Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب e-Design Computer-Aided Engineering Design السبت 7 يوليو 2018 - 23:59 | |
|
أخوانى فى الله أحضرت لكم كتاب e-Design Computer-Aided Engineering Design Kuang-Hua Chang
ويتناول الموضوعات الأتية :
INTRODUCTION TO e-DESIGN 1 CHAPTER OUTLINE 1.1 Introduction .2 1.2 The e-Design Paradigm .5 1.3 Virtual Prototyping 7 1.3.1 Parameterized CAD Product Model .7 1.3.1.1 Parameterized Product Model 8 1.3.1.2 Analysis Models .8 1.3.1.3 Motion Simulation Models . 10 1.3.2 Product Performance Analysis .11 1.3.2.1 Motion Analysis . 11 1.3.2.2 Structural Analysis 11 1.3.2.3 Fatigue and Fracture Analysis . 12 1.3.2.4 Product Reliability Evaluations . 12 1.3.3 Product Virtual Manufacturing .13 1.3.4 Tool Integration 13 1.3.5 Design Decision Making 15 1.3.5.1 Design Problem Formulation . 15 1.3.5.2 Design Sensitivity Analysis . 16 1.3.5.3 Parametric Study 16 1.3.5.4 Design Trade-Off Analysis . 17 1.3.5.5 What-If Study 19 1.4 Physical Prototyping .19 1.4.1 Rapid Prototyping .19 1.4.2 CNC Machining 21 1.5 Example: Simple Airplane Engine 23 1.5.1 System-Level Design .23 1.5.2 Component-Level Design .25 1.5.3 Design Trade-Off 25 1.5.4 Rapid Prototyping .26 1.6 Example: High-Mobility Multipurpose Wheeled Vehicle 26 1.6.1 Hierarchical Product Model .27 1.6.2 Preliminary Design .28 1.6.3 Detailed Design 30 1.6.4 Design Trade-Off GEOMETRIC MODELING 2 CHAPTER OUTLINE 2.1 Introduction .43 2.2 Parametric Curves 44 2.2.1 Straight Line 46 2.2.2 Quadratic Curves 47 2.2.2.1 Spline CurvedThree Points . 48 2.2.2.2 Two Points and a Vector 50 2.2.2.3 Be´zier Curve . 52 2.2.3 Cubic Curves 56 2.2.3.1 Spline CurvedFour Points . 56 2.2.3.2 Hermit Cubic Curve (Two End Points and Two End Vectors) . 59 2.2.3.3 Be´zier Curve . 62 2.2.4 Continuities .63 2.2.5 B-Spline Curves .64 2.2.5.1 Nonuniform B-Spline Curves . 64 2.2.5.2 Uniform B-Spline Curves . 69 2.2.5.3 Closed Uniform B-Spline Curves 71 2.2.6 NURB Curves .75 2.3 Parametric Surfaces .76 2.3.1 Parametric Representation 77 2.3.1.1 Bicubic Surface Patch . 77 2.3.1.2 16-Point Format 78 2.3.1.3 Coons Patch . 79 2.3.1.4 Be´zier Surface 81 2.3.2 B-Spline Surface 82 2.4 CAD-Generated Surfaces .84 2.4.1 Cylindrical Surfaces 84 2.4.2 Ruled Surfaces 87 2.4.3 Loft (or Blend) Surfaces 89 2.4.4 Revolved Surfaces 92 2.4.5 Sweep Surfaces 96 2.5 Geometric Transformations 100 2.5.1 Homogeneous Coordinates SOLID MODELING 3 CHAPTER OUTLINE 3.1 Introduction .126 3.2 Basics of Solid Modeling 127 3.2.1 Wireframe Models 127 3.2.2 Surface Models 129 3.2.3 Solid Models 130 3.2.4 Major Modeling Schemes 132 3.2.4.1 Constructive Solid Geometry 132 3.2.4.2 Boundary Representation 135 3.3 Feature-Based Parametric Solid Modeling 139 3.3.1 Geometric Features 140 3.3.2 Sketch Profiles .142 3.3.2.1 Sketch Relations . 142 3.3.2.2 Variational Modeling 144 3.3.3 Parent–Child Relationships .149 3.3.4 Parametric Modeling .150 3.3.5 Solid Modeling Procedure in CAD 151 3.3.6 Direct Modeling 155 3.3.7 Geometric Modeling Kernels 155 3.4 Solid Model Build Plan .157 3.5 Commercial CAD Systems .160 3.5.1 General Purpose Codes .161 3.5.2 Special Codes 161 3.6 Summary .162 Appendix 3A: Sketch Relations .162 Questions and Exercises .164 References ASSEMBLY MODELING 4 CHAPTER OUTLINE 4.1 Introduction .170 4.2 Assembly Modeling in CAD 172 4.2.1 Mating Constraints .173 4.2.2 Kinematic Joints 178 4.3 Assembly Modeling Technique 184 4.3.1 Transformation Matrix .185 4.3.1.1 Coincident 186 4.3.1.2 Concentric 186 4.3.1.3 Computation of the Transformation Matrix . 188 4.3.2 Degree of Freedom Analysis 197 4.4 Kinematic Modeling Technique* 199 4.4.1 Mapping Mating Constraints to Kinematic Joints .200 4.4.2 D–H Representation 202 4.4.2.1 Open-Loop System 210 4.4.2.2 Closed-Loop System 214 4.4.3 Constructing the Joint Coordinate Systems .219 4.5 Case Study and Tutorial Example .225 4.5.1 Case Study: Virtual Reality 225 4.5.2 Tutorial Example: A Single-Piston Engine .227 4.6 Summary .228 Questions and Exercises .229 References . DESIGN PARAMETERIZATION 5 CHAPTER OUTLINE 5.1 Introduction .234 5.2 Design Intents 235 5.3 Design Axioms .238 5.3.1 Independence Axiom 238 5.3.2 Information Axiom 241 5.4 Design Parameterization at Part Level .242 5.4.1 Profile in Sketch .242 5.4.2 Solid Features in Part .244 5.4.3 Guidelines for Design Parameterization 245 5.5 Design Parameterization at Assembly Level .248 5.5.1 Guidelines for Design Parameterization 248 5.5.2 Slider-Crank Assembly in Pro/ENGINEER .250 5.5.3 Slider-Crank Assembly in SolidWorks .252 5.6 Case Studies 253 5.6.1 Single-Piston Engine 253 5.6.1.1 Part Level: Engine Case . 255 5.6.1.2 Assembly Level: Engine . 256 5.6.2 HMMWV Suspension 257 5.6.2.1 Track Design Variable . 258 5.6.2.2 Wheelbase Design Variable 260 5.6.2.3 Design Change 261 5.7 Summary .262 Questions and Exercises .262 References PRODUCT DATA MANAGEMENT 6 CHAPTER OUTLINE 6.1 Introduction .267 6.2 File Management 269 6.2.1 AD-HOC Methods .270 6.2.2 PDM Approach .273 6.3 Fundamentals of PDM .274 6.3.1 Engineering Data Models 275 6.3.1.1 Product Data Model 275 6.3.1.2 Process Data Model 279 6.3.2 Basic Functions of PDM Systems .280 6.3.2.1 User Functions . 281 6.3.2.2 Utility Functions 282 6.3.3 Benefits of PDM Systems 283 6.3.4 Impact to Industry 284 6.4 PDM Systems .285 6.4.1 Systems Offered by CAD Vendors .286 6.4.1.1 AutoDesk ProductStream of Autodesk Inventor 286 6.4.1.2 ENOVIA Smarteam of CATIA . 286 6.4.1.3 Windchill by PTC . 287 6.4.1.4 TeamCenter by Siemens UGS NX 287 6.4.1.5 SolidWorks Enterprise PDM . 288 6.4.2 Systems Offered by Non-CAD Vendors 288 6.4.2.1 SofTech ProductCenter PLM . 288 6.4.2.2 Arena Cloud PLM 288 6.5 Product Data Exchange .289 6.5.1 Data Exchange Options .291 6.5.2 Direct Model Translations .292 6.5.2.1 Importing Pro/ENGINEER Parts to SolidWorks 292 6.5.2.2 Importing Pro/ENGINEER Assembly to SolidWorks . 294 6.5.2.3 Importing SolidWorks Parts to Pro/ENGINEER 295 6.5.2.4 Importing SolidWorks Assembly to Pro/ENGINEER . 296 6.5.2.5 Data Exchange Between CAD and CAE/CAM STRUCTURAL ANALYSIS 7 CHAPTER OUTLINE 7.1 Introduction .327 7.2 Analytical Methods .328 7.2.1 Strength of Materials 328 7.2.2 Energy Method .330 7.2.3 Linear Elasticity .333 7.2.4 Failure Criteria .336 7.2.5 Uncertainties, Variations, and Safety Factors 338 7.3 Finite Element Methods 340 7.3.1 A Simple Example 341 7.3.2 Finite Element Formulation .345 7.3.3 p-Version FEA 351 7.3.4 The Meshless Method .356 7.3.5 Using Finite Element Method 358 7.4 Finite Element Modeling .359 7.4.1 General Process and Potential Pitfalls 360 7.4.2 Idealization and Simplification 361 7.4.3 Mesh Generation and Refinement 363 7.4.3.1 Automatic Mesh Generation 365 7.4.3.2 Semiautomatic Mesh Generation . 369 7.4.4 CAD Model Translations 371 7.4.5 Loads and Boundary Conditions .372 7.4.6 Results Checking 373 7.4.7 Strategy for Complex Problems 376 7.5 Commercial FEA Software .376 7.5.1 General-Purpose Codes .377 7.5.2 Specialized Codes 378 7.6 Case Study and Tutorial Examples .378 7.6.1 Case Study 378 7.6.2 Tutorial Examples .380 7.6.2.1 Cantilever Beam 380 7.6.2.2 Thin-Walled Tube 382 7.7 Summary Appendix 7A: The Default in.-lbm-sec Unit System 384 Questions and Exercises .385 References MOTION ANALYSIS 8 CHAPTER OUTLINE 8.1 Introduction .393 8.2 Analytical Methods .396 8.2.1 Particle Motion 397 8.2.2 Rigid-Body Motion 404 8.2.3 Multibody Kinematic Analysis 407 8.2.4 Multibody Dynamic Analysis 411 8.3 Computer-Aided Methods 415 8.3.1 Kinematic Analysis .415 8.3.2 Kinematic Joints 421 8.3.3 Multibody Dynamic Analysis 424 8.4 Motion Simulation 427 8.4.1 Creating Motion Models 428 8.4.1.1 Ground Parts (or Ground Bodies) 428 8.4.1.2 Moving Parts (or Moving Bodies) . 428 8.4.1.3 Constraints . 428 8.4.1.4 Degrees of Freedom 430 8.4.1.5 Forces 431 8.4.1.6 Initial Conditions . 432 8.4.1.7 Motion Drivers 432 8.4.2 Motion Analysis 432 8.4.3 Results Visualization .433 8.5 Motion Simulation Software 434 8.5.1 General-Purpose Codes .434 8.5.2 Specialized Codes 434 8.6 Case Studies 435 8.6.1 Formula SAE Racecar .435 8.6.2 High-Mobility Multipurpose Wheeled Vehicle 445 8.6.3 Driving Simulators 450 8.6.4 Recreational Waterslides 8.7 Tutorial Examples .457 8.7.1 Sliding Block .458 8.7.2 Single-Piston Engine 459 8.8 Summary .461 Questions and Exercises .461 References ATIGUE AND FRACTURE ANALYSIS 9 CHAPTER OUTLINE 9.1 Introduction .464 9.2 The Physics of Fatigue 467 9.3 The Stress-Life Approach 470 9.3.1 The S-N Diagram 470 9.3.2 Nonfully Reversed Cyclic Loads .472 9.3.3 In-Phase Bending and Torsion .475 9.3.4 Complex Multiaxial Stress .476 9.3.5 Cumulative Damage 477 9.4 The Strain-Based Approach .478 9.4.1 The Manson–Coffin Equation .478 9.4.2 Multiaxial Analysis .483 9.5 Fracture Mechanics* 484 9.5.1 Basic Approaches .485 9.5.2 Linear Elastic Fracture Mechanics .486 9.5.3 Mixed Mode .488 9.5.4 Quasistatic Crack Growth 491 9.5.5 The Extended Finite Element Method .492 9.6 Dynamic Stress Calculation and Cumulative Damage 497 9.6.1 Dynamic Stress Calculations .497 9.6.2 Peak-Valley Editing .500 9.6.3 Rain-Flow Counting 501 9.6.4 Blocks to Failure 504 9.7 Fatigue and Fracture Simulation Software 505 9.7.1 General-Purpose Codes for Crack Initiation .505 9.7.2 Non-FEA-Based Crack Propagation 506 9.7.3 FEA-Based Crack Propagation .507 9.8 Case Studies and Tutorial Example 508 9.8.1 Case Study: Tracked Vehicle Roadarm 508 9.8.2 Case Study: Engine Connecting Rod .511 9.8.3 Tutorial Example: Crankshaft .516 9.9 Summary .518 Questions and Exercises .518 References RELIABILITY ANALYSIS 10 CHAPTER OUTLINE 10.1 Introduction .525 10.2 Probability of FailuredBasic Concepts 526 10.2.1 Deterministic Design versus Probabilistic Prediction 527 10.2.2 Probabilistic Design 531 10.2.3 Short Summary 534 10.3 Basics of Statistics and Probabilistic Theory 535 10.3.1 Events and Basic Probability Rules 535 10.3.2 Random Variables and Distribution Functions .538 10.3.2.1 Random Variables . 538 10.3.2.2 Distribution Functions . 538 10.3.2.3 Mean Value and Standard Deviation 539 10.3.2.4 Joint Probability Density Function 539 10.3.3 Probabilistic Distributions .543 10.3.3.1 Normal Distribution . 544 10.3.3.2 Lognormal Distribution 545 10.3.3.3 Extreme Value Distributions . 546 10.4 Reliability Analysis Methods .547 10.4.1 The Limit State Function .548 10.4.2 Monte Carlo Simulation .549 10.4.3 The First-Order Reliability Method .552 10.4.3.1 FORM . 553 10.4.3.2 The Reliability Index Approach 560 10.4.3.3 The Performance Measure Approach 563 10.4.4 The Second-Order Reliability Method .566 10.4.5 Transformation of Random Variables* 568 10.4.5.1 Correlated Random Variables of Normal Distribution 568 10.4.5.2 Independent Random Variables of Non-Normal Distribution . 571 10.4.5.3 Correlated Random Variables of Non-Normal Distribution . 573 10.4.6 Importance Sampling 575 10.4.7 The Response Surface Method .579 10.4.8 Short Summary 10.5 Multiple Failure Modes* .581 10.5.1 Series System 582 10.5.2 Parallel System 583 10.5.3 FORM Approximation for a Series System .585 10.6 General-Purpose Reliability Analysis Tools .588 10.7 Case Study .589 10.8 Summary 591 Questions and Exercises .593 References VIRTUAL MACHINING 11 CHAPTER OUTLINE 11.1 Introduction .601 11.2 NC Part Programming .602 11.2.1 Basics of NC Machines .602 11.2.2 Basic Concept of Part Programming .606 11.2.3 Computer-Assisted Part Programming 608 11.2.4 CAD/CAM Approach 611 11.3 Virtual Machining Simulations 611 11.3.1 Basic Machining Simulations 612 11.3.2 Advanced Machining Simulations 616 11.3.3 Turning Simulations .621 11.4 Practical Aspects in CNC Machining 622 11.4.1 Jigs and Fixtures 623 11.4.2 Cutters and Machining Parameters .624 11.4.3 Setting a CNC Sequence .627 11.5 Commercial Machining Simulation Software 629 11.5.1 General-Purpose Machining Software .629 11.5.2 Special-Purpose Machining Software 630 11.6 Case Study and Tutorial Examples .632 11.6.1 Case Study 632 11.6.1.1 Virtual Machining for Green Part 635 11.6.2 Tutorial Examples .636 11.6.2.1 Name Plate . 636 11.6.2.2 Block with a Sculpture Surface 637 11.7 Summary 640 Appendix 11A: Sample Address Codes 641 Appendix 11B: Sample G- and M-Codes .642 Questions and Exercises .643 References TOOLPATH GENERATION 12 CHAPTER OUTLINE 12.1 Introduction .648 12.2 Inclined Flat Surface 650 12.3 Ruled Surface 657 12.3.1 5-Axis Mill with Ball-Nose Cutter (OP010) 658 12.3.1.1 Number of Passes 658 12.3.1.2 Scallop Height 659 12.3.1.3 Parametric Surface and CL Data . 662 12.3.1.4 A Few Questions . 666 12.3.2 3-Axis Mill with Flat-End Cutter (OP030) .668 12.3.2.1 Flat-End Cutter . 668 12.3.3 3-Axis Mill with Ball-Nose Cutter (OP030) 671 12.3.3.1 CL Data 671 12.3.4 4-Axis Mill with Flat-End Cutter* (OP020) 674 12.3.4.1 CL Data 675 12.4 Cylindrical Surface of Be´zier Curve .677 12.5 Summary 680 Questions and Exercises .680 References SHEET METAL FORMING SIMULATION 13 CHAPTER OUTLINE 13.1 Introduction .687 13.2 Fundamentals of Sheet Metal Forming .689 13.2.1 Sheet Forming Processes 689 13.2.1.1 Draw Forming . 689 13.2.1.2 Stretch Forming 690 13.2.1.3 Sheet Hydroforming 691 13.2.2 Plane Stress and Material Properties 692 13.2.2.1 Stress–Strain Curve . 692 13.2.2.2 Plane Stress Sheet Deformation . 693 13.2.2.3 Material Anisotropy . 697 13.2.3 Yield Criteria 698 13.2.3.1 Isotropic Yield Criteria . 699 13.2.3.2 Anisotropic Yield Criteria . 700 13.2.4 Forming Limit Diagram .701 13.2.5 Springback Analysis 704 13.2.6 Numerical Implementations 707 13.3 Process Planning and Tooling Design 709 13.3.1 One-Step Simulation for Formability Study .711 13.3.1.1 Blank Fitting and Blank Nesting 713 13.3.2 Die Design .714 13.3.2.1 Part Preparation 715 13.3.2.2 Binder Design . 716 13.3.2.3 Addendum Design 716 13.3.2.4 Drawbead Design 718 13.3.3 Incremental Forming Analysis 719 13.3.4 Springback Analysis and Die Compensation 721 13.4 Commercial Forming Simulation Software 725 13.4.1 Overview of Simulation Software 725 13.4.1.1 FastForm 726 13.4.1.2 AutoForm . 726 13.4.1.3 Pam-Stamp 2G 13.4.2 HyperForm .727 13.4.3 DynaForm 727 13.5 Case Studies 730 13.5.1 Core Panel .731 13.5.2 Wheel Fairing .734 13.6 Summary 739 Questions and Exercises .739 References RAPID PROTOTYPING 14 CHAPTER OUTLINE 14.1 Introduction .745 14.2 RP Process and Tutorial Example 746 14.2.1 General Process .746 14.2.2 Engine Block Example 747 14.3 Rapid Prototyping Systems 750 14.3.1 Liquid-Based Systems 750 14.3.2 Solid-Based Systems 751 14.3.3 Powder-Based Systems .752 14.4 Advanced RP Systems .754 14.4.1 Solidica .754 14.4.2 Electron Beam Melting .755 14.4.3 Laser Engineered Net Shaping .757 14.4.4 Micro-Manufacturing RP Systems 757 14.5 Rapid Prototyping Applications 759 14.5.1 Design Applications 760 14.5.2 Manufacturing Applications .761 14.5.3 Art Applications .761 14.5.3.1 Art Design 762 14.5.3.2 Museum Application . 762 14.5.3.3 Props . 763 14.5.4 Medical Applications 763 14.5.4.1 Presurgery Planning and Rehearsal . 763 14.5.4.2 Education and Research Application . 766 14.5.4.3 Dental Applications . 767 14.5.5 Bioengineering Applications 768 14.5.5.1 Custom Prosthesis and Implantation 768 14.5.5.2 Scaffolds for Tissue Engineering 769 14.5.5.3 Organ Printing 771 14.5.6 Personal RP .771 14.5.7 Other Applications 14.6 Case Study: RP for Complex Assembly .773 14.6.1 Single-Piston Engine 773 14.6.2 Formula SAE Racecar .775 14.6.2.1 Scale Factor 775 14.6.2.2 Model Modification 777 14.6.2.3 Model Conversion . 780 14.6.2.4 Model Fabrication . 780 14.7 Summary 783 Questions and Exercises .783 References PRODUCT COST ESTIMATING 15 CHAPTER OUTLINE 15.1 Introduction .789 15.2 Fundamentals of Cost Analysis 792 15.2.1 Elements in the Cost Estimate .793 15.2.2 Type of Costs .794 15.2.2.1 Fixed versus Variable Costs . 795 15.2.2.2 Direct and Indirect Costs . 797 15.2.3 Overhead Costs 797 15.2.4 Cost-Estimating Techniques 798 15.2.4.1 Qualitative Cost-Estimating Techniques 799 15.2.4.2 Quantitative Cost-Estimating Techniques . 801 15.3 Manufacturing Cost Models .802 15.3.1 Manufacturing Cost Elements for In-House Parts .803 15.3.1.1 Processing Cost Cp . 803 15.3.1.2 Unit Time tunit . 804 15.3.2 Machining Cost Model 804 15.3.2.1 Setup Time Tsu . 805 15.3.2.2 Operation Time to 806 15.3.2.3 Non-operation Time tno . 809 15.3.2.4 Tooling Cost Ct 809 15.3.2.5 Material Cost Cmat . 810 15.3.3 Injection Molding Cost Model 810 15.3.3.1 Machine Rate Rm 811 15.3.3.2 Molding Cycle Time to . 813 15.3.3.3 Mold Cost Estimation 814 15.3.3.4 Material Cost Cmat . 816 15.3.4 Sheet Metal Stamping Cost Model .816 15.3.4.1 Material Cost Cmat . 816 15.3.4.2 Processing Cost Rate Rp . 818 15.3.4.3 Tooling Cost 819 15.3.5 Assembly Cost Model 819 15.4 Commercial Software for the Cost Estimate 820 15.4.1 CAD-Based Costing Software 15.4.2 General-Purpose Costing Software 821 15.4.2.1 SEER for Manufacturing 821 15.4.2.2 MicroEstimating 821 15.4.2.3 DFM Concurrent Costing . 821 15.4.2.4 Costimator of MTI System . 822 15.4.2.5 aPriori Product Cost Management . 822 15.4.2.6 MISys Manufacturing 822 15.4.3 Special-Purpose Costing Software 823 15.4.4 Web-Based Costing Tools 823 15.5 Case Studies 824 15.5.1 Machining Costing Using SolidWorks 824 15.5.2 Sheet Metal Costing Using SolidWorks .829 15.5.3 Cost Estimate for a BWMD Using SEER-DFM 832 15.6 Summary 837 Appendix 15A: Calculations of Material Removed for Standard Features 838 Questions and Exercises .842 References ECISIONS IN ENGINEERING DESIGN 16 CHAPTER OUTLINE 16.1 Introduction .849 16.2 Conventional Methods 850 16.2.1 Decision Matrix Method 850 16.2.2 Decision Tree Method .853 16.3 Basics of Decision Theory .857 16.3.1 Elements of a Decision .858 16.3.2 Decision-Making Models .858 16.3.3 Decision Under Risk .859 16.3.4 Decision Under Uncertainty .861 16.4 Utility Theory .864 16.4.1 Basic Assumptions .864 16.4.2 Utility Axioms 865 16.4.3 Utility Functions .866 16.4.4 Attitude Toward Risk 867 16.4.5 Construction of Utility Functions 870 16.4.6 Multiattribute Utility Functions 871 16.4.6.1 Additive MAU Functions 872 16.4.6.2 Multiplicative MAU Functions 874 16.5 Game Theory 875 16.5.1 Elements of a Game .876 16.5.2 Two-Person Matrix Games .877 16.5.3 Sequential Games 880 16.5.4 Cooperative Games .883 16.6 Design Examples 885 16.6.1 Utility Theory as a Design Tool .885 16.6.1.1 Beam Design Example 1: Unconstrained Problem . 886 16.6.1.2 Beam Design Example 2: Constrained Problem . 890 16.6.1.3 Summary of Utility Theory as a Design Tool . 894 16.6.2 Game Theory as a Design Tool .894 16.6.2.1 The Pressure Vessel Design Example 894 16.6.2.2 Strategy Form Game . 896 16.6.2.3 Sequential Game 16.6.2.4 Cooperative Game . 900 16.6.2.5 Summary on Game Theory as Design Tool . 901 16.7 Summary 901 Questions and Exercises .902 References DESIGN OPTIMIZATION 17 CHAPTER OUTLINE 17.1 Introduction .910 17.2 Optimization Problems 913 17.2.1 Problem Formulation 913 17.2.2 Problem Solutions 915 17.2.3 Classification of Optimization Problems 916 17.2.4 Solution Techniques .917 17.3 Optimality Conditions 918 17.3.1 Basic Concept of Optimality 919 17.3.1.1 Functions of a Single Variable . 919 17.3.1.2 Functions of Multiple Variables 920 17.3.2 Basic Concept of Design Optimization 923 17.3.3 Lagrange Multipliers .924 17.3.4 Karush–Kuhn–Tucker Conditions 927 17.4 Graphical Solutions 930 17.4.1 Linear Programming Problems .931 17.4.2 Nonlinear Programming Problems 933 17.5 Gradient-Based Approach 936 17.5.1 Generative Method 936 17.5.2 Search Methods .937 17.5.3 Gradient-Based Search 939 17.5.3.1 Steepest Descent Method . 940 17.5.3.2 Conjugate Gradient Method . 943 17.5.3.3 Quasi-Newton Method 944 17.5.3.4 The BFGS Method 944 17.5.4 Line Search 946 17.5.4.1 Concept of Line Search . 946 17.5.4.2 Secant Method . 948 17.6 Constrained Problems* .949 17.6.1 Basic Concept 950 17.6.2 ?-Active Strategy .952 17.6.3 The Sequential Linear Programming Algorithm 952 17.6.4 The Sequential Quadratic Programming Algorithm 17.6.5 Feasible Direction Method .957 17.6.6 Penalty Method 962 17.7 Non-Gradient Approach* .964 17.7.1 Genetic Algorithms .965 17.7.1.1 Basic Concepts . 965 17.7.1.2 Design Representation 965 17.7.1.3 Selection 966 17.7.1.4 Reproduction Process and Genetic Operations 966 17.7.1.5 Solution Process . 968 17.7.2 Simulated Annealing .968 17.7.2.1 Basic Concept 969 17.7.2.2 Solution Process . 970 17.8 Practical Engineering Problems .970 17.8.1 Tool Integration for Design Optimization .971 17.8.2 Interactive Design Process .975 17.8.2.1 Sensitivity Display . 975 17.8.2.2 What-if Study 976 17.8.2.3 Trade-off Determination 977 17.9 Optimization Software .978 17.9.1 Optimization in CAD .978 17.9.2 Optimization in FEA 979 17.9.3 Special-purpose Codes 980 17.10 Case Studies 980 17.10.1 Sizing Optimization of Roadwheel 981 17.10.1.1 Geometric Modeling and Design Parameterization . 981 17.10.1.2 Analysis Model . 981 17.10.1.3 Performance Measures . 983 17.10.1.4 Design Sensitivity Results and Display . 983 17.10.1.5 What-if Study 984 17.10.1.6 Trade-off Determination 985 17.10.1.7 Design Optimization 986 17.10.1.8 Postoptimum Study . 986 17.10.2 Shape Optimization of the Engine Connecting Rod 986 17.10.2.1 Geometric and Finite Element Models . 988 17.10.2.2 Design Parameterization and Problem Definition 989 17.10.2.3 Design Optimization 990 17.11 Tutorial Example: Simple Cantilever Beam .991 17.11.1 Using SolidWorks Simulation .993 17.11.2 Using Pro/MECHANICA Structure .995 17.12 Summary 996 Questions and Exercises .996 References TRUCTURAL DESIGN SENSITIVITY ANALYSIS 18 CHAPTER OUTLINE 18.1 Introduction .1003 18.2 Simple Bar Example 1005 18.2.1 Differential Equation 1006 18.2.2 Energy Equation 1007 18.2.3 Finite Element Formulation 1009 18.3 Sensitivity Analysis Methods .1012 18.3.1 Analytical Derivative Method 1014 18.3.2 Overall Finite Difference 1015 18.3.3 Discrete Approach . 1017 18.3.3.1 Direct Differentiation Method . 1019 18.3.3.2 Adjoint Variable Method 1022 18.3.4 Continuum Approach . 1024 18.3.4.1 Direction Differentiation Method 1025 18.3.4.2 Adjoint Variable Method 1027 18.4 Sizing and Material Designs 1029 18.4.1 Principle of Virtual Work 1030 18.4.1.1 Differential Equation 1030 18.4.1.2 Energy Formulation . 1032 18.4.2 Variations . 1033 18.4.2.1 Definition 1033 18.4.2.2 Variations of the Energy Bilinear and Load Linear Forms 1036 18.4.3 Static Problems . 1037 18.4.3.1 Energy Formulation . 1038 18.4.3.2 Finite Element Discretization . 1040 18.4.3.3 Direct Differentiation Method of the Continuum-Discrete Approach 1043 18.4.3.4 Sensitivity of the Bending Stress 1044 18.4.3.5 Adjoint Variable Method of the Continuum-Discrete Approach 1046 18.4.3.6 Adjoint Variable Method of the Continuum-Analytical Approach 1050 18.4.4 Numerical Implementation . 1052 18.5 Shape Sensitivity Analysis* 1053 18.5.1 Domain Shape Sensitivity Analysis 1053 18.5.2 A Simple Cantilever Beam Example 18.5.3 Shape Design Parameterization . 1058 18.5.3.1 2-D Planar Structures . 1058 18.5.3.2 3-D Solid StructuresdFreeform Surfaces . 1061 18.5.3.3 3-D Solid StructuresdCAD-Generated Surfaces . 1063 18.5.4 Design Velocity Field Computation 1065 18.5.4.1 Design Velocity Field . 1066 18.5.4.2 Boundary Velocity Computation . 1068 18.5.4.3 Domain Velocity Computation 1075 18.5.5 Shape Sensitivity Analysis Using Finite Difference or Semi-Analytical Method 1080 18.5.6 Material Derivatives . 1082 18.5.7 Shape Sensitivity Analysis Using the Continuum Approach 1087 18.5.7.1 Shape Sensitivity Analysis for a Cantilever Beam 1088 18.6 Topology Optimization .1090 18.6.1 Basic Concept and Problem Formulation . 1091 18.6.2 Two-Dimensional Cantilever Beam Example . 1093 18.7 Case Study .1094 18.7.1 The Tracked Vehicle Roadarm . 1095 18.7.2 Topology Optimization . 1095 18.7.3 Boundary Smoothing 1095 18.7.4 Shape Parameterization and Design Velocity Field Computation 1096 18.7.5 Shape Design Optimization 1097 18.8 Summary 1099 Questions and Exercises .1099 References ULTIOBJECTIVE OPTIMIZATION AND ADVANCED TOPICS 19 CHAPTER OUTLINE 19.1 Introduction .1107 19.2 Basic Concept 1110 19.2.1 Criterion Space and Design Space . 1110 19.2.2 Pareto Optimality 1111 19.2.3 Generation of Pareto Optimal Set 1113 19.3 Solution Techniques .1116 19.3.1 Normalization of Objective Functions 1116 19.3.2 Methods with a Priori Articulation of Preferences . 1117 19.3.2.1 Weighted-Sum Method 1117 19.3.2.2 Weighted Min–Max Method . 1122 19.3.2.3 Lexicographic Method . 1124 19.3.3 Methods with A Posteriori Articulation of Preferences . 1125 19.3.3.1 Normal Boundary Intersection Method 1126 19.3.4 Methods with No Articulation of Preference . 1130 19.3.5 Multiobjective Genetic Algorithms* . 1131 19.3.5.1 Pareto-Based Approaches . 1132 19.3.5.2 Nondominated Sorting Genetic Algorithm II . 1133 19.3.5.3 Sample MATLAB Implementation 1137 19.4 Decision-Based Design .1141 19.4.1 Utility Theory as a Design Tool: Cantilever Beam Example . 1141 19.4.2 Game Theory as a Design Tool: Pressure Vessel Example 1144 19.5 Software Tools .1145 19.5.1 Academic Codes 1145 19.5.2 Commercial Tools 1147 19.6 Advanced Topics* 1151 19.6.1 Reliability-Based Design Optimization . 1151 19.6.1.1 Failure Probability . 1152 19.6.1.2 RBDO Problem Formulation 1152 19.6.1.3 RBDO for a Tracked-Vehicle Roadarm . 1155 19.6.2 Design Optimization for Structural Performance and Manufacturing Cost 1158 19.6.2.1 Design Problem Definition and Optimization Process .1159 19.6.2.2 Manufacturing Cost Model 1160 19.6.2.3 Virtual Manufacturing 1161 19.6.2.4 Design Sensitivity Analysis 19.6.2.5 Software Implementation . 1163 19.6.2.6 Aircraft Torque Tube Example . 1165 19.7 Summary 1170 Questions and Exercises .1170 References
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب e-Design Computer-Aided Engineering Design رابط مباشر لتنزيل كتاب e-Design Computer-Aided Engineering Design
|
|