كتاب Advanced Molecularly Imprinting Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Advanced Molecularly Imprinting Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18864
التقييم : 35108
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Advanced Molecularly Imprinting Materials  Empty
مُساهمةموضوع: كتاب Advanced Molecularly Imprinting Materials    كتاب Advanced Molecularly Imprinting Materials  Emptyالجمعة 28 ديسمبر 2018, 7:36 am

أخوانى فى الله
أحضرت لكم كتاب
Advanced Molecularly Imprinting Materials
Ashutosh Tiwari and Lokman Uzun
من سلسلة علم المواد المتقدمة  
Advanced Material Series  

كتاب Advanced Molecularly Imprinting Materials  A_m_i_10
ويتناول الموضوعات الأتية :


Contents
Preface xvii
Part 1 Strategies of Afnity Materials
1 Recent Molecularly Imprinted Polymer-based
Methods for Sample Preparation 3
Antonio Mart?n-Esteban
1.1 Introduction 3
1.2 Molecularly Imprinted Solid-phase Extraction 6
1.2.1 General Considerations 6
1.2.2 Online and Inline Protocols 11
1.2.3 Improved Batch Protocols 13
1.3 Molecularly Imprinted Solid-phase Microextraction 14
1.3.1 MIP-coated Fibers 14
1.3.2 MIP Fibers (Monoliths) 16
1.4 Molecularly Imprinted Stir Bar Sorptive Extraction 17
1.5 Other Formats 18
1.5.1 Matrix Solid-phase Dispersion 18
1.5.2 Liquid Membranes and MIPs Combination 19
1.6 Conclusions 21
References 21
2 A Genuine Combination of Solvent-free Sample Preparation
Technique and Molecularly Imprinted Nanomaterials 29
Santanu Patra, Ekta Roy, Rashmi Madhuri and
Prashant K. Sharma
2.1 Introduction 30
2.1.1 Te Overview 30
2.1.2 General Procedure for Solid-phase
Microextraction and Teir Basic Components 33vi Contents
2.1.3 Some Recent Examples of Solid-phase
Microextraction Technique and Teir Reviews 36
2.1.4 Selectivity Problem: Introduction of Molecularly
Imprinted Polymer (MIP) 37
2.2 Molecularly Imprinted Polymer Modifed Fiber
for Solid-phase Microextraction 40
2.2.1 MISPME Using Modifed Silica fber as
Stationary Phase 40
2.2.2 MISPME Using Modifed Metal Fiber as
Stationary Phase 49
2.2.3 Other MISPME Fibers 54
2.3 In-tube Solid-phase Microextraction Technique 55
2.4 Monolithic Fiber 58
2.5 Micro-solid-phase Extraction 70
2.6 Stir-bar Sorptive Extraction 73
2.7 Conclusion and Future Scope 76
Acknowledgments 76
Abbreviations 77
References 78
3 Fluorescent Molecularly Imprinted Polymers 89
Kornelia Gawlitza, Wei Wan, Sabine Wagner
and Knut Rurack
3.1 Introduction 89
3.2 Classes of Emitters to Endow MIPs with Fluorescence 91
3.2.1 Fluorescent Dyes 91
3.2.1.1 Changes in the Local Environment
Induced by Template Rebinding 92
3.2.1.2 Hydrogen-bonding Interactions Between
Template and Fluorescent Dye 95
3.2.1.3 Electrostatic Interactions Between
Template and Fluorescent Dye 96
3.2.1.4 Coordinative Interactions Between
Template and Fluorescent Dye 97
3.2.1.5 Covalent Bonds Between Template
and Fluorescent Dye 98
3.2.2 Fluorescent Probes 99
3.2.3 Lanthanide-based Systems 101
3.2.4 Quantum Dots 103
3.2.5 Carbon Dots 105
3.2.6 Upconversion Nanoparticles 107Contents vii
3.3 Fluorescent Molecularly Imprinted Silica 108
3.4 Post-imprinting of MIPs 111
3.5 fMIPs as Labels 113
3.6 Formats for fMIPs 115
3.6.1 Bulk fMIPs 115
3.6.2 fMIP Films 116
