Admin مدير المنتدى
عدد المساهمات : 18959 التقييم : 35383 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Tribology of Abrasive Machining Processes الثلاثاء 26 ديسمبر 2017, 10:34 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Tribology of Abrasive Machining Processes Ioan D. Marinescu University of Toledo Toledo, Ohio, USA W. Brian Rowe Liverpool John Moores University Liverpool, United Kingdom Boris Dimitrov Institute for Precision Engineering Bucharest, Romania Ichiro Inasaki Keio University Yokohama-shi, Japan
ويتناول الموضوعات الأتية :
Table of Contents 1. Introduction 1.1 ABRASIVE PROCESSES . 1.1.1 Grinding . 1.1.2 Honing . 1.1.3 Lapping 1.1.4 Polishing . 1.2 ABRASIVES 1.3 TRIBOLOGICAL PRINCIPLES 1.3.1 Two-body Abrasion . 1.3.2 Three-body Abrasion . 1.4 A TYPICAL GRINDING PROCESS . 1.5 A TRIBOLOGICAL SYSTEM REFERENCES . 2. Tribosystems of Abrasive Machining Processes . 2.1 INTRODUCTION 2.2 STRUCTURE OF TRIBOMECHANICAL PROCESSING 2.2.1 The Interconnecting Elements in the Tribosystem Structure 2.2.2 The Optimum Properties of the Tribosystem . 2.2.3 Interrelationships Between System Elements . 2.2.4 The Total Structural System 2.3 THE THREE TRIBOSYSTEMS IN ABRASIVE MACHINING . 2.3.1 Bonded Abrasive Processes . 2.3.2 Loose Abrasive Processes 2.3.3 Dressing Processes . 2.3.4 Basic Parameters of the Tribosystem Structure 2.4 MODELING TRIBOSYSTEMS OF ABRASIVE PROCESSES 2.4.1 The Influence of the Workmaterials in Modeling 2.4.2 The Influence of the Shape and Size of the Contact Surface 2.4.3 The Influence and Measurement of Cutting Forces . 2.5 CONCLUSIONS REFERENCES . 3. Kinematic Models of Abrasive Contacts . 3.1 INTRODUCTION 3.1.1 Machine Control Variables 3.1.2 Workpiece Material Removal 3.1.3 Volume Tool Wear . 3.1.4 Grinding Ratio 3.2 BASIC ANALYSIS OF SURFACE GRINDING . 3.2.1 Micromilling Analogy . 3.2.2 Geometric Contact Length 3.2.3 Kinematic Contact Length 3.2.4 Grain Penetration Depth or Uncut Chip Thickness 3.2.5 Uncut Chip Aspect Ratio 3.3 CYLINDRICAL GRINDING CONTACTS . 3.3.1 External Cylindrical Plunge Grinding . 3.3.2 Removal Rate in Cylindrical Plunge Grinding . 3.3.3 Effect of G-ratio on Removal Rate 3.3.4 Effect of G-ratio on Depth of Cut 3.3.5 Geometric Contact Length in Cylindrical Grinding 3.3.6 Uncut Chip Thickness in Cylindrical Grinding 3.3.7 Basic Parameters for Internal Cylindrical Grinding 3.3.8 Uncut Chip Aspect Ratio in Cylindrical Grinding 3.3.9 Angle Grinding of Cylindrical Parts 3.3.10 Comparisons of Surface, Internal, and External Grinding . 3.3.11 Centerless Grinding 3.4 IMPLICATIONS OF THE STOCHASTIC NATURE OF GRINDING 3.4.1 Mean Uncut Chip Thickness 3.4.2 Cutting Edge Density 3.4.3 Mean Uncut Chip Cross-sectional Area 3.4.4 Equivalent Chip Thickness . 3.4.5 Grain Spacing . 3.4.6 Effect of Grain Shape 3.4.7 Effect of Increasing Grain Density 3.4.8 Effects on Grain Wear . 3.4.9 Irregular Grain Spacing 3.4.10 Irregular Grain Depth . 3.4.11 Factors Affecting Workpiece Roughness 3.5 EFFECT OF DRESSING 3.6 SUMMARY OF PRINCIPAL KINEMATIC PARAMETERS . REFERENCES 4. Contact Mechanics 4.1 CONTACT AREA 4.2 CONTACT LENGTH . 4.2.1 Due To Deflection 4.2.2 Due To Depth of Cut 4.2.3 Combined Deflection and Depth of Cut . 4.3 SMOOTH BODY ANALYSIS . 4.4 ROUGH SURFACE ANALYSIS . 4.5 EXPERIMENTAL MEASUREMENTS OF ROUGHNESS FACTOR (Rr) . 4.5.1 Comparison With Measurements by Verkerk 4.5.2 Effect of Depth of Cut . 4.5.3 Effect of Workspeed 4.5.4 Evaluation of Roughness Factor, Rr, and Contact Length, lc 4.6 ELASTIC STRESSES DUE TO ABRASION . 4.7 SUMMARY OF CONTACT STRESS IMPLICATIONS . REFERENCES 5. Forces, Friction, and Energy 5.1 INTRODUCTION . 5.2 FORCES AND POWER . 5.3 FORCES: SPECIFIC ENERGY AND EFFICIENCY. 5.4 EXAMPLES OF MATERIALS AND THEIR GRINDING CONDITIONS 5.4.1 Gray Cast Iron 5.4.2 Medium Carbon Steel, AISI 1055 5.4.3 C1023 Nickel-based Alloy 5.5 THE SIZE EFFECT . 5.5.1 The Sliced Bread Analogy . 5.5.2 Cutting, Ploughing, and Rubbing . 5.5.3 Threshold Force for Cutting . 5.5.4 Grain Sharpness 5.6 EFFECT OF WEAR FLAT AREA ON SPECIFIC ENERGY . 5.6.1 Chip Formation Energy . 5.6.2 Sliding Energy . 5.6.3 The Ploughing Energy 5.7 WEAR AND DRESSING CONDITIONS 5.8 EFFECT OF DRESSING TOOL WEAR . 5.9 THE NATURE OF THE GRINDING FORCES . 5.10 FORCE RATIO AND FRICTION COEFFICIENT . 5.10.1 Blunt Asperity Contact (Adhesion Friction) 5.10.2 Sharp Asperity Contact (Abrasive Cone Friction) . 5.10.3 Combined Cone and Sphere Model . 5.11 ADHESIVE AND ABRASIVE WHEEL WEAR 5.12 SLIP-LINE FIELD SOLUTIONS . 5.12.1 Wave Model of Rubbing 5.12.2 Wave Removal Model of Wear . 5.12.3 Chip Removal Models of Abrasion . 5.13 THREE-DIMENSIONAL PYRAMID MODEL OF GRINDING . 5.14 LIMIT CHARTS . 5.15 PROCESS OPTIMIZATION AND WHEELSPEED REFERENCES . 6. Thermal Design of Processes . 6.1 INTRODUCTION 6.2 EXAMPLES OF SURFACE DAMAGE . 6.2.1 Discoloration 6.2.2 Softening 6.2.3 Re-hardening . 6.2.4 Cracks . 6.2.5 Spheroidal Swarf . 6.2.6 Tensile Residual Stresses 6.2.7 Mechanically Induced Stresses . 6.3 THERMAL MODELING—KEY DEVELOPMENTS 6.4 RATE OF HEAT GENERATION 6.5 TEMPERATURES IN GRINDING . 6.6 HEAT CONDUCTION IN THE WORKPIECE 6.7 FLUX DISTRIBUTION 6.8 PECLET NUMBER . 5.9 THE NATURE OF THE GRINDING FORCES . 5.10 FORCE RATIO AND FRICTION COEFFICIENT . 5.10.1 Blunt Asperity Contact (Adhesion Friction) 5.10.2 Sharp Asperity Contact (Abrasive Cone Friction) . 5.10.3 Combined Cone and Sphere Model . 5.11 ADHESIVE AND ABRASIVE WHEEL WEAR 5.12 SLIP-LINE FIELD SOLUTIONS . 5.12.1 Wave Model of Rubbing 5.12.2 Wave Removal Model of Wear . 5.12.3 Chip Removal Models of Abrasion . 5.13 THREE-DIMENSIONAL PYRAMID MODEL OF GRINDING . 5.14 LIMIT CHARTS . 5.15 PROCESS OPTIMIZATION AND WHEELSPEED REFERENCES . 6. Thermal Design of Processes . 6.1 INTRODUCTION 6.2 EXAMPLES OF SURFACE DAMAGE . 6.2.1 Discoloration 6.2.2 Softening 6.2.3 Re-hardening . 6.2.4 Cracks . 6.2.5 Spheroidal Swarf . 6.2.6 Tensile Residual Stresses 6.2.7 Mechanically Induced Stresses . 6.3 THERMAL MODELING—KEY DEVELOPMENTS 6.4 RATE OF HEAT GENERATION 6.5 TEMPERATURES IN GRINDING . 6.6 HEAT CONDUCTION IN THE WORKPIECE 6.7 FLUX DISTRIBUTION 6.8 PECLET NUMBER . 7.3 REQUIREMENTS FOR MOLECULAR DYNAMICS SIMULATIONS OF ABRASIVE PROCESSES 7.4 APPLICATION EXAMPLES FOR MOLECULAR DYNAMICS SIMULATION OF ABRASIVE PROCESSES . 7.4.1 Orthogonal Cutting of a Ductile, Single-crystalline Material 7.4.2 A Model for Investigating the Pile-up Formation in Abrasive Machining 7.4.3 Machining of Ductile, Polycrystalline Materials. 7.4.4 Indenting a Brittle Semiconductor Material . 7.5 SUMMARY AND OUTLOOK REFERENCES 8. Fluid Delivery 8.1 THE ROLE OF PROCESS FLUIDS . 8.2 OVERCOMING THE AIR BARRIER IN HIGH SPEED GRINDING . 8.3 NOZZLES FOR HIGH SPEED GRINDING . 8.3.1 The Turbulent Orifice Nozzle . 8.3.2 The Transitional and Laminar Flow Capillary Nozzle 8.3.3 The Slot Nozzle 8.3.4 The Shoe Nozzle 8.4 ENERGY AND MOMENTUM REQUIREMENTS OF THE PROCESS FLUID . 8.4.1 Velocity Requirement for a Jet Nozzle . 8.5 USEFUL FLOWRATE THROUGH THE GRINDING CONTACT 8.6 MECHANICS OF COOLING IN CREEP GRINDING 8.6.1 Estimating the Thickness of the Thermal Boundary Layer . 8.6.2 Application of Coolant in Creep Grinding 8.7 SUMMARY OF CONCLUSIONS REFERENCES . 9. Electrolytic In-process Dressing (ELID) Grinding and Polishing 9.1 INTRODUCTION 9.2 BASIC SYSTEM 9.3 BASIC PRINCIPLES 9.4 ELECTRICAL ASPECTS OF ELID GRINDING . 9.5 GRINDING WHEELS FOR ELID APPLICATIONS 9.6 ELID GRINDING OF CERAMICS 9.7 MATERIAL REMOVAL MECHANISMS IN GRINDING OF CERAMICS AND GLASSES . 9.8 COMPARISON BETWEEN ELID AND OTHER GRINDING TECHNIQUES . 9.9 APPLICATIONS OF ELID GRINDING 9.9.1 ELID Face-grinding 9.9.2 ELID Duplex (Double-sided) Grinding . 9.9.3 ELID Lap-grinding 9.9.4 ELID Grinding of Ceramics on a Vertical Rotary Surface Grinder . 9.9.5 ELID Grinding of Ceramics on a Vertical Grinding Center 9.9.6 ELID Grinding of Bearing Steels 9.9.7 ELID Grinding of Ceramic Coatings . 9.9.8 ELID Ultra-Precision Grinding of Aspheric Mirrors . 9.9.9 ELID Grinding of Microspherical Lens . 9.9.10 ELID Grinding of Large Optical Glass Substrates 9.9.11 ELID Precision Internal Grinding 9.9.12 ELID Grinding of Hard Steels . 9.9.13 ELID Mirror Grinding of Carbon Fiber Reinforced Plastics 9.9.14 ELID Grinding of Chemical Vapor Deposited Silicon Nitride . 9.10 CONCLUSIONS REFERENCES . 10. Grinding Wheel and Abrasive Topography . 10.1 BASIC WHEEL SHAPE . 10.1.1 Misalignment . 10.1.2 Profile Errors . 10.1.3 Vibrations . 10.2 THE IMPORTANCE OF MICROTOPOGRAPHY 10.3 TOPOGRAPHICAL DEFINITIONS 10.3.1 Cutting Edge Dullness (?) . 10.3.2 Cutting Edge Density (Ca) 10.3.3 Effective Porosity Ratio (V pw ) 10.4 MEASUREMENT TECHNIQUES . 10.4.1 Stylus Techniques 10.4.2 Microscopy 10.4.3 Comparison of Measurement Ranges . 10.4.4 Replication Techniques 10.4.5 Image Processing 10.5 TOPOGRAPHY CHANGES IN GRINDING 10.6 GRINDING INCONEL 718 . REFERENCES . 11. Abrasives and Abrasive Tools 11.1 INTRODUCTION 11.2 CONVENTIONAL ABRASIVE GRAIN MATERIALS 11.2.1 Aluminum Oxide (Al2O3)-based Abrasives 11.2.2 Garnet 11.2.3 Quartz 11.2.4 Silicon Carbide (SiC) . 11.2.5 Polishing Abrasives . 11.2.6 Abrasive Wheel Type-marking . 11.3 SUPERABRASIVES . 11.3.1 Natural Diamond 11.3.2 Synthetic Diamond 11.3.3 Chemical-Physical Properties of Diamond 11.3.4 Cubic Boron Nitride (CBN) 11.3.5 Boron Nitride (B4N) 11.4 STRUCTURE OF SUPERABRASIVES 11.4.1 Structure of Diamond . 11.4.2 Structure of Cubic Boron Nitride (CBN) . 11.4.3 PCD Diamond . 11.4.4 CVD Diamond 11.5 GRIT SIZES, GRIT SHAPES, AND PROPERTIES 11.5.1 Grit Sizes . 11.5.2 Modern Grain Developments . 11.5.3 Friability 11.5.4 Hardness 11.5.5 Grain Shape . 11.5.6 Specific Gravity 11.5.7 Porosity . 11.5.8 Properties of Diamond 11.5.9 Properties of CBN . 11.6 BONDS . 11.6.1 Bonds for Conventional Abrasives 11.6.2 Bonds for Single-layer Superabrasives 11.6.3 Bonds for Multilayer Diamond . 11.6.4 Bonds for Multilayer CBN 11.7 DESIGN AND SPECIFICATION OF GRINDING WHEELS . 11.7.1 Conventional Grinding Wheels 11.7.2 Multilayer Superabrasive Grinding Wheels 11.7.3 Electroplated Single-layer Superabrasive Grinding Wheels 11.7.4 Wheel Shape and Tolerances 11.7.5 Wheel Balancing . 11.7.6 Design of High-speed Wheels . 11.7.7 Chatter Suppression 11.8 ABRASIVE PASTES . 11.8.1 Binders for Abrasive Pastes . 11.9 COATED ABRASIVES AND ABRASIVE BELTS 11.9.1 Coated Abrasive Tools 11.9.2 Backing Materials for Coated Abrasives 11.9.3 Adhesives for Abrasive Belts 11.9.4 Comparison Between Grinding Wheels and Abrasive Belts 11.9.5 Abrasive Belts in Furniture Production 11.9.6 Abrasive Grains for Abrasive Belts . 11.9.7 Backings for Abrasive Belts REFERENCES United States Patents . American National Standards Institute Japanese Industrial Standards International Standards Organization . Grinding Wheel Manufacturers’ Literature . 12. Conditioning of Abrasive Wheels . 12.1 INTRODUCTION . 12.2 GRINDING WHEEL PREPARATION . 12.3 GRINDING WHEEL CONDITIONING . 12.3.1 Introduction . 12.3.2 Cleaning-up a Wheel 12.3.3 Truing 12.3.4 Dressing 12.4 DRESSING TOOLS 12.4.1 Introduction . 12.4.2 Ultra-hard Materials for Dressing Tools 12.4.3 Traverse Dressers 12.4.4 Roll Dressers 12.5 TECHNOLOGIES FOR CONDITIONING VITRIFIED CONVENTIONAL WHEELS . 12.5.1 Conditioning by Traversing the Diamond Tool Across the Wheel . 12.5.2 Diamond Roller Dressing . 12.5.3 Crush Dressing . 12.5.4 Continuous Dressing (CD) Using a Diamond Roller . 12.6 TECHNOLOGIES FOR CONDITIONING SUPERABRASIVE WHEELS . 12.6.1 Introduction . Truing Superabrasive Wheels 476 12.6.3 Dressing Superabrasive Wheels 478 12.7 NONCONVENTIONAL TECHNOLOGIES FOR WHEEL CONDITIONING 479 12.8 REMOVAL MECHANISMS IN CONVENTIONAL CONDITIONING .480 12.8.1 Introduction 480 12.8.2 Mechanism of Dressing Conventional Vitrified Wheels .482 12.8.3 Mechanism of Conditioning Superabrasive Wheels 483 12.9 MICROTOPOGRAPHY OF CONDITIONED WHEEL .486 12.9.1 Introduction 486 12.9.2 Experimental Methods for Representation of Wheel Microtopography .487 12.10 WEAR OF THE DRESSING TOOLS 488 12.10.1 Introduction 488 12.10.2 Influence of the Wheel Specification 489 12.10.3 Influence of the Ultra-hard Components of the Dresser 489 12.11 CONCLUSIONS 494 REFERENCES .495 13. Loose Abrasive Processes 499 13.1 INTRODUCTION 499 13.2 TWO-BODY AND THREE-BODY ABRASION (MECHANISMS) .504 13.3 THE LAPPING PROCESS .507 13.3.1 The Lap .508 13.3.2 The Abrasive .509 13.3.3 The Lapping Fluid 513 13.3.4 Lapping Types .515 13.4 POLISHING PROCESS .518 13.5 CHEMO-MECHANICAL POLISHING (CMP) 524 REFERENCES .528Contents xxiii 14. Process Fluids for Abrasive Machining .531 14.1 PROCESS FLUIDS AS LUBRICANTS 531 14.1.1 Alternative Lubrication Techniques .531 14.1.2 Benefits of Lubricants in Abrasive Machining 533 14.1.3 Three Main Groups of Fluids 533 14.1.4 Demands Arising from New Materials and Applications 534 14.2 LUBRICATION REGIMES .534 14.2.1 The Stribeck Curve .534 14.2.2 Hydrodynamic Lubrication 535 14.2.3 Boundary/Mixed Lubrication .536 14.2.4 Elastohydrodynamic Lubrication (EHL) .537 14.2.5 Lubrication in Abrasive Machining Contacts 538 14.3 VISCOSITY .538 14.3.1 Dynamic Viscosity, ? .538 14.3.2 Kinematic Viscosity, ? .539 14.3.3 Dependence of Viscosity on Temperature 539 14.3.4 Viscosity Index for Temperature .539 14.3.5 Viscosity Index for Pressure .540 14.4 FRICTION COEFFICIENT IN MIXED/BOUNDARY LUBRICATION .540 14.5. CLASSIFICATION OF PROCESS FLUIDS 542 14.6 NEAT OILS 542 14.6.1 Natural Fatty Oils 542 14.6.2 Mineral Oils .543 14.6.3 Synthetic Neat Oils 545 14.6.4 Classification of Neat Oils by Additives .546 14.7 WATER-BASED FLUIDS .546 14.7.1 Physical Aspects .546 14.7.2 Properties of Water as a Base Liquid .549 14.8 WATER SOLUTIONS 550 14.8.1 Mineral Salt Solutions 551 14.8.2 Water Solutions of Synthetic Organic Compounds 551 14.9 WATER-OIL EMULSIONS .551 14.9.1 Oil-concentrate Emulsions .552xxiv Contents 14.9.2 Semisynthetic Emulsions .552 14.9.3 Synthetic Emulsions .552 14.10 THE INFLUENCE OF ADDITIVES 553 14.11 PHYSICAL PROPERTIES OF PROCESS FLUIDS .555 14.11.1 Density .555 14.11.2 Viscosity and Viscosity Index 555 14.11.3 Color 555 14.11.4 Transparency .556 14.11.5 Fluorescence .556 14.11.6 Detergency 556 14.11.7 Dispersive Ability 556 14.11.8 Foam Depressing .556 14.11.9 Flash Point .557 14.11.10Emulsion Stability .557 14.11.11 Cooling Properties .558 14.11.12Boiling Point .558 14.12 CHEMICAL PROPERTIES OF PROCESS FLUIDS 558 14.12.1 Thermal Stability (TS) .558 14.12.2 Oxidation Stability 559 14.12.3 Catalytic Effects of Metals .559 14.12.4 Fluid Corrosivity 559 14.12.5 Rusting .560 14.12.6 Ash Content .560 14.13 TRIBOLOGICAL PROPERTIES OF PROCESS FLUIDS 560 14.13.1 Friction Properties .561 14.13.2 Wear Resistance .561 14.13.3 Extreme Pressure (EP) Properties .561 14.14 BIOLOGICAL PROPERTIES OF PROCESS FLUIDS 562 14.15 DEGRADATION OF FLUID PROPERTIES DURING OPERATION .563 14.16 ANALYSIS OF PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES 564 14.16.1 Water-based Emulsion and/or Solution Characteristics .564 14.16.2 Corrosion Inhibition 567Contents xxv 14.16.3 Heat Transfer Rate .567 14.16.4 Thermal Reactivity of the Tribosystem .567 14.16.5 Biological Characteristics 569 14.17 TRIBOLOGICAL AND APPLICATION CHARACTERISTICS 569 14.18 ADJUSTMENT OF FLUID PROPERTIES IN OPERATION 572 14.19 SELECTION OF PROCESS FLUIDS 573 14.20 CONCLUSIONS AND RECOMMENDATIONS 579 REFERENCES .580 15. Tribochemistry of Abrasive Machining .587 15.1 DEFINITION OF TRIBOCHEMISTRY 587 15.2 MODELING A TRIBOCHEMICAL PROCESS .591 15.2.1 Special Factors in Abrasive Machining .591 15.2.2 The Magma-Plasma Model for Abrasive Machining 592 15.3 TRIBOCHEMICAL BEHAVIOR OF ABRASIVE TOOLS 595 15.3.1 General Aspects 595 15.3.2 Triboreactions Between Tool and Workpiece .595 15.3.3 Triboreactions Between Tool and Environment 601 15.4 TRIBOCHEMICAL ASPECTS OF THE WORKMATERIAL STRUCTURE .603 15.4.1 Initial Structure of a Rough-machined Workpiece 604 15.4.2 The Rehbinder Effect and Tribological Implications 605 15.4.3 Other Tribochemical Interactions Between Workmaterial and Surround .606 15.4.4 Influence of the Chemical Composition of Workmaterial .607 15.4.5 Workmaterial Selection by Tribosimulation .608 15.5 TRIBOCHEMICAL ASPECTS OF DRY ABRASIVE MACHINING .610xxvi Contents 15.6 TRIBOCHEMICAL ASPECTS OF WET ABRASIVE MACHINING . 611 15.6.1 Lubrication by a Tribosorption Layer 611 15.6.2 Lubrication by Chemical Triboreaction Layers .614 15.6.3 Lubrication in Extreme Pressure (EP) Conditions 616 15.6.4 Combined Effects of Tribochemical Processes Induced by Additivation .622 15.7 CONCLUSIONS 625 REFERENCES .626 16. Processed Materials 635 16.1 IMPORTANCE OF MATERIAL PROPERTIES .635 16.2 STRUCTURAL ASPECTS OF METALS 638 16.2.1 Control and Modification of Structure in Metals 640 16.2.2 Machinability of Metals .643 16.3 STRUCTURAL ASPECTS OF NONMETALS .645 16.3.1 Advanced Ceramics 645 16.3.2 Optical Glasses 646 16.3.3 Crystallized Minerals .646 16.4 STRUCTURAL ASPECTS OF TRANSITIONAL MATERIALS .647 16.4.1 Composite Materials 647 16.4.2 Polymers 649 16.5 ADVERSE TRIBOCHEMICAL EFFECTS IN ABRASIVE MACHINING 650 16.5.1 Physico-Chemical Effects .650 16.5.2 Prevention of Adverse Tribochemical Effects 651 16.6 TRIBOLOGICAL ASPECTS OF ABRASIVE MACHINING .652 16.6.1 General Aspects 652 16.6.2 Tribology of Metals in Abrasive Machining 653 16.6.3 Tribology of Abrasives in Abrasive Machining .656 16.6.4 Tribology of Ceramic and Glass Processing .657Contents xxvii 16.6.5 Abrasive Machining Tribology of Polymeric Materials 659 16.7 CONCLUDING COMMENTS 659 REFERENCES .661 Symbols and Units .665 SYMBOLS .665 SI UNITS 671 CONSISTENCY OF UNITS IN EQUATIONS .672 SI – BRITISH CONVERSION FACTORS 672 Glossary 675 Index .69
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Tribology of Abrasive Machining Processes رابط مباشر لتنزيل كتاب Tribology of Abrasive Machining Processes
|
|