Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Bioelectronic Materials الأربعاء 02 يناير 2019, 3:53 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Bioelectronic Materials من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari, Hirak K. Patra and Anthony P.F. Turner
ويتناول الموضوعات الأتية :
Contents Preface xv Part 1 Recent Advances in Bioelectronics 1 1 Micro- and Nanoelectrodes in Protein-Based Electrochemical Biosensors for Nanomedicine and Other Applications 3 Niina J. Ronkainen 1.1 Introduction 4 1.2 Microelectrodes 7 1.2.1 Electrochemistry and Advantages of Microelectrodes 7 1.2.2 Applications, Cleaning, and Performance of Microelectrodes 16 1.3 Nanoelectrodes 18 1.3.1 Electrochemistry and Advantages of Nanoelectrodes 21 1.3.2 Applications and Performance of Nanoelectrodes 23 1.4 Integration of the Electronic Transducer, Electrode, and Biological Recognition Components (such as Enzymes) in Nanoscale-Sized Biosensors and Teir Clinical Applications 26 1.5 Conclusion 27 Acknowledgment 28 References 28 2 Radio-Frequency Biosensors for Label-Free Detection of Biomolecular Binding Systems 35 Hee-Jo Lee, Sang-Gyu Kim, and Jong-Gwan Yook 2.1 Overview 35 2.2 Introduction 36viii Contents 2.3 Carbon Nanotube-Based RF Biosensor 37 2.3.1 Carbon Nanotube 37 2.3.2 Fabrications of Interdigital Capacitors with Carbon Nanotube 38 2.3.3 Functionalization of Carbon Nanotube 39 2.3.4 Measurement and Results 40 2.4 Resonator-Based RF Biosensor 40 2.4.1 Resonator 40 2.4.2 Sample Preparation and Measurement 42 2.4.3 Functionalization of Resonator 42 2.5 Active System-Based RF Biosensor 45 2.5.1 Principle and Conf guration of System 45 2.5.2 Fabrication of RF Active System with Resonator 46 2.5.2.1 Functionalization of Resonator 46 2.5.3 Measurement and Result 47 2.6 Conclusions 49 Abbreviations 51 References 52 3 Afnity Biosensing: Recent Advances in Surface Plasmon Resonance for Molecular Diagnostics 55 S. Scarano, S. Mariani, and M. Minunni 3.1 Introduction 56 3.2 Artists of the Biorecognition: New Natural and Synthetic Receptors as Sensing Elements 58 3.2.1 Antibodies and Teir Mimetics 58 3.2.2 Nucleic Acids and Analogues 62 3.2.3 Living Cells 63 3.3 Recent Trends in Bioreceptors Immobilization 65 3.4 Trends for Improvements of Analytical Performances in Molecular Diagnostics 69 3.4.1 Coupling Nanotechnology to Biosensing 70 3.4.2 Micro?uidics and Microsystems 76 3.4.3 Hyphenation 78 3.5 Conclusions 78 References 80 4 Electropolymerized Materials for Biosensors 89 Gennady Evtugyn, Anna Porfreva and Tibor Hianik 4.1 Introduction 89Contents ix 4.2 Electropolymerized Materials Used in Biosensor Assembly 93 4.2.1 General Characteristic of Electropolymerization Techniques 93 4.2.2 Instrumentation Tools for Monitoring of the Redox-Active Polymers in the Biosensor Assembly 97 4.2.3 Redox-Active Polymers Applied in Biosensor Assembly 99 4.3 Enzyme Sensors 107 4.3.1 PANI-Based Enzyme Sensors 107 4.3.2 PPY and Polythiophene-Based Enzyme Sensors 117 4.3.3 Enzyme Sensors Based on Other Redox-Active Polymers Obtained by Electropolymerization 127 4.3.4 Enzyme Sensors Based on Other Polymers Bearing Redox Groups 135 4.4 Immunosensors Based on Redox-Active Polymers 137 4.5 DNA Sensors Based on Redox-Active Polymers 149 4.5.1 PANI-Based DNA Sensors and Aptasensors 149 4.5.2 PPY-Based DNA Sensors 153 4.5.3 Tiophene Derivatives in the DNA Sensors 157 4.5.4 DNA Sensors Based on Polyphenazines and Other Redox-Active Polymers 159 4.6 Conclusion 162 Acknowledgments 163 References 163 Part 2 Advanced Nanostructures in Biosensing 187 5 Graphene-Based Electrochemical Platform for Biosensor Applications 189 Norazriena Yuso?, Alagarsamy Pandikumar, Huang Nay Ming, and Lim Hong Ngee 5.1 Introduction 189 5.2 Graphene 192 5.3 Synthetic Methods for Graphene 195 5.4 Properties of Graphene 197 5.5 Multi-functional Applications of Graphene 199 5.6 Electrochemical Sensor 200x Contents 5.7 Graphene as Promising Materials for Electrochemical Biosensors 201 5.7.1 Graphene-Based Modifed Electrode for Glucose Sensors 201 5.7.2 Graphene-Based Modifed Electrode for NADH Sensors 202 5.7.3 Graphene-Based Modifed Electrode for NO Sensors 204 5.7.4 Graphene-Based Modifed Electrode for H2O2 206 5.8 Conclusion and Future Outlooks 207 References 208 6 Fluorescent Carbon Dots for Bioimaging 215 Suresh Kumar Kailasa, Vaibhavkumar N. Mehta, Nazim Hasan, and Hui-Fen Wu 6.1 Introduction 215 6.2 CDs as Fluorescent Probes for Imaging of Biomolecules and Cells 216 6.3 Conclusions and Perspectives 224 References 224 7 Enzyme Sensors Based on Nanostructured Materials 229 Nada F. Atta, Shimaa M. Ali, and Ahmed Galal 7.1 Biosensors and Nanotechnology 229 7.2 Biosensors Based on Carbon Nanotubes (CNTs) 230 7.2.1 Glucose Biosensors 233 7.2.2 Cholesterol Biosensors 237 7.2.3 Tyrosinase Biosensors 240 7.2.4 Urease Biosensors 243 7.2.5 Acetylcholinesterase Biosensors 244 7.2.6 Horseradish Peroxidase Biosensors 246 7.2.7 DNA Biosensors 248 7.3 Biosensors Based on Magnetic Nanoparticles 252 7.4 Biosensors Based on Quantum Dots 260 7.5 Conclusion 267 References 268 8 Biosensor Based on Chitosan Nanocomposite 277 Baoqiang Li, Yinfeng Cheng, Feng Xu, Lei Wang, Daqing Wei, Dechang Jia, Yujie Feng, and Yu Zhou 8.1 Introduction 278Contents xi 8.2 Chitosan and Chitosan Nanomaterials 278 8.2.1 Physical and Chemical Properties of Chitosan 279 8.2.2 Biocompatibility of Chitosan 280 8.2.3 Chitosan Nanomaterials 281 8.2.3.1 Blending 281 8.2.3.2 In Situ Hybridization 282 8.2.3.3 Chemical Grafing 285 8.3 Application of Chitosan Nanocomposite in Biosensor 285 8.3.1 Biosensor Confgurations and Bioreceptor Immobilization 285 8.3.2 Biosensor Based on Chitosan Nanocomposite 287 8.3.2.1 Biosensors Based on Carbon Nanomaterials–Chitosan Nanocomposite 287 8.3.2.2 Biosensors Based on Metal and Metal Oxide–Chitosan Nanocomposite 290 8.3.2.3 Biosensors Based on Quantum Dots–Chitosan Nanocomposite 293 8.3.2.4 Biosensors Based on Ionic Liquid–Chitosan Nanocomposite 293 8.4 Emerging Biosensor and Future Perspectives 294 Acknowledgments 298 References 298 Part 3 Systematic Bioelectronic Strategies 309 9 Bilayer Lipid Membrane Constructs: A Strategic Technology Evaluation Approach 311 Christina G. Siontorou 9.1 Te Lipid Bilayer Concept and the Membrane Platform 312 9.2 Strategic Technology Evaluation: Te Approach 318 9.3 Te Dimensions of the Membrane-Based Technology 319 9.4 Technology Dimension 1: Fabrication 322 9.4.1 Suspended Lipid Platforms 322 9.4.2 Supported Lipid Platforms 327 9.4.3 Micro- and Nano-Fabricated Lipid Platforms 331 9.5 Technology Dimension 2: Membrane Modelling 333 9.6 Technology Dimension 3: Artifcial Chemoreception 336 9.7 Technology Evaluation 337 9.8 Concluding Remarks 339 Abbreviations 340 References 340xii Contents 10 Recent Advances of Biosensors in Food Detection Including Genetically Modifed Organisms in Food 355 T. Varzakas, Georgia-Paraskevi Nikoleli, and Dimitrios P. Nikolelis 10.1 Electrochemical Biosensors 356 10.2 DNA Biosensors for Detection of GMOs Nanotechnology 360 10.3 Aptamers 371 10.4 Voltammetric Biosensors 372 10.5 Amperometric Biosensors 373 10.6 Optical Biosensors 374 10.7 Magnetoelastic Biosensors 375 10.8 Surface Acoustic Wave (SAW) Biosensors for Odor Detection 375 10.9 Quorum Sensing and Toxo?avin Detection 376 10.10 Xanthine Biosensors 377 10.11 Conclusions and Future Prospects 378 Acknowledgments 379 References 379 11 Numerical Modeling and Calculation of Sensing Parameters of DNA Sensors 389 Hediyeh Karimi, Farzaneh Sabbagh, Mohammad Eslami, Hamid sheikhveisi, Hossein Samadyar, and Omid Talaee 11.1 Introduction to Graphene 390 11.1.1 Electronic Structure of Graphene 391 11.1.2 Graphene as a Sensing Element 391 11.1.3 DNA Molecules 392 11.1.4 DNA Hybridization 392 11.1.5 Graphene-Based Field E?ect Transistors 394 11.1.6 DNA Sensor Structure 395 11.1.7 Sensing Mechanism 396 11.2 Numerical Modeling 397 11.2.1 Modeling of the Sensing Parameter (Conductance) 397 11.2.2 Current–Voltage (Id–Vg) Characteristics Modeling 400 11.2.3 Proposed Alpha Model 401 11.2.4 Comparison of the Proposed Numerical Model with Experiment 404 References 407Contents xiii 12 Carbon Nanotubes and Cellulose Acetate Composite for Biomolecular Sensing 413 Padmaker Pandey, Anamika Pandey, O. P. Pandey, and N. K. Shukla 12.1 Introduction 413 12.2 Background of the Work 416 12.3 Materials and Methodology 419 12.3.1 Preparation of Membranes 419 12.3.2 Immobilisation of Enzyme 420 12.3.3 Assay for Measurement of Enzymatic Reaction 420 12.4 Characterisation of Membranes 420 12.4.1 Optical Microscope Characterisation 420 12.4.2 Scanning Electron Microscope Characterisation 422 12.5 pH Measurements Using Di?erent Membranes 422 12.5.1 For Un-immobilised Membranes 422 12.5.2 For Immobilised Membranes 422 12.6 Conclusion 424 Reference 425 13 Review of the Green Synthesis of Metal/Graphene Composites for Energy Conversion, Sensor, Environmental, and Bioelectronic Applications 427 Shude Liu, K.S. Hui, and K.N. Hui 13.1 Introduction 428 13.2 Metal/Graphene Composites 428 13.3 Synthesis Routes of Graphene 429 13.3.1 CVD Synthesis of Graphene 429 13.3.2 Liquid-Phase Production of Graphene 433 13.3.3 Epitaxial Growth of Graphene 436 13.4 Green Synthesis Route of Metal/Graphene Composites 438 13.4.1 Microwave-Assisted Synthesis of Metal/Graphene Composites 439 13.4.2 Non-toxic Reducing Agent 442 13.4.3 In Situ Sonication Method 444 13.4.4 Photocatalytic Reduction Method 446 13.5 Green Application of Metal/Graphene and Doped Graphene Composites 447 13.5.1 Energy Storage and Conversion Device 447 13.5.2 Electrochemical Sensors 45013.5.3 Wastewater Treatment 451 13.5.4 Bioelectronics 452 13.6 Conclusion and Future Perspective 456 Acknowledgments 457 References 457 14 Ion Exchangers – An Open Window for the Development of Advanced Materials with Pharmaceutical and Medical Applications 467 Silvia Vasiliu, Violeta Celan, Stefania Racovita, Cristina Doina Vlad, Maria-Andreea Lungan, and Marcel Popa 14.1 Introduction 468 14.1.1 Classifcation of IER 469 14.2 Characteristics of IER and Methods of Characterization 470 14.2.1 Crosslinking Degree 470 14.2.2 Moisture Content and Swelling Degree 471 14.2.3 Particle Size and Particle Size Distribution 472 14.2.4 Porosity 472 14.2.5 Ion Exchange Capacity 473 14.2.6 Functional Groups 474 14.2.7 Selectivity of the IER 475 14.2.8 Stability 475 14.2.9 Toxicity 476 14.3 Resinate Preparation 476 14.4 Pharmaceutical and Medical Applications 477 14.4.1 Taste and Odor Masking 479 14.4.2 Tablet Disintegrant and Rapid Dissolution of Drug 482 14.4.3 Controlled Drug Delivery 482 14.4.3.1 Oral Drug Delivery 486 14.4.3.2 Ophthalmic Drug Delivery 491 14.4.3.3 Ion Exchangers for Cancer Treatment 493 14.4.4 Transdermal Drug Delivery Systems 494 14.4.5 Ion Exchangers as Terapeutics 494 14.5 Conclusions 495 References 495 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Bioelectronic Materials رابط مباشر لتنزيل كتاب Advanced Bioelectronic Materials
|
|