3.6.3 fMIPs-containing Micro- and Nanoparticles 117
3.7 Conclusion 119
References 120
4 Molecularly Imprinted Polymer-based Micro- and
Nanotraps for Solid-phase Extraction 129
R?dvan Say, Rüstem Keçili and Arzu Ers?z
4.1 Introduction 130
4.2 MIPs as SPE Materials 130
4.2.1 MIP-based SPE for Environmental Samples 132
4.2.2 MIP-based SPE for Biological Samples 142
4.2.3 MIP-based SPE for Food and Beverage Samples 148
4.3 Conclusions 149
References 153
5 Imprinted Carbonaceous Nanomaterials: A Tiny Looking
Big Ting in the Field of Selective and Specifc Analysis 165
Ekta Roy, Santanu Patra, Rashmi Madhuri and
Prashant K. Sharma
5.1 Introduction 166
5.1.1 Popularly Used Carbon-based Nanomaterials 169
5.1.1.1 Graphene 169
5.1.1.2 Carbon Nanotubes 172
5.1.1.3 Graphene Quantum Dots/Carbon
Nanodots 174
5.1.1.4 Problems in Teir Use 175
5.1.2 Introduction of Molecularly Imprinted Polymers
as a Selectivity Factor 176
5.1.3 Combination of MIPs and Carbonaceous
Nanomaterials: Solution for Each Other 178
5.2 Graphene-modifed Imprinted Polymer 179
5.2.1 Graphene-modifed Imprinted Polymer in
Combination with Nanoparticle 182
5.3 Carbon Nanotubes-modifed Imprinted Polymer 190viii Contents
5.4 Combination of Graphene, CNTs, and MIPs 196
5.5 Graphene Quantum Dots and/or Carbon Dots 198
5.6 Fullerene 201
5.7 Activated Carbon 202
5.8 Conclusions 203
Acknowledgments 204
List of Abbreviations 204
References 205
6 Molecularly Imprinted Materials for Fiber-optic
Sensor Platforms 217
Yavuz Orhan Yaman, Necdet Ba?aran, Kübra Karayagiz,
Zafer Vatansever, Cengiz Yegin, ?nder Haluk Tekba?
and Müfrettin Murat Sari
6.1 Introduction 218
6.1.1 General Information 218
6.1.2 General Principle of Molecular
Imprinting Materials 219
6.1.2.1 Characterization of Molecularly
Imprinted Polymers 221
6.1.3 General Detection Principle and Molecular
Aspect of MIPs for FO Sensors 222
6.2 Material Aspect: Morphology and Physical Forms
of MIPs in FO Sensors 223
6.2.1 Morphology 223
6.2.2 Physical Forms 225
6.2.2.1 Microsphere 226
6.2.2.2 Nanoparticles 227
6.2.2.3 MIPs Layers/Tin Films 229
6.3 Molecularly Imprinting Technology for
Fiber-optic Sensors 231
6.3.1 General Principle of Fiber-optic Sensing 231
6.3.1.1 Extrinsic Sensing 232
6.3.1.2 Intrinsic Sensing 233
6.3.1.3 Application Areas 234
6.3.2 Sensing Functionalities and Mechanisms
of Current FO Sensors 235
6.3.2.1 Fluorescence-based FOs 236
6.3.2.2 Absorption-based FOs 240
6.3.2.3 Re?ectance-based FOs 241Contents ix
6.3.2.4 Resonance-based Sensors 246
6.3.2.5 Classifcation Based on
Modulation Types 248
6.3.3 Design of MIPs for Fiber-optic Sensors 248
6.3.3.1 Design Process of MIPs 248
6.3.3.2 Development and Optimization of MIPs 252
6.3.3.3 Synthesis of MIPs 255
6.3.4 Characterization Methods for MIPs 260
6.3.4.1 Chemical Characterization 261
6.3.4.2 Morphological Characterization 262
6.3.4.3 Binding Behavior Characterization 264
6.4 State-of-the-art Fiber-optic Sensors Applications Using
Molecularly Imprinted Materials 268
6.5 Conclusion 273
References 274
Part 2 Rational Design of MIP for Advanced Applications
7 Molecularly Imprinted Polymer-based Sensors
for Biomedical and Environmental Applications 285
Anca Florea, Oana Hosu, Bianca Ciui and Cecilia Cristea
7.1 Introduction 285
7.1.1 General Aspects of Molecularly
Imprinting Technology 286
7.1.2 Synthesis Strategies for MIPs 289
7.1.3 MIP Polymerization Strategies 289
7.1.4 Molecular Imprinted Polymer Bonding
Techniques 292
7.1.4.1 Covalent Bond Method
(Pre-assembly Method) 292
7.1.4.2 Noncovalent Method
(Self-assembly Method) 292
7.1.4.3 Semicovalent Imprinting 292
7.1.4.4 Imprinting via Metal Coordination 293
7.1.4.5 Combinatorial Imprinting 293
7.1.5 Detection Methods for Molecularly Imprinted
Polymer-based Sensors 293
7.1.5.1 Optical Detection Methods 293
7.1.5.2 Piezoelectrical Detection Methods 295
7.1.5.3 Electrochemical Detection Methods 295x Contents
7.2 Molecularly Imprinted Polymers for Analytes
of Biomedical Interest 296
7.2.1 Motivation and Interest of Developing
Molecularly Imprinted Polymers in the
Biomedical Filed 296
7.2.2 Te Pretreatment of Biological Samples
When Using Molecularly Imprinted
Polymer-based Sensors 297
7.2.3 Electrochemical Sensors Based on Molecularly
Imprinted Polymers 298
7.2.4 Massic Sensors Based on Molecularly
Imprinted Polymers 304
7.2.5 Optical Sensors Based on Molecularly
Imprinted Polymers 304
7.3 Molecularly Imprinted Polymers for Analytes
of Environmental Interest 306
7.3.1 Pesticides 307
7.3.2 Explosives and Warfare Agents 312
7.4 Conclusion 314
Acknowledgments 316
References 316
8 Molecularly Imprinted Polymers: Te Afnity Adsorbents
for Environmental Biotechnology 327
Bo Mattiasson and Gizem Ertürk
8.1 Introduction 327
8.2 Molecularly Imprinted Polymers 329
8.2.1 Monomers 329
8.2.2 Cross-linking Agents 331
8.2.3 Mode of Polymerization 332
8.3 Cryogels 334
8.4 Process Technology 336
8.5 Applications 338
8.5.1 Example: Capture of Compounds Binding
to Estrogen Receptors 338
8.5.2 Example: Capture of Pesticides 338
8.5.3 Example: Capture of Pharmaceuticals and
Teir Metabolites 339
8.5.4 Example: Capture of Heavy-metal Ions 339Contents xi
8.6 Elution of Captured Material 341
8.6.1 Example: MIPs as Sensing Elements in
Environmental Monitoring 342
8.7 Concluding Remarks 343
8.8 Outlook 343
References 345
9 Molecular Imprinting Technology for Sensing and
Separation in Food Safety 353
Baran ?nal Ulusoy, Mehmet Odaba?i and Ne?e Hayat Aksoy
9.1 Food Safety 354
9.2 Food Analysis 355
9.3 Current Separation Methods Used for
Food Safety Purposes 356
9.4 What Is MIP? 357
9.5 MIP Applications Used for Food Safety Purposes 359
9.5.1 Contaminants 359
9.5.1.1 Mycotoxins 359
9.5.1.2 Color Compounds 363
9.5.1.3 Pesticide Residues 368
9.5.1.4 Antibiotics 370
9.5.1.5 Vitamins 373
9.5.1.6 Hormones 376
References 377
10 Advanced Imprinted Materials for Virus Monitoring 389
Zeynep Altintas
10.1 Introduction 390
10.2 Virus Imprinting 393
10.3 Artifcial MIP Receptors for Viruses 398
10.4 Virus Monitoring and Detection
Using Biomimetic Sensors 399
10.5 Virus Imprinting for Separation Technologies 401
10.6 Conclusions 405
References 406xii Contents
11 Design and Evaluation of Molecularly Imprinted
Polymers as Drug Delivery Systems 413
André Lu?s Morais Ruela and Gislaine Ribeiro Pereira
11.1 Introduction 414
11.1.1 Drug Delivery Systems 415
11.1.2 Polymers for DDS 416
11.2 Synthesis and Characterization of MIPs Intended
for Drug Release Using Non-covalent Approaches 418
11.2.1 Precipitation Polymerization 426
11.2.2 Characterization Studies 429
11.3 Design and Evaluation of Drug Delivery
Systems Based on MIPs 436
11.3.1 Release Studies 438
11.3.2 Mathematical Modeling 443
11.4 Conclusions 445
References 446
12 Molecularly Imprinted Materials for Controlled
Release Systems 455
Yagmur Yegin, G?khan Yilmaz, ?mer Karakoç, Cengiz Yegin,
Servet Cete, Mustafa Akbulut and Müfrettin Murat Sari
12.1 Introduction 456
12.2 Selectivity, Release Mechanism and Functionality
of MIPs-based CR Systems 459
12.2.1 Factors Tat In?uence the Selectivity 459
12.2.2 Recognition Characteristics of MIPs 460
12.2.2.1 Binding Site Heterogeneity 460
12.2.2.2 Restrictions on Recognition
Characteristics of MIPs 460
12.2.3 Sustained-release MIP Drug Delivery Systems 461
12.2.3.1 Drug Delivery Based on
Rate-programming 463
12.2.3.2 Drug Delivery Based on
Activation-modulation 472
12.2.3.3 Feedback-regulated DDS 479
12.3 Molecularly Imprinted Polymers Production
for Controlled Release 482
12.3.1 Synthesis and Characterization of Molecularly
Imprinted Polymers 482
12.3.1.1 Synthesis Methods 482
12.3.1.2 Characterization of MIPs 484Contents xiii
12.3.2 Recognition Mechanisms and Types of
Monomer/Template Interactions 485
12.3.2.1 Mechanism of Recognition 485
12.3.2.2 Types of Monomer/Template
Interactions 486
12.3.3 Physical Forms of MIPs and Production
Methods 487
12.3.3.1 Microbeads and Microspheres 488
12.3.3.2 Nanoparticles 488
12.3.3.3 MIPs Layers/Tin Films 489
12.3.3.4 Hydrogels 489
12.3.3.5 Membranes 490
12.3.3.6 Monoliths 490
12.4 Controlled Release Applications Using Molecularly
Imprinted Materials-based Controlled Release 491
12.4.1 Controlled Drug Delivery Applications 491
12.4.1.1 Drug Release for Cancer Terapy 491
12.4.1.2 Oral Drug Delivery Applications 496
12.4.1.3 Transdermal and Percutaneous
Delivery Applications 499
12.4.1.4 Ocular Delivery Applications and
Contact Lenses 501
12.4.2 Other Controlled Release and Related
Applications of MIPs in Food/Agriculture
Technologies 503
12.5 Conclusion 506
References 507
13 Molecular Imprinting: Te Creation of Biorecognition
Imprints on Biosensor Surfaces 523
Gizem Ertürk and Bo Mattiasson
13.1 Introduction 523
13.2 Molecular Imprinting 524
13.3 Microcontact Imprinting 525
13.4 Capacitive Biosensors 529
13.4.1 Applications 534
13.5 Surface Plasmon Resonance Biosensors 541
13.5.1 Applications 543
13.6 Concluding Remarks 549
References 550xiv Contents
14 Molecular Imprinted Polymers for Sensing of
Volatile Organic Compounds in Human Body Odor 561
Sunil Kr. Jha
14.1 Introduction 562
14.1.1 Molecular Imprinted Polymers 562
14.1.2 Chemical Sensors 564
14.1.3 QCM Sensor 565
14.1.4 MIP-coated QCM Sensors 565
14.1.5 Human Body Odor and Its Characterization 567
14.1.6 Chemical Sensors Used in Identifcation of
Body Odor and Related VOCs 570
14.2 MIP-QCM Sensor Array Preparation 573
14.2.1 Polyacrylic Acid Polymer as Host and Acids
as Template Molecules-based MIPs
(MIPs-1)-coated QCMs 573
14.2.2 Polyacrylic Acid Polymer as Host and
Aldehyde as Template Molecules-based
MIPs (MIPs-2)-coated QCMs 574
14.3 Chemical Vapor Sensing 576
14.3.1 Body Odor Characterization for VOCs
Identifcation 576
14.3.2 Vapor Generation for Single and Mixtures
of Acid Odors 584
14.3.3 Vapor Generation of Single and Mixtures
of Aldehyde Odors 585
14.3.4 MIPs-1-QCM Sensors Response to Single
and Mixture of Acid Odors 586
14.3.5 MIPs-1-QCM Sensors Response to Single
and Mixture of Aldehyde Odors 589
14.3.6 MIPs-2-QCM Sensors Response for Single
and Mixture Aldehyde Odors 595
14.3.7 Processing Methods for MIP-QCM Sensor
Array Response Matrix 600
14.3.7.1 Preprocessing 600
14.3.7.2 Principal Component Analysis 601
14.3.7.3 Support Vector Machine 602
14.4 Analysis Outcomes 603
14.4.1 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Single Acid Odors 603Contents xv
14.4.2 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Binary Mixtures of Acid
Odors 605
14.4.3 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Single and Binary Mixtures
of Acid Odors Simultaneously 608
14.4.4 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Single Aldehyde Odors 608
14.4.5 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Binary Mixtures of
Aldehyde Odors 609
14.4.6 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Tertiary Mixtures of
Aldehyde Odors 612
14.4.7 MIP-1-QCM Sensor Array Response Analysis
for Recognition of Single, Binary and Tertiary
Mixtures of Aldehyde Odors 613
14.4.8 MIP-2-QCM Sensor Array Response Analysis
for Recognition of Single Aldehyde Odors 615
14.4.9 MIP-2-QCM Sensor Array Response Analysis
for Recognition of Binary Mixtures of
Aldehyde Odors 616
14.4.10 MIP-2-QCM Sensor Array Response Analysis
for Recognition of Tertiary Mixtures of
Aldehyde Odors 620
14.4.11 MIP-2-QCM Sensor Array Response Analysis
for Recognition of Single, Binary and Tertiary
Mixtures of Acid Odors Simultaneously 621
14.5 Conclusion 624
Acknowledgments 624
References 624
15 Development of Molecularly Imprinted Polymer-based
Microcantilever Sensor System 637
Meltem Okan and Memed Duman
15.1 Introduction to Mass Sensors 637
15.2 Principles of Mass Sensors 640
15.2.1 Teory Behind Mass Sensing via QCM 640
15.2.2 Teory Behind Mass Sensing via Microcantilever 642
15.2.2.1 Dynamic Sensing Mode 642
15.2.2.2 Static De?ection Mode 644xvi Contents
15.2.3 Parameters A?ecting the Measurements with
Microcantilevers 645
15.2.3.1 Cantilever Choice 646
15.2.3.2 Signifcance of Quality Factor 646
15.2.3.3 Impact of E?ective Mass 647
15.2.3.4 Noise Processes 649
15.3 Mechanical Biosensors and Teir Fields of Use 649
15.3.1 Applications of QCM Sensors 650
15.3.2 Applications of Microcantilever Sensors 652
15.4 Molecularly Imprinted Polymer Technology 655
15.5 Molecularly Imprinted Polymer-based QCM Sensors 658
15.6 Ongoing Studies on Molecularly Imprinted
Polymers-based Microcantilevers 661
Acknowledgments 669
References 669
Index 68


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Advanced Molecularly Imprinting Materials
رابط مباشر لتنزيل كتاب Advanced Molecularly Imprinting Materials
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Advanced Molecularly Imprinting Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Strength of Materials
» كتاب Strength of Materials
» كتاب Mechanics of Materials
» كتاب Plastics Materials
» كتاب Strength of Materials

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: