carbon Composition Variable Resistor 493
14.8.2 Wire Wound Variable Resistor 494
14.8.3 Cermets Type Variable Resistor 494
14.8.4 Characteristics of Variable Resistors 494
14.9 Non-Linear Resistors 495
14.10 Termistors 496
14.10.1 NTC Termistors 496
14.10.2 PTC Termistors 497
14.10.3 Applications of Termistors 497
14.10.4 Specifcations of Termistors 498
14.11 Solved Examples 498
Review Questions 500
15 Passive Components (Capacitors) 503
15.1 Capacitor: an Introduction 503
15.1.1 Equivalent Circuit 504
15.1.2 Major Applications of Capacitors 505
15.1.3 Important Materials Used for Capacitors 505
15.2 Characteristics of Capacitors 506
15.3 Classifcation of Capacitors 508
15.4 Forms and Materials of Common Types
of Capacitors 509
15.5 Constructional Details of Fixed Value Capacitors 510
15.5.1 Mica Dielectric Capacitor 510
15.5.2 Paper Capacitor 511Contents xxvii
15.6 Plastic Film Capacitors 512
15.6.1 Metalized Plastic Film Dielectric Capacitors 512
15.6.2 Foil and Plastic Film Capacitors 513
15.6.3 Mixed Dielectric Capacitors 513
15.7 Ceramic Dielectric Capacitors 514
15.7.1 Classes of Ceramic Dielectrics 514
15.7.2 Applications 515
15.8 Electrolytic Capacitors 516
15.8.1 Aluminium Electrolytic Capacitor 517
15.9 Tantalum Electrolytic Capacitor 518
15.9.1 Tantalum Foil capacitors 518
15.9.2 Tantalum Solid Capacitor 518
15.10 Air Capacitor 519
15.11 Polarized and Non-Polarized Capacitors 519
15.11.1 Non-Polarized Capacitors 520
15.12 Variable Capacitors 521
15.12.1 Air Variable Capacitor 521
15.12.2 Ceramic Variable Capacitor 522
15.12.3 Glass Capacitors 522
15.13 Specifcations of Capacitors 523
15.13.1 Symbolic Representation of Capacitors 524
15.14 Identifcation of Capacitors 525
15.14.1 Colour Codes for Tubular Ceramic
Capacitors 525
15.14.2 Colour Code for Mica Capacitors 525
15.14.3 Marking of Capacitors 527
15.15 Solved Examples 527
Review Questions 529
16 Printed Circuit Board (PCB) Fabrication 533
16.1 Printed Circuit Board 533
16.1.1 Advantages of PCBs 534
16.2 Types of PCBs 535
16.2.1 Measures of Level of Complexity in PCB 536
16.3 Types of PCB Substrates (or Laminates) 537
16.3.1 Merits and Demerits of Di? erent PCB Laminates 538
16.3.2 Fabrication of laminate and Reinforcing
Materials 540xxviii Contents
16.3.3 Properties of Di?erent PCB Laminates and
Commercial Grade Copper Cladded Laminates 540
16.4 Manufacturing Process of Copper Cladded Laminate 542
16.4.1 Processing of a Copper Cladded Laminate 543
16.4.2 Desired Properties of
Copper-Cladded Laminates 544
16.5 Layout and Design of a Printed Circuit Board 545
16.5.1 Planning of the PCB Layout 545
16.5.2 Design Considerations in Making PCBs 546
16.6 Manufacturing Processes For PCB 547
16.6.1 Preprocessing 547
16.6.2 Photolithography 548
16.6.3 Etching 549
16.6.4 Drilling 550
16.6.5 Solder Masking 551
16.6.6 Electroplating 551
16.6.7 Board Testing 552
16.6.8 Board Finishing 552
16.7 Manufacturing of Single Sided PCBs 553
16.8 Manufacturing of Double-Sided PCBs 554
16.8.1 Logic Layer Processing 554
16.8.2 Outer Layer Processing 556
16.9 Solved Examples 557
Review Questions 559
17 Optical Properties of Materials, and Materials for
Opto-Electronic Devices 561
17.1 Introduction 561
17.1.1 Important Terminologies Related to
Optical Materials 562
17.2 Optical Phenomena 563
17.2.1 Interaction of Light with Solids 563
17.2.2 Types of Optical Materials 564
17.3 Re?ection 564
17.4 Refraction 565
17.4.1 Refractive Index 565
17.4.2 Bi-Refringence 567Contents xxix
17.4.3 Relation between Refractive Index and
Dielectric Constant 568
17.5 Transmittivity 568
17.6 Scattering 569
17.7 Optical Absorption 569
17.7.1 Capability of a Material to Absorb Light 570
17.7.2 Mechanism of Optical Absorption 571
17.7.3 Absorption Coefcient 571
17.7.4 Factors A?ecting the Absorption Coefcient 572
17.7.5 Te Absorption Spectra of Materials 575
17.8 Optical Properties of Non-Metals 575
17.9 Optical Properties of Metals 576
17.9.1 Reasons of Copper Appearing
Reddish-orange, Silver and Aluminium
White, and Gold Yellow 576
17.10 Optical Properties of Semiconductors 577
17.10.1 Visibility Range of Light Spectrum 577
17.11 Optical Properties of Insulators 578
17.11.1 Optical Absorption in Ionic Crystals 578
17.12 Luminescence 579
17.12.1 Di?erent Types of Luminescence 579
17.12.2 Photo-Luminescence 580
17.12.3 Electro-Luminescence 580
17.13 Opto-Electronic Devices 581
17.14 Photoconductivity 581
17.14.1 Applications of Photoconductive Devices 582
17.14.2 Photoconductive Materials 582
17.14.3 Factors A?ecting the Selection of
Semiconductor 583
17.15 Photoconductive Cell 584
17.15.1 Photo-multiplier Tube 585
17.16 Solved Examples 586
Quick Revision Summary 588
Review Questions 590
Numerical Problems 591
Objective Questions 591xxx Contents
18 Specifc Materials for Electrical, Electronics, Computers,
Instruments, Robotics, and Other Applications 593
18.1 Recent Developments 593
18.2 Specifc Materials for Electrical Applications 594
18.3 Specifc Materials For A Typical Battery 596
18.3.1 Separator and its Materials 596
18.3.2 Gridwork Construction of Plates 597
18.4 Specifc Materials for Electronics Applications 599
18.5 Specifc Materials for Computer Applications 601
18.6 Specifc Materials for Instruments and
Control Applications 601
18.7 Materials Used in Robots Construction 601
18.8 Information Transmission from Cricket
Field to Worldwide Televisions 602
18.9 Specifc Materials for Networking Applications 604
18.9.1 Networking of Networks and Connecting
Devices 606
18.9.2 Hardware Used in Networking 610
18.10 Specifc Electronic, Computer, and Robotic
Components; and Teir Materials in
Automobile Applications 614
18.10.1 Recent Advances in Automotive Electronics 615
18.10.2 Multiplexing in Automobiles 616
18.10.3 Sensors and Actuators, and Teir Materials 617
18.10.4 Engine and Driveline Control 617
18.10.5 Electronic Displays and Information Systems 618
18.10.6 Shape of Tings to Come 619
18.10.7 Future Technologies and Designs 620
18.10.8 Optical Technology 621
18.10.9 Electrical and other Materials in
Important Automobile Uses 622
18.11 Pen Drives (or Flash Memory) and Its
Materials 623
18.12 Remote Control Devices and Materials
Used in Tem 625
18.13 Hand Held Devices and Materials Used
in Tem 626
References 629Contents xxxi
19 Recent Advances and Emerging Trends in
Electrical and Electronic Materials 631
19.1 Novel Applications of Functionally Graded Nano,
Optoelectronic and Termoelectric Materials 631
19.1.1 Introduction to Functionally
Graded Materials (FGMs) 632
19.2 CNT Reinforced FGM Composites 633
19.2.1 Applications of CNT in FGM 633
19.3 FGM in Optoelectronic Devices 634
19.3.1 Possible Applications of FGM in
Optoelectronics 634
19.3.2 High-Efcient Photodetectors and Solar Cells 635
19.4 Advanced Termoelectric Materials in
Electrical and Electronic Applications 635
19.4.1 Introduction 636
19.4.2 Termoelectric Power Generator for
Integration in Wearable Microsystems 637
19.4.3 Nano-Termocouple in Termoelectric
Energy Harvesting 637
19.4.4 Low-Cost Micro-Termoelectric Coolers
for Microelectronic Products 638
19.4.5 Termoelectric Water-Cooling Device
for Electronic Equipment 639
19.4.6 Conclusion 640
19.5 Frontiers in Electronic Materials Research 640
19.5.1 Introduction 641
19.6 New Pyroelectric Tin Composite Films 641
19.7 Composite and Nanocomposite Polymer
Electrolytes for Electrochemical Energy Sources 642
19.8 Novel Nanostructured Materials for A Variety
of Renewable Energy Applications 644
19.9 Critical Fields in Lithium Niobate Nano Ferroelectrics 645
19.10 Nanoengineering of Wood Fibres for
Conducting Paper 645
19.11 E?ects of E - Waste on Environment and Teir Solution
by Reclamation of Green Materials From the Waste 646
19.11.1 Introduction 647
19.11.2 Major Sources of E-Waste 648xxxii Contents
19.11.3 Constituent Materials of E-Waste 649
19.11.4 Estimation of the Quantity of E-Waste 649
19.11.5 Problems Created by E-Waste 649
19.11.6 Electronic Waste Reclamation 650
19.11.7 Electronic Waste Recovery and Recycling 651
19.11.8 Advanced Methods of
Environmental-Friendly Recycling 651
19.11.9 Status of Possible Recovery of Useful
Materials from E-Waste in India 652
19.11.10 Conclusions 653
19.12 Plastics in Electrical and Electronics Applications 653
19.12.1 Expanding Plastics 653
19.12.2 Conducting Polymers 654
19.12.3 Polymers in Electronics 654
19.12.4 Liquid Crystal Polymers (LCP) 655
19.12.5 Photocurable Polymers 655
19.12.6 Photorefractive Polymers 656
19.13 Composite Materials for Electronics Applications 656
19.13.1 Magneto-Eletro-Elastic Composite 657
19.13.2 Magnetic Composites 657
19.13.3 Ferrite-Silica Hybridized Composite 658
19.13.4 Composite Electronic Packaging Material 658
19.13.5 Magnetostrictive Material-Shape
Memory Piezoelectric Actuator Composite 659
19.14 Electrical Behaviour of Ceramics 660
19.14.1 Applications of Ceramics 660
19.15 Giant Magneto-Resistance (GMR) 661
19.16 Ferror?uids (or Magnetic Fluids) 661
19.16.1 Types of Ferro?uids 662
19.16.2 Properties of Ferro?uids 663
19.17 Information Storage Density 664
19.17.1 Rare-Earth Aluminates as a Charge
Trapping Materials for Nand Flash Memories 664
19.18 Magnetocaloric Materials 665
19.18.1 Magnetocaloric Materials 665
19.18.2 Working Principle 666
19.18.3 Applications of Magnetocolorifc Materials 666Contents xxxiii
19.19 Magneto-Dielectric Materials 667
19.19.1 Applications of Magneto-Dielectrics 668
19.19.2 Di?erent Types of Magento-Dielectric
Materials 668
19.19.3 Merits of Magneto-Dielectric Materials 669
19.20 Biomimetics and Biomimetic Materials in
Electrical and Electronics Applications 670
19.20.1 Nanotechnology Used to Harness the
Power of Fire?ies 670
19.20.2 Biomimetic Coating for Electric Transmission 671
19.20.3 Optical Biomimetics: Materials and
Applications 672
19.20.4 Display Technology Inspired by Butter?y 672
References 673
Appendix I: SI Prefxes of Multiples and Submultiples 677
Appendix II: Greek Alphabet 679
Appendix III: Conventions to be Followed While Using SI UNIT 681
Appendix IV: Physical Constants 683
Appendix V: Conversion Factors 685
Glossary of Terminologies 687
Answers to Numerical Questions 699
Answers to Objective Questions 705
Index 709


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Advanced Electrical and Electronics Materials
رابط مباشر لتنزيل كتاب Advanced Electrical and Electronics Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Advanced Electrical and Electronics Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: