Admin مدير المنتدى
عدد المساهمات : 18956 التقييم : 35374 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Catalytic Materials الأربعاء 02 يناير 2019, 4:03 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Catalytic Materials من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari and Salam Titinchi
ويتناول الموضوعات الأتية :
Contents Preface xv Part I: Nanocatalysts – Architecture and Design 1 1 Environmental Applications of Multifunctional Nanocomposite Catalytic Materials: Issues with Catalyst Combinations 3 James A. Sullivan, Orla Keane, Petrica Dulgheru and Niamh O’Callaghan 3 1.1 Introduction 3 1.1.1 Te Tree Way Catalyst 4 1.1.2 Operation and Composition of the TWC 5 1.1.3 Process Control to Allow the TWC Operate 6 1.1.4 Changes to Catalyst Formulations Allowing Oscillating A/F Ratios 7 1.1.5 Problems with TWC Technology 7 1.2 Proposed Solutions to the Lean-Burn NOx emission Problems 9 1.2.1 NH 3-SCR 9 1.2.1.1 TiO 2-Supported V2O5 Catalysts 11 1.2.1.2 Ion-Exchanged Zeolites in NH3-SCR 12 1.2.1.3 SCR-Urea Reactions 13 1.2.2 NOx Trapping 14 1.3 Multifunctional Materials to Combine NH 3-SCR and NSR Cycles 17 1.4 Particulate Matter, Formation, Composition and Dangers 19 1.4.1 Particulate Matter Afertreatment Technology 20 1.4.2 Particulate Traps and Regeneration 20 1.5 Use of Multifunctional Materials to Combust C(s) and Trap NOx 22 1.6 Multifunctional Materials in Selective Catalytic Oxidation 23 1.6.1 Current Epoxidation Reactions 24 1.6.2 H 2O2 as a Selective Oxidant 25 1.6.3 Current and Greener H 2O2 Production 26vi Contents 1.7 Proposed Tandem Catalysts for “Green” Selective Epoxidation 28 1.8 Conclusions 29 Acknowledgements 30 References 30 2 Chemical Transformation of Molecular Precursor into Well-Defned Nanostructural Functional Framework via Sof Chemical Approach 37 Taimur Athar 37 2.1 Introduction 38 Aims and Objective of the Chapter 40 2.2 Te Chemistry of Metal Alkoxides 41 2.3 Te Chemistry of Nanomaterials 47 2.4 Preparation of Monometallic Alkoxides and Its Conversion into Corresponding Metal Oxides 52 2.5 Techniques used to Characterization of Precursor and Inorganic Material 54 2.5.1 1H NMR 55 2.5.2 FT-IR Spectroscopy 55 2.5.3 UV–Visible Spectroscopy 55 2.5.4 Raman Spectroscopy 56 2.5.5 Termal Analysis 56 2.5.6 XRD Studies 56 2.5.7 SEM-EDX 57 2.5.8 Energy Dispersive X-Ray Analysis (EDX) 57 2.5.9 TEM 58 2.5.10 STM 58 2.5.11 AFM 58 2.5.12 BET 58 2.5.13 Photoluminescence Spectroscopy 59 2.5.14 Particle size and Its Distribution along with Shape 59 2.6 Conclusion 60 Acknowledgement 60 References 61 3 Graphenes in Heterogeneous Catalysis 69 Josep Albero and Hermenegildo Garcia 69 3.1 Introduction 69 3.1.1 Carbocatalysis 69 3.1.2 Structure and Properties of G 70Contents vii 3.1.3 Defects on G and GO 73 3.1.4 Doped Gs. Properties and Interest in Catalysis 75 3.1.5 Preparation of Doped Gs 77 3.1.6 Preparation Procedures 79 3.1.7 Characterization Techniques 85 3.2 Carbocatalysis 89 3.3 G Materials as Carbocatalysts 92 3.3.1 G as Oxidation Catalyst 92 3.3.2 Reduction 100 3.3.3 G as Acid/Base Catalysts 102 3.4 G as Support of Metal NPs 104 3.4.1 G as Support of Metal NPs Used as Catalyst for Oxidation Reactions 106 3.4.2 Metal NPs Supported in G-Based Materials as Catalyst for Reduction Reactions 109 3.4.3 Metal NPs Supported in G-Based Materials as Catalyst for Coupling Reactions 111 3.4.4 Metal NPs Supported in G-Based Materials as Catalyst for Hydrogen Release 114 3.5 Summary and Future Prospects 115 References 116 4 Gold Nanoparticles–Graphene Composites Material: Synthesis, Characterization and Catalytic Application 121 Najrul Hussain, Gitashree Darabdhara and Manash R. Das 121 4.1 Introduction 122 4.2 Synthesis of Au NPs–rGO Composites and Its Characterization 124 4.2.1 In Situ Synthesis of Au NPs–rGO Composite Materials 124 4.2.1.1 Termal Reduction 124 4.2.1.2 Chemical Reduction 126 4.2.1.3 Gas Phase Chemical Reduction 131 4.2.1.4 Electrochemical Deposition of Au NPs onto Graphene Sheets 133 4.2.1.5 Photo-Assisted Reduction 133 4.2.1.6 Ultrasonication 134 4.2.1.7 Microwave-Assisted Synthesis 134 4.2.2 Ex Situ Synthesis of Au NPs–rGO Nanocomposites 135 4.3 Catalytic Application of Au NPs–rGO Composites 136 4.4 Future Prospects 138viii Contents Acknowledgements 138 References 139 Part II: Organic and Inorganic Catalytic Transformations 143 5 Hydrogen Generation from Chemical Hydrides 145 Mehmet Sankir, Levent Semiz, Ramis B. Serin, Nurdan D. Sankir and Derek Baker 145 5.1 Introduction: Overview of Hydrogen 146 5.2 Hydrogen Generation 148 5.2.1 Measurement Techniques 148 5.2.2 Reactions 150 5.2.3 Rate Calculations and Yields 153 5.3 Type of Catalysts and Catalyst Morphologies 159 5.3.1 Powder Catalysts 159 5.3.1.1 Monometallic Ni(0) 159 5.3.1.2 Monometallic Co-P 160 5.3.1.3 Monometallic CoO 160 5.3.1.4 Monometallic Cu 160 5.3.1.5 Bimetallic Pt-Ru 161 5.3.1.6 Bimetallic Co-Co 2B and Ni-Ni3B 161 5.3.1.7 Bimetallic Pt x Ni 1-x 161 5.3.1.8 Ternary Pd-Ni-B Nanoclusters 162 5.3.1.9 Quaternary Co–La–Zr–B 162 5.3.1.10 Quaternary Co–Mo–Pd–B 163 5.3.2 Supported Catalysts 163 5.3.2.1 Cobalt (Co) on Mesoporous Silica 163 5.3.2.2 Cobalt (Co) on Carbon 165 5.3.2.3 Cobalt (Co) on Oxides (TiO2, Al2O3, CeO2) 165 5.3.2.4 Cobalt (Co) on Polymers 166 5.3.2.5 Co(II)-Cu(II) On Polymer 166 5.3.2.6 Ni on Polymers 167 5.3.2.7 Co-Ni-P on Pd-Activated TiO 2 167 5.3.2.8 Ni 3B on Carbon 167 5.3.2.9 Ni-Ru Nanocomposite 168 5.3.2.10 Pt on Carbon 168 5.3.2.11 Pt on TiO 2 168 5.3.2.12 Ru on Carbon 169 5.3.2.13 Ru on Al 2O3, TiO2, CeO2, Activated Carbon 169Contents ix 5.3.2.14 Noble Metal Nanoclusters (Ru, Rh, Pd, Pt, Au) on Alumina, Carbon and Silica 170 5.3.2.15 PtPdRu on CNTs (Carbon Nanotubes) 171 5.3.3 Foam and Film Supports 171 5.3.3.1 Fe–Co–B on Ni Foam 171 5.3.3.2 Co-B on Ni Foam 171 5.3.3.3 Ni–B on Ni Foam 172 5.3.3.4 Mg, Al on Ni Foam 172 5.3.3.5 FeB on Ni Foam 173 5.3.3.6 Co-Ni-P on Cu Sheet 173 5.3.3.7 Co-W-P on Cu Plate 173 5.3.3.8 Fe-B on Carbon Cloth 174 5.3.3.9 Cu Film on Cu Foil 174 5.3.3.10 Co-B Film 174 5.3.3.11 Dealloyed Precious Metals on Te?on or Asymmetric Membranes 174 5.4 Kinetics and Models 177 5.4.1 Zero-Order Kinetic Model 177 5.4.2 First-Order Kinetic Model 178 5.4.3 Langmuir–Hinshelwood Model 180 5.5 Hydrogen Generation for PEMFCs 183 5.5.1 Proton-Exchange Membrane Fuel Cells 183 5.6 Conclusions 186 Acknowledgements 187 References 187 6 Ring-Opening Polymerization of Lactide 193 Alekha Kumar Sutar, Tungabidya Maharana, Anita Routaray and Nibedita Nath 193 Abbreviation 194 6.1 Introduction 194 6.2 Aluminum Metal 195 6.3 Importance of Polylactic Acid 196 6.4 Ring-Opening Polymerization (ROP) 197 6.5 Application of Di?erent Catalytic System in ROP of Lactide 197 6.5.1 Alkyl Aluminum Catalyst 198 6.5.2 Alkoxy Aluminum Catalyst 207 6.5.3 Bimetallic Aluminum Catalyst 217 6.6 Concluding Remarks 220 Acknowledgments 221 References 221x Contents 7 Catalytic Performance of Metal Alkoxides 225 Mahdi Mirzaee, Mahmood Norouzi, Adonis Amoli, and Azam Ashrafan 225 7.1 Introduction 225 7.2 Metal Alkoxides 226 7.3 Polymerization Reactions Catalyzed by Metal Alkoxides 227 7.3.1 Ring Opening Polymerization of Olefn Oxides 227 7.3.2 Ring Opening Polymerization of Cyclic Esters 230 7.3.2.1 Lactide 231 7.3.2.2 ?-Caprolactone 242 7.3.2.3 ?-Butyrolactone 244 7.3.2.4 Other Miscellaneous Polymerization Reactions 249 7.4 Reduction Reactions Catalyzed by Metal Alkoxides 250 7.4.1 Hydrogenation 250 7.4.2 Meerwein–Ponndorf–Verley Reaction 251 7.4.3 Reduction Reaction with Borane 255 7.5 Oxidation Reactions Catalyzed by Metal Alkoxides 256 7.5.1 Oxidation of Sulfdes 256 7.5.2 Oxidation of Olefns 258 7.6 Other Miscellaneous Metal Alkoxide Catalysis Reactions 259 7.6.1 Reactions Catalyzed by s-Block Metal Alkoxides 259 7.6.2 Reactions Catalyzed by p-Block Metal Alkoxides 260 7.6.3 Reactions Catalyzed by d-Block Metal Alkoxides 261 7.6.4 Reactions Catalyzed by f-Block Metal Alkoxides 265 7.7 Conclusion 266 Acknowledgment 267 References 267 8 Cycloaddition of CO2 and Epoxides over Reusable Solid Catalysts 271 Luis F. Bobadilla, Sérgio Lima, and Atsushi Urakawa 271 8.1 Introduction: CO 2 as Raw Material 271 8.2 Properties and Applications of Cyclic Carbonates 273 8.3 Synthesis of Cyclic Carbonates from the Cycloaddition Reaction of CO 2 with Epoxides 275 8.3.1 Inorganic Materials 276 8.3.1.1 Hydrotalcites as Precursors of Mixed Oxides 276 8.3.1.2 Pure and Mixed Metal Oxides 278 8.3.1.3 Layered Clay Mineral (Hydroxyapatites and Smectites) 284Contents xi 8.3.1.4 Zeolite and Molecular Sieves Materials 286 8.3.2 Organic Materials 287 8.3.2.1 Functionalized Chitosan (CS) 287 8.3.2.2 Functionalized Cross-linked Polymers and Resins 290 8.3.3 Organic–Inorganic Hybrid Composites 294 8.3.3.1 Functionalized Silica-Based Catalysts 295 8.3.3.2 Functionalized Mesoporous Ordered Materials 299 8.3.3.3 Supported Organometallic Complexes Catalysts 303 8.3.3.4 Metal Organic Frameworks (MOFs) 304 8.3.3.5 Polyoxometalate-Based Materials 306 8.4 Concluding Remarks and Future Perspectives 306 References 307 Part III: Functional Catalysis: Fundamentals and Applications 313 9 Catalytic Metal-/Bio-composites for Fine Chemicals Derived from Biomass Production 315 Madalina Tudorache, Simona M. Coman, and Vasile I. Parvulescu 315 9.1 Introduction 316 9.2 Metal Composites with Catalytic Activity in Biomass Conversion 317 9.2.1 Ru-Based Materials as Efcient Catalysts for the Cellulose Valorization 318 9.2.2 Key Catalytic Features: Platform Molecules Nature Relationship 321 9.3 Catalytic Biocomposites with Heterogeneous Design 328 9.3.1 Enzyme Composites in Catalytic Conversion of Biomass 328 9.3.2 Immobilized Enzymes on Magnetic Particles (IEMP) 332 9.3.3 Carrier-Free Immobilized Enzymes 335 9.3.4 Enzyme and Neoteric Solvent Mixture 341 9.3.5 New Immobilized Enzyme Architectures 343 9.3.6 Biocomposites Using Whole Cell 343 9.4 Conclusions 345 References 345xii Contents 10 Homoleptic Metal Carbonyls in Organic Transformation 353 Badri Nath Jha, Abhinav Raghuvanshi and Pradeep Mathur 353 10.1 Introduction 353 10.2 Cycloaddition 354 10.2.1 [2+2+1] Cycloaddition 355 10.2.2 Regioselective [2+2+2] Cycloaddition 355 10.3 Carbonylation 358 10.3.1 Carbonylation of Unactivated C(sp3)–H Bonds 358 10.3.2 Oxidative Carbonylation of Arylamines 361 10.3.3 Tiolative Lactonization of Alkynes with Double CO Incorporation 362 10.3.4 Synthesis of Succinimides with Double Carbonylation 362 10.4 Silylation 363 10.4.1 Hydrosilylation of Conjugated Dienes 365 10.5 Amidation of Adamantane and Diamantane 366 10.6 Reduction of N,N-Dimethylthioformamide 367 10.7 Reductive N-Alkylation of Primary Amides with Carbonyl Compounds 368 10.8 Synthesis of N-Fused Tricyclic Indoles 369 10.9 Cyclopropanation of Alkenes 369 Conclusion 378 References 378 11 Zeolites: Smart Materials for Novel, Efcient, and Versatile Catalysis 385 Mayank Pratap Singh, Garima Singh Baghel, Salam J. J. Titinchi and Hanna S. Abbo 11.1 Introduction 385 11.2 Structures and Properties 388 11.2.1 Porosity of Zeolites 389 11.2.2 Zeolites Characterization 392 11.3 Synthesis of Zeolites 393 11.4 Application of Zeolites in Catalysis 395 11.4.1 Electrophilic Aromatic Substitutions 396 11.4.2 Additions and Eliminations 398 11.4.3 Rearrangements and Isomerizations 398 11.4.4 Cyclizations 399 11.4.5 Zeolites Supported Enantioselective Catalysis 400 11.4.5(a) Zeolite Supported Catalysts for Chiral Hydrogenation 400Contents xiii 11.4.5(b) Epoxidation and Aziridination 401 11.5 Medical Applications of Zeolites 404 11.5.1 Heavy-Metal Removal 404 11.5.2 Antimicrobial E?ects 405 11.5.3 External Applications 405 11.6 Conclusions 406 References 406 12 Optimizing Zeolitic Catalysis for Environmental Remediation 411 Chrispin Ounga Kowenje and Elly Tetty Osewe Acronyms 411 Defnition of Terms 412 12.1 Introduction 413 12.1.1 Identifcation and Development of Nanomaterials 414 12.1.2 General Applications of Zeolites on Water Purifcation 415 12.1.3 Wastewater Re-use by Regions of the World 416 12.2 Structure of Zeolites 417 12.2.1 Zeolite Framework 417 12.2.2 Charge Development in the Zeolites 418 12.3 Categorization and Characterization of Zeolites 419 12.3.1 Name Codes for Synthetic Zeolites 419 12.3.2 Name Codes for Natural Zeolites 419 12.4 Properties of Zeolites and Teir E?ects 421 12.4.1 E?ects of Si/Al Ratio 421 12.4.1.1 E?ects of Si/Al on Resultant Reacting Solution pH 422 12.4.2 E?ects of Ion-Exchange Capacity in Zeolites 423 12.4.2.1 Removal of Heavy Metals 423 12.4.2.2 Desalination of Sea Water 424 12.4.2.3 Removal of Inorganic Anions 424 12.4.2.4 Removal of Humic Substances 424 12.4.3 Window Opening (Pore Size) and Internal Surface Area 425 12.4.3.1 Determining Kinetic Diameter of a Molecule 425 12.4.3.2 E?ects of Internal Surface Area and Window Opening 427 12.4.3.3 Application in Reverse Osmosis (RO) 428xiv Contents 12.4.3.4 Removal of Other Organics 429 12.4.3.5 Capturing of Microorganisms 429 12.4.3.6 Applications in Permeable Reactive Barriers (PRB) 429 12.4.3.7 Molecular Sieve E?ects 430 12.4.4 E?ects of Channel, Cage, or Cavity Dimensionality 431 12.4.5 E?ects of Hydrophobicity and Hydrophilicity of the Zeolites 433 12.5 E?ects of Chemical Modifcation 434 12.6 Summary 436 References 436 Index 43
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Catalytic Materials رابط مباشر لتنزيل كتاب Advanced Catalytic Materials
|
|