كتاب Advanced Composite Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب Advanced Composite Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15593
التقييم : 26273
تاريخ التسجيل : 01/07/2009
العمر : 31
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Advanced Composite Materials  Empty
مُساهمةموضوع: كتاب Advanced Composite Materials    كتاب Advanced Composite Materials  Emptyالثلاثاء 08 يناير 2019, 10:58 pm

أخوانى فى الله
أحضرت لكم كتاب
Advanced Composite Materials
Ashutosh Tiwari, Mohammad Rabia Alenezi and Seong Chan Jun
من سلسلة علم المواد المتقدمة
Advanced Material Series

كتاب Advanced Composite Materials  A_c_m_12
ويتناول الموضوعات الأتية :


Contents
Preface xv
1 Composite Materials for Application in Printed Electronics 1
Kamil Janeczek
1.1 Introduction 1
1.2 Filler Materials 5
1.3 Conductive Polymers 9
1.4 Preparation of Electronics Materials for Printing 10
1.5 Overview of Application Fields 13
1.5.1 RF Applications 13
1.5.2 Sensors 25
1.5.3 Electrodes 28
1.6 Conclusions 30
References 31
2 Study of Current-limiting Defects in Superconductors
Using Low-temperature Scanning Laser Microscopy 45
Pei Li and Dmytro Abraimov
2.1 Introduction 46
2.2 Introduction of Low-temperature Scanning
Laser Microscopy and Its Application in Defect Studies
in Superconductors 50
2.2.1 Basic Principle of LTSLM 50
2.2.2 Visualization of Defect-induced Dissipation
and Spatial Jc Distribution 51
2.2.3 Termoelectric Responses from LTSLM 57
2.2.4 Experimental Setup of LTSLM System 60vi Contents
2.3 Case Studies of Using LTSLM to Study Defects in
Superconductors 64
2.3.1 REBCO-coated Conductors Based on
Rolling-assisted Biaxially Textured Substrate 64
2.3.2 MOCVD/IBAD REBCO-coated Conductors 71
2.3.3 Polycrystalline Iron-based Superconductor 76
2.3.4 Te Application of LTSLM in Study of Grain
Boundaries in Superconductors 81
2.4 Conclusions 85
Reference 86
3 Innovative High-tech Ceramics Materials 93
Hüsnügül Y?lmaz Atay
3.1 Introduction 93
3.2 Ceramic Structure 100
3.2.1 Oxide Structures 102
3.2.1.1 Rock Salt Structure 102
3.2.1.2 Wurtzite Structure 102
3.2.1.3 Zinc Blende Structure 102
3.2.1.4 Spinel Structure 103
3.2.1.5 Corundum Structure 103
3.2.1.6 Rutile Structure 103
3.2.1.7 Cesium Chloride Structure 104
3.2.1.8 Fluorite Structure 104
3.2.1.9 Anti?uorite Structure 104
3.2.1.10 Perovskite Structure 104
3.2.1.11 Ilmenite Structure 104
3.2.2 Silicate Structures 104
3.2.2.1 Orthosilicates 105
3.2.3 Clay Minerals 105
3.2.4 Other Structures 106
3.2.4.1 Gibbsite 106
3.2.4.2 Graphite 106
3.2.4.3 Carbides 107
3.2.4.4 Nitrides 107
3.2.5 Glasses 107
3.3 Raw Materials 108
3.4 Processing of Ceramics 111
3.4.1 Forming and Firing 112
3.4.2 Melting and Solidifcation 114
3.4.3 Newer Fabrication Techniques 114Contents vii
3.5 Properties 118
3.6 Some Important Advanced Ceramics 121
3.6.1 Insulating Ceramics/High Termal
Conductive Ceramics 121
3.6.2 Semiconductive Ceramics 122
3.6.2.1 PTC Termistors 122
3.6.2.2 NTC Termistors 122
3.6.2.3 Ceramic Varistors 123
3.6.3 Ionic Conductors/Oxygen Sensors 124
3.6.3.1 Oxygen Sensors for Automobiles 124
3.6.3.2 Tick-flm-type Oxygen Sensor 124
3.6.3.3 Universal Exhaust Gas Oxygen Sensor 125
3.6.3.4 NO
x
sensor 125
3.6.3.5 Oxygen Sensors for Industry 126
3.6.4 Ceramic Fuel Cells 126
3.6.5 Piezoelectric Ceramics 127
3.6.6 Dielectric Ceramics 129
3.6.6.1 Ceramic Capacitors 129
3.6.7 Magnetic Ceramics 130
3.6.8 Optoelectroceramics 131
3.6.9 Superconductive Ceramics 133
3.6.10 High-temperature High-strength Ceramics 134
3.6.11 Porous Ceramics for Filtration 136
3.6.12 Ceramic Bearing 137
3.6.13 Cutting Tools 137
3.6.14 Ceramics for Biomedical Applications 139
3.6.14.1 Ceramics for Artifcial Joints 139
3.6.14.2 Ceramics for Artifcial Bone 140
3.6.14.3 Bioactive Cements 141
3.6.14.4 Ceramics for In Situ Radiotherapy of
Cancers 141
3.6.14.5 Ceramics for In Situ Hyperthermia
Terapy of Cancer 141
3.6.15 Decorative Ceramics 142
3.6.16 Ceramic Materials for Energy Systems 143
3.6.16.1 Li-ion Batteries 143
3.6.17 Extruded Cordierite Honeycomb Ceramics for
Environmental Applications 143
3.6.18 Composites 144
3.6.18.1 Al
2O3–TZP Composites 145
3.6.18.2 SiC–Si
3N4 Composites 145viii Contents
3.6.18.3 Whisker Composites 145
3.6.18.4 SiC Whisker–Al
2O3 Matrix Composites 146
3.6.18.5 SiC Whisker–Si
3N4 Matrix Composites 146
3.6.18.6 Continuous Fiber Composites 147
3.6.18.7 Glass Matrix Composites 147
3.6.18.8 Carbon/Carbon Composites 148
3.6.18.9 SiC/SiC Composites 148
3.6.18.10 Oxide/Oxide Composites 149
3.6.18.11 Eutectic Composites 149
3.7 Conclusions 149
References 150
4 Carbon Nanomaterials-based Enzymatic
Electrochemical Sensing 155
Rooma Devi, Lipsy Chopra, C.R. Suri, D.K. Sahoo
and C.S. Pundir
4.1 Introduction 155
4.2 Carbon Nanomaterials 157
4.2.1 Graphene 159
4.2.1.1 Graphene-based Enzyme Biosensors 159
4.2.2 Carbon Nanotubes 161
4.2.2.1 Single-walled Carbon Nanotubes 162
4.2.2.2 Multi-walled Carbon Nanotubes 164
4.3 Carbon Nanotubes Paste Electrodes 165
4.4 Carbon Nanotube-based Electrodes with Immobilized
Enzymes 166
4.4.1 Enzymes Adsorption 167
4.4.2 Covalent Attachment 168
4.4.3 Afnity Binding 170
4.4.4 Electropolymerization 170
4.4.5 Encapsulation or Entrapment 173
4.5 Fullerene-modifed Electrode 173
4.6 Carbon Nanoonion (CNO)-modifed Electrode 174
4.7 Carbon Nanodiamond-modifed Electrode 174
4.8 Carbon Nanohorns-modifed Electrode 174
4.9 Carbon Nanofbers-based Electrode 175
4.10 Carbon Nanodot-based Electrode 176
4.11 Electrochemical Biosensor 177
4.11.1 Glucose 177
4.11.2 Dopamine 182Contents ix
4.11.3 Cholesterol 183
4.11.4 Creatinine 183
4.11.5 Bilirubin 185
4.11.6 Ascorbic Acid 187
4.11.7 Xanthine 187
4.11.8 Hypoxanthine 189
4.11.9 Uric Acid 190
4.11.10 Amino Acid 191
4.12 Conclusions 192
4.13 Future Developments 194
Acknowledgment 195
References 195
5 Nanostructured Ceramics and Bioceramics for
Bone Cancer Treatment 209
B. Palazzo, S. Scialla, F. Scalera, N. Margiotta
and F. Gervaso1
5.1 Overview 210
5.2 General Concepts onto Bone Cancer and
Bone Metastases 210
5.2.1 Bone Cancer Etiology and Pathogenesis 212
5.2.2 Current and Innovative Terapeutic Treatments
and Related Drawbacks 214
5.2.3 Chemotherapy: Traditional and Innovative
Chemotherapeutic Drugs 218
5.3 Intrinsically Anticancer Nanoceramics 224
5.3.1 Colloidal Nanoceramics for Hyperthermia 225
5.3.2 Magnetic Nanoparticles: Properties, Structures
and Fabrication Methods 227
5.3.2.1 Superparamagnetic Core 228
5.3.2.2 Protective Coating 232
5.3.2.3 Additional Surface Functionality 232
5.3.3 Application of Iron Oxides Magnetic
Nanoparticles as Anticancer Agents 234
5.3.4 Nanoceramics for Radiotherapy 236
5.4 Imprinting Anticancer Properties to Bioceramics by
Chemotherapeutic Functionalization 238
5.4.1 Calcium Phosphates-based Biomaterials
General Features 238
5.4.2 Calcium Phosphates-based Biomaterials as
Anticancer Drugs Carriers 241x Contents
5.4.3 Silica-based Biomaterials General Features 244
5.4.4 Silica-based Biomaterials as Chemotherapeutic
Drugs Releasing Agents 247
5.4.5 Calcium Phosphates and Silica-based
Biomaterials as Injectable Bioceramics 248
5.5 Composite Magnetic Bioceramics 249
5.5.1 Calcium Phosphates-based and Silica-based
Magnetic Bioceramics 250
5.5.2 Magnetically Triggered Drug Release
Nanodevices 253
5.6 Conclusions and Outlook 254
Acknowledgements 256
References 256
6 Terapeutic Strategies for Bone Regeneration:
Te Importance of Biomaterials Testing in Adequate
Animal Models 275
P.O. Pinto, L.M. Atayde, J.M. Campos, A.R. Caseiro,
T. Pereira, C. Mendonça, J.D. Santos and A.C. Maur?cio
6.1 Introduction 276
6.1.1 Autografs 276
6.1.2 Allografs 277
6.1.3 Xenografs 277
6.1.4 Synthetic Bone Grafs 278
6.1.5 Te Role of Morphology in Biological Behavior
of the Biomaterials 283
6.1.5.1 Porosity 285
6.1.5.2 Pore Size 286
6.1.5.3 Total Porous Volume 289
6.1.5.4 Interconnectivity 289
6.1.5.5 Percent Porosity 290
6.1.6 Steam Sterilization 291
6.2 Animal Models Used for In Vivo Testing Bone
of Grafing Products 292
6.3 Histomorphometric Analyses 298
6.4 Histologic Analysis 301
6.5 Conclusions 303
Acknowledgments 306
References 306Contents xi
7 Tuning Hydroxyapatite Particles’ Characteristics for Solid
Freeform Fabrication of Bone Sca?olds 321
F. Miculescu, A. Maidaniuc, G.E. Stan, M. Miculescu,
S.I. Voicu, A. Cîmpean, V. Mitran and D. Batalu
7.1 Introduction 322
7.2 Powder-based Solid Freeform Fabrication of
Naturally Derived Ceramic Components 326
7.2.1 Preliminary Steps 326
7.2.1.1 Preparation of Naturally
Derived Ceramics 326
7.2.1.2 Ceramic Powder Processing 329
7.2.2 Powder-based Solid Freeform Fabrication
Techniques 332
7.2.2.1 Short Introduction on Solid
Freeform Fabrication 332
7.2.2.2 Powder Bed Fusion
(Selective Laser Sintering) 339
7.2.2.3 Binder Jetting (Tridimensional Printing) 343
7.2.2.4 Material Extrusion (Robocasting) 344
7.2.3 Additives and Accessories for Solid Freeform
Fabrication 345
7.2.3.1 Lasers 345
7.2.3.2 Binders 346
7.2.3.3 Coatings 347
7.2.4 Ceramic Materials Used in Solid-free Fabrication 347
7.2.4.1 Requirements for Ceramic Powders
Used in Solid Freeform Fabrication 347
7.2.4.2 Calcium Phosphates for
Bone Substitution 351
7.2.5 Current Challenges and Future Steps
for Solid Freeform Fabricated Medical Devices 356
7.2.5.1 Solid Freeform Fabricated Structures for
Medical Applications 356
7.2.5.2 Porosity’s In?uence on
Vascularization 358
7.2.5.3 Sterilization’s In?uence on
Final Products’ Characteristics 359xii Contents
7.3 Tuning of Naturally Derived Calcium Phosphates for
Solid Freeform Fabrication 362
7.3.1 Phase-tuning by Specifc Heat-treatment
of Bovine Bone 363
7.3.1.1 Te Heating Rate and Holding
Time In?uence 363
7.3.1.2 Temperature’s In?uence 364
7.3.1.3 Heating Environment’s In?uence 366
7.3.1.4 Cooling Conditions In?uence 368
7.3.2 Biocompatibility Evaluation of Naturally
Derived Biphasic Calcium Phosphates 372
7.3.2.1 Non-clinical Trials 373
7.3.2.2 In Vitro Testing of Biphasic Calcium
Phosphates Developed for Additive
Manufacturing 376
7.3.2.3 Challenges Associated with
Biocompatibility Testing: In Vivo
Trials Ethics 381
7.4 Conclusions 383
Acknowledgments 384
References 384
8 Carbon Nanotubes-reinforced Bioceramic Composite:
An Advanced Coating Material for Orthopedic Applications 399
D. Gopi, E. Shinyjoy, L. Kavitha and D. Rajeswari
8.1 Introduction 400
8.2 Materials and Method 407
8.2.1 Chemicals 407
8.2.2 Specimen Preparation 407
8.2.3 Functionalisation of CNTs 408
8.2.4 Preparation of Electrolyte Solution for
CNTs-reinforced Bioceramic Composite
Coatings on Ti 408
8.2.4.1 CNTs-reinforced HAP Composite 408
8.2.4.2 CNTs-reinforced Strontium-substituted
HAP (SrHAP), Magnesium-substituted
HAP (MgHAP), Zinc-substituted
HAP (ZnHAP), and CNTs-reinforced
M(Sr+Mg+Zn) HAP Composite 408Contents xiii
8.2.5 Electrodeposition of CNTs-reinforced Bioceramic
Composite Coatings 410
8.2.6 Pulsed Electrodeposition of CNTs/MHAP 410
8.2.7 Characterization of CNTs-reinforced
Bioceramic Composite Coatings 410
8.2.7.1 Fourier Transform Infrared
Spectroscopic Studies 410
8.2.7.2 X-ray Di?raction Studies 411
8.2.7.3 Scanning Electron Microscopic Studies 411
8.2.7.4 Energy-dispersive X-ray
Analysis (EDX) 411
8.2.7.5 Transmission Electron
Microscopic Studies 412
8.2.7.6 X-ray Photoelectron Spectroscopic
Studies 412
8.2.7.7 Electrochemical Characterization 412
8.2.7.8 Mechanical Characterization 414
8.2.7.9 Inductively Coupled Plasma Atomic
Emission Spectroscopy 414
8.2.7.10 Evaluation of Biological Properties 414
8.3 Results and Discussion 417
8.3.1 CNTs-reinforced Hydroxyapatite Composite
Coatings on Ti 417
8.3.1.1 Surface Characterization 417
8.3.1.2 Morphological Characterization 418
8.3.1.3 Bioresistance of CNTs/HAP
Composite-coated Ti 421
8.3.1.4 Mechanical Characterization 425
8.3.1.5 In vitro Cytotoxicity Studies with
L929 Mouse Fibroblast Cells 426
8.3.2 CNTs-reinforced Minerals-substituted
Hydroxyapatite Composite Coatings on Ti 426
8.3.2.1 Surface Characterization 426
8.3.2.2 Morphological Analysis of the
Composite Coatings 429
8.3.2.3 Bioresistance of CNTs-reinforced
Mineralized Composite Coatings on Ti 430
8.3.2.4 Biocompatibility of the
CNTs-reinforced Mineralized
HAP Composite Coatings 432
8.3.2.5 ICPAES Analysis 4348.3.3 CNTs-reinforced Multiminerals-substituted
Hydroxyapatite Composite Coatings on Ti by
Pulsed Electrodeposition 435
8.3.3.1 Morphological Results and
Elemental Mapping Analysis 435
8.3.3.2 Mechanical Characterizations 437
8.3.3.3 Biological Characterizations 437
8.4 Conclusion 444
Acknowledgments 445
References 445
Index 453


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Advanced Composite Materials
رابط مباشر لتنزيل كتاب Advanced Composite Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Advanced Composite Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: