كتاب Rotational Molding Technology
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Rotational Molding Technology

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16792
التقييم : 29430
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Rotational Molding Technology  Empty
مُساهمةموضوع: كتاب Rotational Molding Technology    كتاب Rotational Molding Technology  Emptyالأحد 27 أكتوبر 2013, 12:46 am

أخوانى فى الله
أحضرت لكم كتاب
Rotational Molding Technology
William Andrew  
Roy J. Crawford
The Queen's University of Belfast
Belfast, Northern Ireland
James L. Throne
Sherwood Technologies, Inc.
Hinckley, Ohio  

كتاب Rotational Molding Technology  R_m_t_10
و المحتوى كما يلي :

1 Introduction
2  Rotational Molding Technology
3 Grinding and Coloring
4 Rotational Molding Machines
5 Mold Design
6 Processing
7 Mechanical Part Design
Appendix a. Troubleshooting Guide for Rotational Molding
Problem  Probable  Cause  Possible  Solution  Location in  Book
Long  oven cycle  Excessively thick mold  Change to aluminum or beryllium-copper  Section 5.1
Reduce mold wall thickness  Section 5.2
Inefficient heat transfer  Increase air velocity
Add baffles, venturis
Section 4.3.2
Section 4.3.3
Poor polymer flow  Use higher melt index polymer  Section 2.9.1
Poor powder flow  Change to a less sticky additive package  Section 3.10.6
Reclassify to remove tails  Section 3.6
Coarse particles  Section 3.2  
Underfused parts  Insufficient heat transfer  Reduce mold wall thickness  Section 5.2
Chanee to aluminum molds  Section 5.1.2
Add bYaffles, venturis  Section 4.3.3
Oven temperature too low  Increase oven temperature  Section 6.6-6.8
Increase heating time  Section 6.6-6.8
Oven time too short  Increase oven  temperature
Increase heating time
Section 6.6-6.8
Section 6.6-6.8
Coarse powder  Check powder size, size distribution  Section 3.2
Replace micropellets with -35 mesh powder  Section 3.8
Overcured parts  Oven temperature too high  Reduce oven temperature  Section 6.6-6.8
Decrease heating time  Section 6.6-6.8
Oven time too long  Reduce oven temperature  Section 6.6-6.8 Problem  Probable  Cause  Possible  Solution  Location  in  Book
Decrease heating time  Section 66-6.8
Wrong polymer  Change to less thermally sensitive polymer  Section 2.8  
Poor  impact  Wrong polymer  Select polymer with higher inherent impact,
strength  lower melt index, lower density
Section 2.2,2.9
High crystallinity due to  Increase cooling rate
long cooling time
Insufficient powder fusion  Increase heating time
Increase oven  temperature
Increase air velocity in oven
Change to aluminum molds, thinner mold
walls
Bad part design
Wrong colorant
Overheated parts
Underfused  parts
Increase corner radii
Increase distance between parallel  walls
Change to pigment that doesn't  interfere
with impact or crystallization rate
Reduce level of masterbatched pigment
Use less pigment
Use precolored compounds
[See comments for Overcured parts]
[See comments for  Underfused parts]
Section 6.20
Section 6.6-6.8
Section 6.6-6.8
Section 4.3.2
Section 5.2
Section 7.6.5
Section 7.6.8
Section 3.10
Section 3.10.4
Section 3.10
Section 3.10 Problem  Probable  Cause  Possible  Solution  Location in  Book
Long-term part  Stress-cracking  Change to stress-crack resistant polymer  Section 2.2,-2.3
failure  Old or unstable polymer  Section 2.8,2.9
Redesign around inserts  Section 7.6.10
Use lo;,-stress-concentration  inserts  Section 7.6.10
Reconsider appropriateness of original  Section 7.3
design criteria
W-degradation  Increase UV inhibitor level  Section 2.10.3
Consider more expensive UV absorber  Section 2.10.3,3.10.6
Consider higher loading of carbon black  Section 3.10.4
Stress-cracking  Improper polymer  Change to stress-crack resistant polymer  Section 2.2,2.3
Improper part design  Redesign pert to minimize stress  Section 7.6.7
concentration
Use low-stress-concentration  inserts  Section 7.6.10
Long cooling time  Increase cooling rate to minimize shrinkage  Section 6.20
particularly around inserts, cores
Nonuniform  wall  Improper mold rotation  Change speed and arm ratio  Section 4.2
thickness  Use reverse rotation during heating  Section 4.2
Improper mold design  Check mold wall thickness for nonuniformity Section 5.2
Move mold supports away from mold to  Section 5.3.2
prevent them from removing heat locally
Poor heat  transfer  Move mold away from other molds, unstack  Section 4.2,4.3
molds to improve air circulation
Add baffles, venturis for deep cavities  Section 4.3.3 Problem  Probable  Cause  Possible  Solution  Location in  Book
Parting  line  Poor mold parting line  Rework parting line  Section 5.3.1
bubbles  Redesign mold with tongue-and-groove  Section 5.3.1
parting line
Clean parting line of crud, recoat with mold  Section 5.7
release
Misaligned support frame  Rework support frame so mold halves seat
properly
Inadequate venting  Resize vent
Reposition vent to middle of mold
Make certain glass wool is in vent tube
Use TeflonB vent tube
Use 'T-shaped vent tube
Parts stick in mold  Inadequate draft on female  Rework mold with larger draft angles
parts of mold  Coat locally with mold release
Section 5.3.2
Section 5.5
Section 5.5
Section 5.5
Section 5.5
Section 5.5
Section 7.6.5
Section 5.7
Heavily textured part  Coat with low coefficient of friction mold  Section 5.7,7.6.5
release
Rework mold with larger draft angles  Section 7.6.5
Lack of mold release  Strip off mold release and recoat  Section 5.7
Recoat with higher temperature mold  Section 5.7
release
Recoat with lower coefficient of friction  Section 5.7
mold release
Recoat with mold release that is chemically  Section 5.7
compatible with polymer, additives,
crosslinking agent, blowing agent Problem  Probable  Cause  Possible  Solution  Location  in  Book
Mold surface damage  Look for undercuts, dings, dents, then  Section 7.6.5
rework mold
Flat area suction  Modify mold to allow air bleed into flat area  Section 5.3
Roughen mold surface in flat area  Section 5.6
Interference  between  part  Remove incidental undercuts, rework mold  Section 7.6.5
and mold  to move parting line, add draft to mold
Remove part warm  Section 6.25
Increase pry points on mold frame, use  Section 5.3.4
air-driven jack  screws
Low-shrink polymer  Use higher density polymer  Section 2.2
Incomplete  mold  Melt viscosity high  Use lower viscosity polymer  Section 2.2
surface  replication  Increase oven temperature  Section 6.6-6.8
Powder bridging  Check particle size, size distribution  Section 3.2
Mix micropellets with powder  Section 3.8
Cold spots on mold  Check local mold wall thickness  Section 5.2
[also see comments for Nonuniform  Wall Thickness]
Bubbles in part  Trapped air
Moisture
Reduce heating rate in last part of oven time Section 6.20
Reduce powder size  Section 3.2,6.20,6.2 1
Increase powder size distribution  Section 3.2,6.20,6.21
Increase vent size  Section 5.5
Apply vacuum during last part of oven time  Section 6.15,6.20
Adequately dry PMMA, PC, PVC drysols  Section 2.7 Problem  Probable  Cause  Possible  Solution  Location  in  Book
Overcured  part  Decrease oven time or temperature  Section 6.6-6.8
Use nitrogen purge throughout heating cycle Section 6.15
[see comments for  Overcured parts]
Outgassing  Change additive package in polymer  Section 3.10.6
Check pigment for thermal stability  Section 3.10
Replace temporary mold release with  Section 5.7
permanent mold release
Undercured  part  Increase oven time or temperature  Section 6.6-6.8
[see comments  for  Underfused parts]
Wrong polymer  Switch to polymer with higher melt index  Section 2.9.1
Bubbles  along  Poor parting line  Clean, rework parting line  Section 5.3.1
parting  line  Improper mold clamping  Rework mold clamping mechanism  Section 5.3.3
Internal pressure during  Check, clear vent  Section 5.5
heating  Increase vent size  Section 5.5
Internal pressure during  Check, clear vent, replace glass wool  Section 5.5
cooling  Pressurize mold during cooling  Section 6.15,6.23
Blow holes around  Moisture in polymer  Dry polymer, esp. PMMA, PC  Section 2.7
inserts  Apply vacuum during heating  Section 6.15
Adsorbed air on insert  Precoat insert with polymer  Section 5.3.5
Bridging of powder at insert  Move insert away from bridging area  Section 7.6.9
Change insert to more open design  Section 7.6.10
Replace metal insert with plastic one  Section 7.6.10 Problem  Probable  Cause  Possible  Solution  Location  in  Book
Flash  at parting  Poor parting line  Clean, rework parting line  Section 5.3.1
line  Increase clamping force  Section 5.3.3
Rework mold clamping mechanism  Section 5.3.3
Internal pressure buildup  Check, clear vent, replace glass wool  Section 5.5
Increase vent size  Section 5.5
Low polymer viscosity  Decrease polymer melt index  Section 2.9.1
Lower oven temperature  Section 6.6-6.8
Warped parts  Inadequate venting  Increase vent size  Section 5.5
Replace glass wool  Section 5.5
Nonuniform cooling  Maintain rotation during cooling
Increase air cooling time
Check vent size, glass wool quality
Rework mold to replace flat areas with
ribbed, corrugated, domed areas
Increase water coolant temperature
Minimize, remove mold release
Use air pressure during water cooling time
Reduce rate of external cooling
Introduce internal cooling
Section 6.18
Section 6.2 1
Section 5.5
Section 5.3
Section 6.23
Section 5.7
Section 6.15,6.23
Section 6.21,6.22
Section 6.24
Overcured part  Decrease  oven temperature  Section 6.6-6.8
Decrease oven time  Section 6.6-6.8
Use nitrogen purge throughout heating cycle Section 6.15 Problem  Probable  Cause  Possible  Solution  Location  in  Book
-  --
Underfused  part  Increase oven temperature, time  Section 6 . 6 4 . 8  
Increase heat transfer by using aluminum  Section 5.2
molds
Use thinner molds  Section 5.1
[see comments for  Underfused  parts]
Wall thickness variation  Check rotation ratio  Scction 4.2
Remove, minimize hot spots on mold  Section 5.2
Increase cooling rate  Section 6.21,6.22
Local part separation from  Use internal pressure during cooling  Section 6.15
wall
Poor parting line  Improve mating surfaces on mold  Section 5.3
Clean thoroughly mating surfaces on mold  Section 5.3
Blocked vent  Inspect vent before each cycle  Section 5.5
*
Adapted from J. Rucher, "A  Beginner's  Guide to Rotomolding," Plastics World, 48:7 (July 1997), pp. 14-16. 3 7 5  
APPENDIX  B.  Conversion  Table
Metric  to  U.S.  to  Metric
Length
m  x  3.28  ft  •  0.3048  m
[1111  •  10 -6  m  x  10 6  ]AITI
h n   •  1.609  mile  •  0.622  km
rrm  x  39.37  mils  x  0.0254  n m  
Area
rn  2  x  10.76  ft 2  X  0.0929  rn 2
c m  2  •  0.155  in z  •  6.452  c m  2
m m  2  x  1.55  •  10 -3  in 2  x  645.2  m m   2
Volume
fro  x  35.31  f t 3  •  0.02832  m 3
rn  3  x  6.102  x  104  in 3  x  1.639  •  10 4  in 3
m m  3  x  6.102  x  10-5  in 3  •  1.639  x  10 4  m m   3
liter  x  1000  c m  3  x  0.001  liter
c m  3  x  29.57  fluid  oz  •  0.0338  c m  3
rn  3  x  264.2  U.S.  gat  x  3.785  x  10-3  m 3
Mass
g  x  0.0022  Ibm  x  453.6  g
kg  •  2.204  Ibm  x  0.4536  kg
kg  x  0.001  m e t r i c   t o n n e   x  1000  kg
kg  x  0.0011  U.S.  ton  x  907.2  kg
Density
g / c m  3  x  62.42  Ibm/ft 3
k g / m  3  x  0.06242  lbm/ft 3
g / c m  3  x  0.578  o z / i n  3
k g / m  3  x  5.78  x  10 -4  o z / i n  3
x  0.016  g / c m  3
x  16.02  k g / m  3
x  1.73  g / c m  3
x  1.73  x103  k g / m  3
Force
N  •  0.2248  lbf  •  4.448  N
kgf  x  0.2292  lbr  x  4.363  kgf
kN  •  0.2248  kip,  10001bf  •  4.448  kN
d y n e   •  2.248  •  10 -6  Ibf  x  4.448  x  105  d y n e  
d y n e   x  10-5  N  x  105  d y n e  3 7 6  
Metric  to  U.S.  to  Metric
Pressure
Pa  x  1.45  x  10 -4  lbf/in 2  x  6895  Pa
M P a   •  9.869  atm  x  0.1013  M P a  
Pa  x  t0  d y n / c m   2  x  0.1  Pa
Pa  x  7.5  x  10 .3  1  m m   Hg  x  133.3  Pa
Pa  x  4.012  x  10 -3  1  in  H 2 0   x  248.9  Pa
M P a   x  10  b a r   x  0.1  M P a  
N l m m  2  x  145  lbtgin 2  •  6.895  x  10 -3  N l m m  2
Energy
J  •  9.478  x  10 -4  B t u   x  1055  J
ft-lbf  x  1.286  •  10 -3  Btu  x  778  fi-lbf
j  x  0.2388  cal  x  4.187  J
j  x  1  x  10 7  e r g   x  1  x  10-7  J
M J   x  2.778  x  1 0 - 7   k W h r   x  3.60  x  106  M J  
j  x  0.7375  tt-lbf  x  1.356  J
Energy,  Power,  Heat,  Fluid  Flow  Rate
W  x  3.413  B t u / h r   x  0.293  W
W  x  1  x  10 7  e r g l s   x  1  x  10 -7  W
W  x  0.7375  ft-lbf/s  •  1.356  W
k W   x  1.34  hp  •  0.746  k W  
liter/min  x  0.2642  gal/min  x  3.785  liter/rain
liter/min  x  2.393  ft3/hr  x  0.4719  liter/rain
Heat  Flux
W / m  2  x  0.317  B t u / h r   ft 2  x  3.155  W l m  2
calls  c m  2  x  3.687  B t u / h r   ft 2  x  0.2712  cal/s  c m  2
W / m  2  x  6.452  x  10 -4  W / i n  2  x  1550  W / m  2
Specific  Heat
J / k g   K
cal/g  ~
x  2.388  x  10 -4  B t u / l b   ~  x  4187  J / k g   K
•  1  B t u / l b ~   x  1  c a l / g ~  
Thermal  Conductivity
W / m K   •  0.5777
W / m K   x  1 . 9 2 6 x 1 0   -3
W / m   K  •  7.028
W / m K   x  2 . 3 9 x   10 -3
B t u l h r   ft  ~  •  1.731
B t u i n / s   ft 2  ~  x  519.2
Btu  in/hr  ft 2 ~  •  0.1442
c a l / c m   s  ~  x  418.4
W l m   K
W l m   K
W l m   K
W l m   K 3 7 7  
Metric  to  U.S.  to  Metric
Vetocity
km/hr  x  0.6205  rniles/hr  x  1.609  km/hr
m / s   x  3.6  km/hr  x  0.2778  m / s  
m / s   x  39.37  in/s  x  0.0254  m/s
m / s   x  3.281  ft/s  x  0.3048  m/s
m / s   x  1.181  x  104  ft/hr  x  8.467  x  10-5  m/s
Mass  Flow  Rate
k g / s   x  7.937  x  103
k g / s   x  2.205
lb/hr  x  1.26  x  10 -4  k g / s  
lb/s  x  0.4536  k g / s  
Viscosity
Pa  s  x  10
P a   s  x  1000
m2/s  x  10.76
Pa  s  x  1.488
c e n t i p o i s e   x  I488
m2/s  x  I  x  106
P a s   x  1 . 4 5 x 1 0  -4
P a   s  x  2.088  x  10 -2
P o i s e   •  0.1
c e n t i p o i s e   x  0.001
ft2/s  x  0.0929
lb/s  ft  x  0.672
lb/s  ft  x  0.000672
c e n t i s t o k e   x  1  x  10 -6
lbf  s/in 2  •  6.895  •  103
lbf  s/ft 2  x  47.88
Stress
M P a   x  145
M P a   x  0.102
M P a   •  0.0725
M P a   •  1
M P a   x  1
l b ( i n  2  x  6.895  x  10 -3
k g t / m m  2  x  9.807
tone/in2  x  13.79
M N / m  2  x  1
N/ram 2  x  l
Bending Moment
x  8.85
b4~n  x  0.7375
Nrn/m  x  0.2248
N m / m   x  1.873  x  10-2
l b f i n   x  0.113
lbfft  x  1.356
lbf in/in  x  4.448
lbf ft/in  x  53.38
Fracture  Toughness  and  Impact  Strength
M P a   m v~  x  0.9099  ksi  in v2
J/m  x  0.2248  ft  lbf/ft
J/m  x  0.01874  ft lbf/in
J/m 2  •  4.757  x  10-4  ft  lbr/in 2
x  1.099
x  4.448
x  53.37
x  2102
Pa  s
Pa  s
rr12/8
P a s  
c e n t i p o i s e  
mZ/s
P a s  
P a s  
M P a  
M P a  
M P a  
M P a  
M P a  
]N~TI
Nm
N m / m  
N, rv'm
M P a   m',~
J/m
J/m
J/m 2 Author  Index
A
Andrzejewski, S., 11,16
Arendt, W.D., 6, 15, 96,
109
Arpaci, V.S., 247, 302
Ashby, M.F., 325,327,
363
Astarita, T., 210, 211,300
Astarita, G., 210, 211,300
Attaran, M.T., 248,302
B
Balmer, R.T., 279, 282,
304,  305
Bawiskar, S., 138,147
Beall, G.L., vi, 2, 14, 112,
14 7, 160, 200, 206,
276,285,299,304,
305, 307, 310, 313,
318,319,335,340,
342, 344, 349, 351,
362,  364
Becker, H., 4, 14
Bellehumeur, C.T., 11,17,
20,69,93,108,225,
228, 234, 243,244,
301,  302,  354, 365
Benning, C.J., 28, 59, 60,
65,  68
Bent, A.A., 210, 299
Berins, M.L., 335,356,
364,  365
Bisaria, M.K., 6, 11, 15,
17
Boenig, H.V., 42, 66
Boersch, E., 1, 14, 96,
1 O4, I09
Bonis, L.J., 225,300
Bothun, G., 104, 110
Braeunig, D., 6,15
Brown, R.L., 205, 211,
212,299
Bruins, P.F., vi, 4, 14, 40,
66,  112, 147
Brydson, J.A., 20, 65,
211,300
Bucher, J., 4, 14, 367,374
Burnett, D.S., 333,335,
363,  364
Burns, M., 332, 363
C
Calafut, T., 28, 65
Campbell, C.S., 210, 300
Carrino, L., 104,110
Carter, B., 4, 14, 113,147
Cellier, G., 236, 237, 242,
301
Cerro, R.L., 279, 281, 304,
305
Chabot, J.F., 4, 14
Chan, L.S., 6, 16, 69, 108
Chen, C.-H., 146, 148,
201,214,247,248,
299
Cheney, G., 11, 16
Chiou, Y.H., 228,229,237,
301
Clark, D.T., 360, 365
Collins, E.A., 38, 65
Copeland, S., 6,15, 64,
68
Covington, H., 335,364
Cowan, S.C., 210, 299
Cramez, M.C., 12, 17, 18,
99, 109, 268, 303
Crawford, R.J., vi, l, 2, 6,
11,  12, 14-18, 69,
85, 90, 94, 99, 100,
108, 109, 112, 120,
138, 140, 142, 146,
147, 148,  186, 200,
201,207,214,238,
240, 248,268,299,
302, 303, 318, 319,
323,348,349,350,
352,353,354,362,
364,  365
Crouch, J., 146,148
Cumberland, D., 85, 109
Straight-- Text Citing
379
Italic  ~  Reference 380
D
Rotational  Molding  Technology
m
Gibson, L.J., 325,327,
de Bruin, W., 69, 90, 92,  363
108  Goddard, J.D., 239, 302
Dieber, J.A., 279,285,  Gogos, G., 142, 148,240,
304,  305  250,251,273,274,
Dodge, P., 11,16  3 03
Domininghaus, H., 20,  Goodman, M.A., 250, 299
65, 338,339, 364  Goodman, T.R., 249, 302
Dority, S.,  505, 109, 110  Gotoh, K., 81, 108
Dusinberre, G.M., 2 6 6 ,   Graham,  B., 6, 15, 58, 64,
303  68
D'Uva, S., 287, 306
E
Eilers, K., 330, 363
Elias, H.-G., 267, 268,303
Epstein, P.S., 240, 302
Ezrin, M., 56, 67, 307,362
F
Fahnler, F., 39, 66
Fawcett, J., 332, 363
Fayed, M.E.,219,300
Feast, W.J., 360, 365
Fenner, R.T., 333,363
Findley, W.N., 323,362
Flannery, B.P., 333,363
Fogler, H.S., 239, 302
Foy, D., 501,110
Frenkel, Ya.I.., 225,300
Frisch, K.C., 59, 67, 291,
306
G
Gachter, R., 63, 68
Gebhart, B., 333,363
Gianchandani, J., 6, 16,
279,282,283,304,
3O5
Straight - -  
I-I
Han, C.D., 239, 302
Hang, C.C., 6, 16, 69, 108
Harkin-Jones, E.M.A., 6,
16, 38,39,40,41,
42, 65, 66, 69, 108,
279,282, 283,284,
303,  304, 305
Hartnett, J.P., 250, 261,
303
Hausner, H.H., 225,300
Hentrich, R., 154, 200
Hickey, H.F., 40, 66
Higashitani, K., 85, 108
Howard, H.R., 51,16, 501,
109,  110
Huebner, K.H., 333,363
Iwakura, K., 146,148,
205,214,247,248,
299
,I
Joesten, L., 6, 16, 64, 68
Johnson, L., 105, 110
Johnson, R.E., 279, 285,
304,  305
Jolly, R.E., 44, 66
Text Citing
K
Kampf, G., 44, 56, 66
Keurleker, R., 39, 66
Khemani, K.C., 291,305
Kinghorn, K.B., 6, 15
Klempner, D., 59, 67, 291,
306
Kobayashi, A., 356, 365
Kontopoulou, M., 6, 11,
15, 17, 64, 68, 234,
238,240, 241,243,
244, 301,302, 354,
365
Kreith, E, 205, 255, 216,
299, 300, 335, 364
Kuczynski, G.C., 225,300
Kumar, S., 328,363
Kurihara, K., 210, 215,
299
L
Lai, J.S., 323,362
Landrock, A.H., 291,306
Lang, J., 6, 15, 96, 109
Lefas, J.A.,287,306
Levitskiy, S.R, 231,238,
301,  302
Lin, S.T., 228,229, 238,
301
Liniger, E.G., 211,300
Linoya, K., 85, 108
Lipsteuer, S.J., 93,109,
287,306
Liu, F., 287,306
Liu, G., 287, 306
Liu, S.-J., 228,229,238,
301
Liu, X., 250, 273,274, 303
Lontz, J.F., 225,300
Lowe, J., 6,15
Italic  Reference Author  Index  381
Lui, S.-J., 11,17
Lun, C.K.K., 210, 299
M
Macauley, N., 270,303
MacKinnon, C., 191,200
Maier, C., 28, 65
Malkin, B.A., 279,280,
305
Malloy, R.A., 315,322,
323,345,346,
362-364
Malwitz, N., 291,305
Mansure, B., 6, 15
Marchal, J.-M., 287,306
Marion, R.L., 278, 304
Martin, D., 6, 16, 69, 108
Mazur, S., 225,226, 227,
228,232,233,301
McCarthy, T.J., 360, 365
McClellan, E., 6,15
McDaid, J., 69, 70, 71,73,
76, 86, 89, 90, 91,
94,108
McDonagh, J.M., 6, 15
Mello, J., 335,364
Mincey, E., 105, 110
Mish, K.D., 335,364
Mooney, P.J., 1, 14
Morawetz, H., 22, 30, 65
Moroni, G., 104, II 0
Muller, B., 6, 15, 101, 102,
110
Muller, H., 63, 68
Murphy, W.R., 270, 303
Muzzio, EJ.,243,306
N
Nagy, T., 100,109
Nakajima, N., 38, 65
Narkis, M., 25, 65, 218,
225,226,227,228,
232,233,235,236,
301,347,348,364
Neuville, B., 225,300
Newman, S.J.,236,301
Nickerson, J.A., 2, 14
Nugent, P.J., 11, 12,
16-18,  140, 147,
186,200,201,214,
273,274, 299, 303,
350,352,353,354,
365
0
Ocone, R., 210, 211,300
Ogorkiewicz, R.M., 4, 14,
44, 52, 66, 67, 268,
270,271,272,303
Ohta, Y., 146,148, 201,
214,247,248,299
Okoroafor, M.O., 291,
306
Oliveira, M.J., 12, 17, 18,
99,109, 268,303
Olson, L.G., 250, 273,274,
303
Onaran, K., 323,362
Onoda, C.Y., 211,300
Orr, J., 6,16, 69,108
Otten, L., 219, 300
P
Paiva, M.C., 12,18
Park, C.E, 59, 67, 291,
306
Park, C.L., 287, 306
Pasham, V.R., 250, 303
Passman, S.L., 210, 300
Peterson, A.C., 315,362
Petrucelli, F., 6,15
Pietsch, W., 81,109
Plessct, M.S., 240,302
Polini, W., 104, 110
Pop-lliev, R., 287,306
Press, W.H., 333,363
Progelhof, R.C., 20, 22,
23,44,45,50,53,
62, 63, 65-68, 217,
229,230,231,236,
237,242,267,279,
300,  301, 303,
304,315,323,328,
330,362, 363
Q
R
Rabinovitz, E., 6,16
Ramesh, N.S., 291,305
Rao, M.A., 81,108, 201,
205,214,299
Rauenzahn, R.M., 210,
211,300
Rauwendaal, C., 207, 299
Rees, R.L., 6, 15, 76,108
Rhodes, M., 77, 108
Richards, J.C., 205, 211,
212,299
Rigbi, Z., 6, 16
Rijksman, B., 287,306
Roark, R.J., 318, 362
Rohsenow, W.H., 250,
261,303
Rosenzweig, N., 25, 65,
218,225,226,227,
228,232,233,235,
236, 301,347, 348,
364
Ruetsch, R.R., 217,300
Rumpf, H., 205,299
Straight ~  Text Citing  Italic  ~  Reference 382  Rotational  Molding  Technology
S  Susnjara, K., 355,365
Saffert, R., 6,15  Swain, R., 102,110
Sarvetnick, H.A., 37, 38,  Syler, R., 242,302
65,278,304
Schmitz, W.E., 4, 14  T
Schneider, K., 39, 66  Takacs, E., 64, 68, 69, 93,
Schneider, EJ., 249, 250,  108, 109, 243,244,
261,303  287, 302, 306, 354,
Scott, J.A., 12, 17, 142,  365
14 7,  148  Tanaki, A., 36, 68
Shah, V., 44, 51,54, 57, 61,  Taylor,  T.J., 348,364
62, 66-68  Teoh, S.H., 6, 16, 69,108
Shinbrot, T., 243,306  Teukolsky,  S.A., 333,363
Shinohara, K., 219, 300  Throne, J.L., 6, 10, 16, 20,
Shrastri, R.K., 48, 49, 6 7  22, 23, 25, 44, 45,
Shulman, Z.P., 231,238,  50, 53, 62, 63,
301,  302  65-68, 81,83,108,
109, 201,205,207,
Shutov, F.A., 289, 291,
210,214,215,217,
293,305,  306  218,224,229,230,
Silva, C., 100, 109  231,235,236,237,
Sin, K.K., 6, 16, 69, 108  238,239,242,245,
Smit, T., 69, 90, 92, 108  246, 247, 248, 251,
Sneller, J., 287, 306  267,275, 279, 281,
Sohn, M.-S., 83,109, 2 0 5 ,   282,283,288,291,
211,299  293,299-305, 308,
Sowa, M.W., 6, 16  315,323,327, 328,
323,330,331,340,
Spence, A.G., 12, 17, 89,  341,347, 348,356,
100,109, 138, I42,  362-365
146, 147, 148,207,
238,240, 299, 302  Tordella,  J.P., 44, 66
Spyrakos, C.C., 266,303,  Tredwell, S., 64, 68
310, 333,334, 362,  Turner,  S., 47, 67
363  Turng, L.-S., 287, 306
Stanhope, B.E., 6, 15, 96,
109  U
Stoeckhert, K., 154, 200
Strebel, J., 89, 90, 91,109  V
Strong, A.B., 6, 15  Vetterling, W.T., 333,363
Stufft, T.J., 89, 90, 91,109  Vincent,  P.I., 52, 67
Vlachopoulos, J., 6, 11,
15, 17, 64, 68, 69,
93, 108, 109, 225,
228,234, 238,240,
241,243,244,287,
301, 302, 306, 354,
365
Voldner, E., 6,15
W
Walls, K.O., 12, 18
Wang, H.P., 287,306
Ward, D.W., 38, 65
Ward, W.J., 360, 365
Weber, G., 4, 14
Werner, A.C., 37, 38, 65
White, J.L., 100, 109, 138,
147, 148,201,214,
247,248,299
Wisley, B.G., 6, 16
Wright, M.J., 138, 120,
147
Wright, E.J., 248, 302
Wytkin, A., 120, 14 7
X
Xin, W., 11, 16
Xu, L., 240, 302
Y
Yoo, H.J., 239, 302
Young, W.C., 318,362
Z
Zhang, D.Z., 210, 211,
300
Zimmerman, A.B., 4,14
S t r a i g h t -   Text Citing  Italic  ~  Reference Subject Index
A
ABS  9
See  also Acrylonitrile-butadiene-
styrene
Rotational molding grade, discussed
36
Limitations in rotational molding  36
Acrylic  9
See also PMMA,  Polymethyl meth-
acrylate
Acrylonitrile-butadiene-styrene
As thermoplastic  19
Discussed  35-36
Air temperature, inner cavity, measure-
ment  140-143
Air solubility in polymer  239-241
Aluminum casting
See also Mold,  ah4minum,  cast
Procedure  152-153
Amorphous, defined  20
ARM,  see Association  of Rotational
Molders
Arms
Design weight, described  122
Hollow for inert gas injection  146
Hollow for pressuring molds  146
Offset  122
Straight  122
Support of molds  122, 122F
Swing diameter
Described  123-125, I23F, 124F,
125F
Examples of  123-125
Association of Rotational Molders  12
ASTM D-1238  24
See also Melt index
ASTM D- 1693  22
See also ESCR; Environmental stress
crack  test
ASTM D-348  26, 32
See also Heat distortion  temperature
ASTM D-2765  27
See  also  Polyethylene,  crosslinked
ASTM D-1238  44
ASTM E-11  46
See also Sieve, screen sizes,  dis-
cussed
ASTM D-1921  46
See also Sieve  technolog3,
ASTM D- 1505  51
See also Density gradient column
ASTM D-256  53
See also Impact test, pendulum;
Impact test,  Charpy; Impact
test, lzod
ASTM D-3029  53
See also Impact test, falling weight
ASTM D-790  54
See also Mechanical test, flexural
modulus
Straight ~  Text  " F " - -   Figure  "T" ~ T a b l e  
383 384  Rotational  Molding  Technology
ASTM D-638  64
See also  Mechanical  test,  tensile
modulus
ASTM D-2990  55
See also Mechanical  test,  creep
ASTM D-671  55
See also Mechanical  test, flexural
fatigue
ASTM D-1693  58
See also Environmental stress  crack
test,  notched strip
ASTM D-1435  61
See also  Weathering,  accelerated
tests
ASTMD-3801  63
See  also Fire  retardancy,  standard
match  test
ASTM D-2863  63
See also Fire  retardancy,  oxygen
index
ASTME-11  75T
See also Sieve
ASTM D-1921  76
See  also Particle size  distribution
ASTM D-1895  84, 84F
See also Powder flow,  test method
ATM D- 1895  46
See  also  Sieve  technology,  bulk
density,"  Sieve  technology,
pourability
Attrition  69
See  also Pulverization,  described
Baffles
See also Molds
In mold design  136, 136F
Bridging, considerations for  311
Brittle fracture, impact test  51
Brittle temperature for several poly-
mers  52
Bubbles  15
Bulk density
Grinding factors affecting  89-91
Powder
Fluidized  88T
Measurement  84F, 88
Poured  88, 88T
Tamped  88, 88T
Vibrated  88, 88T
C
CAB,  see  Cellulose acetate  butyrate
CAP,  see  Cellulose  acetate propionate
Carousel machine
Fixed arm  117-118, 118F
Independent arm  118-119, 119F
Cellulose  acetate  butyrate,  discussed
34-35
Cellulose acetate propionate, dis-
cussed  34-35
Cellulosic  9, 21
Discussed  34-35
General properties, discussion  35
Centrifugal casting  7, 15
Charge weight, calculation of  174-183
For cylinder  175, 175F
For rectangle  176, 176F, 177F
For various shapes  177,  179T
Chemical resistance, post-applied  359-360
Chemical test
Crazing  57
Haze formation  56
Plasticization  56
Solvation  56
Solvent migration  56
Stress-cracking  57
Chocolate  7
Clamshell machine
Discussed  115, 115F
Oven design  116
Coalescence  26
As sintering  26
Effect of particle size distribution on  87
S t r a i g h t -   Text  " F " - -   Figure  " T " - - T a b l e  Subject  Index  385
Color
CIE standard  56
Compounding  96, 101
Dry blending  96
Concentration level effect  99F
High speed mixing  97
Low-intensity  97
Low-intensity, equipment  97
Tumbling  96, 97
Turbo-blending  97
Effect of blending technique on
dispersion of  100F
Effect of blending technique on
mechanical properties  101
Factors that affect  55
Methods  of,  discussed  96
Rotational molding factors that
affect  56
XYZ diagram  56
Cooling
Air  137,274
Cycle time for
Discussion  259
Mathematical model  260, 262
Wall thickness effect on  277
Discussed  137
Effect on shrinkage/warpage
137-138
Effect of water quench on  275
Experimental and theoretical compari-
son of  273-274, 274F
Part release from mold during  203F,
204
Pressurized mold  276
Recrystallization  during  203F, 204
Recrystallization effects during
266-274
Recrystallization effects during,
modeling
Temperature measurements during
202F, 203F
Thermal inversion
Described  262
Technical description  262-266,
263E 264F
Distributed parameter model
264-265
Lumped parameter model  266
Water spray/mist  137
Cooling methods, discussed  137
Cooling rate  16
Coordinate measuring machine,
discussion  360-361
Cracking, localized, impact test  51
Crazing  57
Creep modulus, see Mechanical  test,
creep  modulus; Mechanical
test, creep
Crystallinity, defined  20
D
Decoration
Adhesives  358
Hot stamping  358
In-mold  359
Methods of, discussion  357-360,
357T
Painting  358
Post-mold  359
Design
Of molds, see Molds, design of
Of parts, see Parts, design of" Parts
design
Part removal  276-277
Design, mechanical
CAD/CAM in  332
Cantilever beam flexural  316
Column bending  317
Computer-aided stress analysis for
332-335
Computer-aided stress analysis for;
see  Finite-element analysis
Computer aids for, discussed  330,
331F
Computer aids in prototyping  332
Straight - -   Text  "F"---  Figure  " T " ~   Table 386  Rotational  Molding  Technology
Creep in  322-323
Criteria for parts  314
Finite difference analysis for  333
Finite-element analysis for  333-335
Foams, discussion  324
Skin-core foams
Stiffness of  329
I-beam model for  329-330, 330F
Polynomial beam model, dis-
cussed  330, 331F
Uniform density foams  324
Stiffness of  325
Modulus for  325
Foaming efficiency of  325,326T
Tensile strength for  327
Impact characteristics of  327,
328T
Ductile-brittle characteristics of
327,328F
Hollow beam with kiss-off  318-321
Long-term loading  314
Moderate-term loading  314
Plate bending, edge-on  317-318
Ribbed plate  319-322
Short-term loading  314
Temperature-dependency in
323-324, 324T
Tensile creep in  323,323F
Three-point flexural  315
Demolding, schematic  5,5F
Density gradient column  51
Density, polyethylene property  changes
with  25T
Differential  Scanning Calorimetry  268,
270,271 F, 272F
DIN 6174  56
See also  Color, CIE standard
DIN 5033  56
See also Color, XYZ diagram
Distortion  16
Dry blender
Double-cone  97, 98F
Double-ribbon  97
Vee mixer  97, 98F
Dry blending
See also  Color
Additives in melt-blending  98
Additives in tumble-blending  97-98
Additives suitable for  97-98
Effect on mechanical properties  99
Effect on polymer crystalline nucle-
ation  99
Effect on polymer morphology  99
Henschel-type mixer  99
Rotational molding powders  97
Turbo mixing  99
Drying conditions for polymers  34T
Ductile failure, impact test  51
Ductile yield, impact test  51
Ductile-brittle transition, impact test
52,52F
E
Electroformed nickel
Procedure  155
See also Molds, electroformed nickel
Environmental stress crack resistance,
LDPE  50, 50F
Environmental stress crack test
Bentstrip  57, 57F
Constant  stress  test  58
Defined  57
Notched strip  58
Polyethylene  58
Epoxy  9
As liquid polymer  37
ESCR, see Environmental stress crack
test
Ethylene vinyl acetate
Chemical structure  27
Density  28
Environmental stress crack resis-
tance  28
Extent ofvinyl acetate  28
Foamability  28
S t r a i g h t -   Text  " F " m   Figure  " T " - - T a b l e  Subject  Index  387
Melt temperature range  28
Shore hardness  28
EVA, see Ethylene vinyl acetate
FDE, see Finite difference analysis
FEA, see Finite-element analysis
FEP, see Fluoroethylene  polymer
Finite difference analysis  333
Finite-element analysis  333-335
Arithmetic for  334-335
Formalization of  334T
Limitations of  335
Fire retardancy
Defined  62
Oxygen index  63, 63T
Standard match test  63
Flexural modulus, dee Mechanical test,
flexural  modulus
Fluorocarbon  9
Fluoroethylene polymer, as thermoplas-
tic  19
Foam rotational molding
Blowing agent efficiency in  290
Bubble nucleation in  291
Chemical foaming agents for
287-291,288T, 289T
Endothermic  288
Exothermic  288-291
Containerized inner layer in  298
Diffusional bubble growth in  291
Discussed  287
Inertial bubble growth in  291
Limitations of  292-295
One-step process in  295-296
Oven conditions for  293,293T
Physical foaming agents for  287
Single layer structures in  295
Skin/core structure in  287
Terminal bubble growth in  292
Two-step process in  296
Fracture, brittle, impact test  51
G
Glass transition temperature, defined
2O
Grinding  69
See also Pulverization,  described
Ball-mill  69
Costs  associated  with
Discussion  91-93
Factors  92
Economies of scale  92
Frictional heat  71
Gap size effect on powder quality  89
Hammer-mill  69
Horizontal mill  72, 73F
In-house v. outsourcing  91-92
Mill tooth number effect on powder
quality  90
Parallel plate  69-71
Particle sieving  71
Powder characteristics  73
Particle size distribution  74
Flow  74
Bulk density  74
LLDPE  74
As related to rotational molding
parameters  74, 75-76
Particle shape  75
Process control  72
Process equipment  69F, 72F
Skill factors involved in  92
Temperature effect on powder
quality  90--91,90F, 91F
Vertical mill  70, 70F
H
Haze formation  57
HDPE
Crystallinity of  20T
See  also Polyethylene,  high-density
Heat capacity, of powder  218
Heat transfer
Straight  Text  "F" - -   Vigur'   '"Y" '  Vai;le 388  Rotational  Molding  Technology
Coefficient of
For air  274
For water  275
Combustion  129, 130T
Conduction  213
Defined  127
Convection  213
Defined  127
Coefficient  127-129,  127T
Effect of polymer morphology on
243,244F
Modes, defined  127
Radiation  213
Defined  127
Thermal lag in mold  214, 222, 245
To coalescing powder bed  223
To powder  215-218
To powder bed  217-218
To powder particle  215
To mold  213-214
To mold assembly  139
To mold assembly, measurements of
139-140, 139F
Transient heat conduction in  216F
Transient heat conduction model
247
Types in rotational molding  213
Heating
See also Oven; Heat transfer
Cycle time of  251
Actual  258T
Oven temperature effect on  255T,
256, 256T, 258
Thickness effect on  254-255,
255T, 256, 256T
Direct-gas impingement  113
Discussion of  201
Effect of pressure on powder behav-
ior during  244
Effect of vacuum on powder behavior
during  244
Kink temperature during  202,203F,
220,253
Mathematical modeling of  245-25 l,
246F
Mold cavity air temperature during
221-222
Mold energy uptake to polymer
uptake ratio  252
Polymer morphology effect on rate
of  223,224F
Temperature measurements during
201-202, 202F, 203F
Time to inner cavity temperature,
thickness effect on  255
Time to kink temperature, thickness
effect on  255
Overall cycle time, thickness effect
on  256,257F
Henry's law  239-240
And foam rotational molding
293-294
lgepal  22, 23, 24, 27, 28, 49, 58
Impact, process effects on  350, 350F,
353F,354F
Impact test
Charpy  53
Constant velocity puncture  53
Described  51-52
Failure type  51
Factors affecting  53
Falling weight  53
Bruceton method  53
ARM  standard, see Impact test,
falling  weight,  Bruceton
method
ARM standard, low-temperature,
see Impact test, falling
weight,  Bruceton  method
Probit method  53
Staircase method, see Impact test,
falling  weight,  Bruceton
method
Straight - -   Text  " F " - -   Figure  " T " - - T a b l e  Subject  Index  389
"Up-and-down" method, see
Impact test, falling weight,
Bruceton  method
Izod  53
Low-temperature, ARM terms  52
Pendulum  53
Test types  53
Tensile  53
K
L
Latex rubber  7
LDPE
See also Polyethylene,  low-density
Crystallinity of  20T
Environmental stress crack resis-
tance, melt index effect  50,
50F
Liquid polymers  69
Discussed  36
Liquid rotational molding
Bubble entrainment in  284
Cascading flow in  280F,  281,283F,
286F
Circulating pool in  280, 280F, 283F,
286F
Discussed  278
Flow behavior in  280, 280F, 283F,
286F
Hydrocyst formation in  282-283,
282F, 284F
Ideal fluid for  286
Localized pooling in  285
Polymers used in  278-279
Process  279
Process controls for  285
Rimming flow in  280F,  281,283F,
286F
Roleofreaction in  285
Roleofgelation in  285
Solid body rotation in  281,283F,
286F
Time-dependent viscosity in  279,
279F
LLDPE
See also Polyethylene,  linear low-
density
Crystallinity of  20T
M
Machines
Basic elements of  112-113
Clamshell  115-116, 115F
Cooling design in, see Cooling
Compared with competition  11 l
Electrically-heated molds for
120-121,120F, 121F
Fixed-arm carousel  117-118, 118F
Limiting factors  118
Heat transfer in, see Heat transfer
Home-built  111-112
Independent-arm carousel  118-119,
l19F
Advantages of  118-119
Infrared heated  121
Make-Vs-buy  111
Oil-jacketed molds for  119
Oven design in, see Oven
Process control of, see Process
control
Rock-and-roll  113-115
Shuttle  116-117, 117F
Types of, discussed  112-113
Vertical  116, 116F
MDPE, see Polyethylene,  medium-
density
MechanicalProperties  16
Mechanical  test
Creep, defined  54-55
Creep modulus  55
Creep rupture  55
S t r a i g h t -   Text  " F " ~   Figure  " T " - -   Table 390  Rotational  Molding  Technology
Defined  54
Flexural fatigue  55
Flexural modulus  54
Tensile modulus  54
MEKP,  see Methyl ethyl ketone
peroxide
Melt flow index  28
See also Melt index
Described  44
Melt index  28, 45F, 64
HDPE  24
LDPE  22
MDPE  23
Polyethylene property changes with
25T
Process effects on  352F
Quality control of  43, 44
Described  44
Melt index test conditions
Nonpolyolefins  44, 45T
Polyolefins  45T, 46T
Melt indexer  44, 45F
Melt viscosity  15, 43
Melt elastic modulus  64
Melting temperature, defined  20
Methyl ethyl ketone peroxide, catalyst
for  Unsaturated polyester
resin  42
Micropellet  46
See  also Polyvinyl chloride
Coloring of  95
Comparison with conventional pellet
94, 95T
Discussed  93-95
Method of production  93-94
Processing comparison with powder
94,95T
Polyethylene  69
PVC, discussed  96, 96T
Reason for use  93
Mold charging, schematic  5, 5F
Mold cooling, schematic  5, 5F
Mold heating, schematic  5, 5F
Mold release  103
Cost of  199
Discussed  196
Disiloxanes  197
Early part release with  199
Fluoropolymers  197
Selection criteria for  198
Silicone  197
Spray-on  197
Surfaces coated by  198
Molds
Air flow around deep pockets  136,
136F
Air flow using baffles  136, 136F
Air flow using venturi  136-137,  137F
Alignment methods for  165, 164F
Aluminum  150, 150F, 150T, 152
Cast  150, 152-153,  154F
Welded  152
Machined  152, 152F
Clamping of  166, 166F
Commercial  149
Design of
Discussion  160
For pressurization  276
Parting line  161-165
Buttorflat  161,161F
Lap joint  162, 162F
Tongue-and-groove  162, 163F
Gaskets  163-164, 163F
Electroformed nickel  149, 150T,
154-155, 155F
Frames for  165
Heat transfer to  213-214
J-clamps for  166, 168F
Manual clamps for  166-167
Materials for
Discussed  149
Properties  150T
Nonmetallic  149
Pressure buildup without venting
183
Pressurization for  340-341
S t r a i g h t -   Text  " F " ~   Figure  " T " - - T a b l e  Subject  Index  391
Pressurized  146
Pry points, location for  167-168,
167F
Sheet-metal  149, 149F, 150T, 151-152
Spiders for  165, 165F  O
Surfaces coated with mold releases
198
Surface finishes for  196
Thermal behavior of
Various types  156-160,  157E  158F,
159F
Equivalent mechanical thickness
156-157,157F
Equivalent static thermal thick-
ness  157-158,  158F
Equivalent transient thermal
thickness  159-160,  159F
Toggle clamps for  166, 167F
Useofdrop-box in  297-298
Use of drop-box on  296-298, 297F
Venting of,  see  Venting
Moment of area, second, see Moment of
inertia
Moment of inertia, defined  315  p
Morphology
Changes in PP, due to cooling rate
270T, 273,273T
Crystallinity level and  267, 267T
Effects of additives on  272,272T
Recrystallization rates and  267-271,
268T, 269F, 270T, 271 F, 272F
N
Natural gas combustion  129, 130T
Nylon  9
As thermoplastic  19
Chemical structure  31
Chemical types  32T
Crystallinity of  20T, 32
Fiber-reinforced  9
Melting temperature  32T
Moisture concerns with  310
Rotational molding grades  32, 32T
Nylon 6, WLF constants for  324T
Nylon 12, as liquid polymer  40
Odor
Defined  62
Test
Olfactory  62
Gas chromatography  62
Oven time  14
Effect on design parameters  351T
Oven temperature  14
Oven
Air flow around molds with deep
pockets  136, 136F
Air flow in  136
Design of, discussed  127, 129-131
Efficiency ofoperation of  130
Heat transfer in  131-135
Heat transfer in
Examples of  133-135
PA-6
See also Nylon: Polycaprolactam
As liquid polymer  36
Flexural modulus  32
Heat deflection temperature  32
Melting temperature  32
Part design
Acute-angled corners in  346, 347F
Aesthetics  307
Almost kiss-offs in  312
Appearance effect on  308
Application effect on  308
Assembly constraints effect on  309
Bridging criteria for  311
Cavity depth criteria for  312
Competition effect on  309
Computer-aided technique effect on
310
Straight - -   Text  " F " - -   Figure  " T " - -   Table 392  Rotational  Molding  Technology
Concerns ofwarpage in  311
Control ofwall thickness in  312
Coordinate measuring machine use
in  360--361
Corner radius guidelines in  345,
345T, 347F
Cost effect on  309
Criteria  307
Criteria for kiss-off  318-319
Cycle time effect on  310
Decoration effect on  309
Detentsin  312
Dimensional tolerance effect on  310
Draft angles  341-343,342T
Female molds in  312
Polymer-specific  341,342T
Texture  342, 342T
Environment effect on  308
External threads in  312,349
Fiber-reinforcement in  312
Flat panels in  311
General guidelines for, discussed
310
General considerations for  335-349
Gussets in  312
Holes in  349
Improving mechanical strength
through  312
Insert  349
Criteria for  312
Stresses  around  312
Internal threads in  312, 349
Kiss-offs in  312
Limitations of  309
Market considerations  307
Material choice effect on  309
Mechanical
Criteria for  314
Discussion  307, 317
Metal molded-in inserts for  313
Minimum wall thickness in  336
Mold cost effect on  309
Molded-in holes in  312
Mold texture transfer to parts in  312
Nominal wall thickness in  336
Parallel walls in  311,348
Part function effect on  308
Part wall separation for  348
Philosophy  307-310
Powder flow effect on  310
Pressurization effects on  340-341
Process  effects  on
Discussion  350
Impact  350, 350F
Melt index  352F
Radius concerns in  312, 313
Right-angled corners in  345-346
Ribs in  311-312
Rim stiffening in  312
Shrinkage guidelines in  337-340
Size effect on  309
Surface decoration;  see Decoration
Wall thickness  considerations  for
311
Wall thickness in  336-337, 337T
Wall thickness limitation effect on
309
Wall thickness range in  337T
Warpage guidelines for  344,344T
Warpage in  311
Undercuts in  311,312
Particle size distribution  75
Data presentation  79-80, 79F, 80T,
80F
Discussed  74
Dry sieving  77
Elutriation  78
Fluidization  79
Light scattering  78, 79
Measurement  77-79
Sedimentation  78
Streaming  78
Test method  76, 78
Factors affecting  78
Test purpose  77
Particle shape
S t r a i g h t -   Text  " F " - -   Figure  " T " - - T a b l e  Subject  Index  393
Acicular  81
Discussed  81
Effect on part performance  81
Methods of classification  81
Particle size analyzers  82
Physical methods  82
Shape factor  81,82T
Spherical  81
Squared-egg  81
Terms defined  82T
Particle size analysis  77
Parting line
See also Molds, design of parting
line
Buttorflat  161,161F
Design of  161-165
Gaskets  163-164, 163F
Lap joint  162, 162F
Tongue-and-groove  162, 163F
See also Part design
Parts
Blowhole problems in  183
Cutout areas in  172
Failure
Discussed  307-308
Fracture  307
Creep  307
Crazing  307
Stress cracking  307
Fatigue  307
Adhesive failure  308
Warpage  308
Shrinkage  308
Color change  308
Additive migration  308
Cracking element migration  308
Inserts for  168-171
Kiss-offs for  172, 173F
Mechanical fastening of  169
Molded-in handles for  173
Molded-in inserts for  169-171,170F
Molded-in threads for  171, 171F
Post-molded fasteners for  169
Self-tapping screws for  168-169
Suck-holeproblems in  185
Temporary inserts for  173
Warpage with mold release  199
PC,  see Polycarbonate
PEEK  9
See  also Polyether-ether ketone
Phenolic  9
As thermoset  19
Crosslinked, discussion  19
Pigments
Classes of  101
Classification of  104T
Color shitt in  103
Discussion of  101
Dry-color blending of  101
Heavy metals, restricted use of
101-102
Organics  102
Azo-type  102
Polycyclic-type  102
Processing concerns of  102-103
Fluorescents  103
Plate-outof  103
Special-effect  103-104
Temperature effect on selection of
101
Pinholes  15
Plaster, molding, properties  154
PMMA,  see Polymethyl methacrylate
Poly-a-aminoacid, see Nylon
Polyacetal  9
See also POM, Polyoxymethylene
Polyamide, see Nylon
Polybutylene  9
Polycaprolactam
Chemical structure  39
Defined  32
Fillers for  41
Gellation rate  40
General production method  40
Time-dependent crystallinity  40F
S t r a i g h t -   Text  "F" - -   Figure  " T " - -   Table 394  Rotational  Molding  Technology
Time-dependent viscosity during
reaction  39F
Polycarbonate  9
As thermoplastic  19
Chemical resistance, discussed  34
Chemical structure  33
Drying for rotational molding,
discussed  33, 34T
Flexural modulus  33
Heat distortion temperature  33
Impact strength,  discussed  33
Moisture concerns with  310
WLF constants for  324T
Polyester
Unsaturated  9
As thermoset  19
Polyether-etherketone  21
As thermoplastic  19
Polyethylene terephthalate, crystallinity
of  20, 20T
Polyethylene
As thermoplastic  19
Branched,  see Polyethylene, low-
density
Chemical structure  22
Crosslinked  9
Advantages  58
Crosslinking agents  27, 58, 59T
Density  27
Discussion  19-20,27
Environmental stress crack resis-
tance  27
Flexural modulus  27
Gel content  27
Peroxide level  60F
Time dependency  60F
Test  59
Level, procedure  59
Shore hardness  27
Crystallinity of  20T
Early applications  6-8
High-density
Chain configuration  23F
Crystalline morphology  24
Crystallinity  24
Defined  24
Density  24
Environmental stress crack resis-
tance  24
Flexural modulus  24
Melt index  24
High-pressure,  see Polyethylene,
low-density
Low-density
Chain configuration  23F
Crystallinity  22
Defined  22
Density  22
Environmental stress crack resis-
tance  22
Flexural modulus  22
Melt index  22
Shore hardness  22
Low-pressure,  see Polyethylene,
high-density
Linear, see Polyethylene, high-
density
Linear low-density
Chain configuration  23F
Crystallinity  27
Density  26
Defined  25-26
Environmental stress crack resis-
tance  27
Flexural modulus  27
Medium-density
Crystallinity  23
Defined  23
Density  23
Environmental stress crack resis-
tance  23
Flexural modulus  23
Melt index  23
Metallocene,  discussed  26
Micropellet  69
Odor  15
S t r a i g h t -   Text  " F " ~   Figure  " T " - - T a b l e  Subject  Index  395
Powder  69
WLF constants for  324T
Polyimide  21
Polymer morphology, discussed  20
Polymethyl methacrylate, chemical
structure  35
Polyolefin  7
Polypropylene  9
As thermoplastic  19
Atactic, defined  28
Chemical structure  28
Copolymer
Defined  29
Effect on properties  29, 29T
Crystallinity of  20, 20T
Fillers in  29
High-temperature stability of  29-30
Homopolymer, flexural modulus
28-29
Isotactic, defined  28
Melt flow index  28
Recrystallization of  30
Syndiotactic, defined  28
WLF constants for  324T
Polystyrene  9
See also Styrenics
As thermoplastic  19
Discussed  35
Impact, discussed  35
WLF constants for  324T
Polytetrafluoroethylene, crystallinity
of  20
Polyurethane  9
As liquid polymer  37
As thermoset  19
Chemical structure  41
Nature of reaction  42
Time-dependent viscosity during
reaction  41
Polyvinyl chloride  21
As thermoplastic  19
Chemical structure  30
Drysol, discussed  30-31
Drysol hardness  31
Drysol v. micropellet  96, 96T
Liquid  6
Micropellet  31
Micropelletcharacteristics  96,96T
Plastisols,  discussed  30
Plastisol hardness  30
Plastisol v. micropellet  96, 96T
Role ofplasticizers in  30
Types of additives for  30
Porosity, discussed  242
Powder density
Discussed  84-85
Related to powder flow  85F
Powder
Coalescence  12
Consolidation  14
Densification  12
Fusion  14
Sintering  15
Size  21
Powder particle characterization, quality
control  44
Powder flow
Discussed  74, 83-84
Effect of tails on  83
Grinding factors affecting  89-91
Related to powder density  85F
Test method  84
Powder packing  85
See also Powder  flow; Particle shape
Bulk density
Fluidized  88T
Measurement  84F, 88
Poured  88, 88T
Tamped  88, 88T
Vibrated  88, 88T
Deviation from ideal packing  86
Equal spheres  85-86, 86F, 86T
Packing fraction defined  85-87
Particle size distribution effect  87
Powder quality
See also Grinding
S t r a i g h t -   Text  " F " ~   Figure  " T " - -   Table 396  Rotational  Molding  Technology
Discussed  88-89
Grinding factors effecting  89
Powder
Airborne dust generation with  207
Antistatic agents for  105-106
Avalanche flow of  208,208F, 209T,
222
Bed behavior during heating  222
Bubble dissolution in coalesced
235F
Bulk densityofvarious  206T
Carbon black in  106
Coalescence  203,235F
Defined  223
Coulomb flowing  207
Temperature effect on  219
Densification  in  203,235F
Air absorption  238-243
Rayleigh's model for  238-239
Capillary action  236
Defined  236-243
Network collapse  236-237,237F,
238F
Particle size distribution during
coalescence  242-243
Rate of  242
Three mechanisms for  234-236
Under vacuum  237
Flow aspects of  206
Fluidizing  207
Mathematical modeling
Bed  248-251
Static bed  249-250
Circulating bed  248-249,250
Moisture concerns with  310
Neck growth
Compared with heating profile
226F
Defined  223-234
Viscous model  225,225F, 227F
Neck growth rate  226-234, 227T
Creep compliance model  232-234,
232F,233F
Hertzian  228
Linear viscoelastic  229F, 230-231,
231F
Newtonian  227F, 228
Packing aspects of  205
Polyethylene  69
Polymer elasticity effect on coales-
cence of  234
Rheology of flowing  210-211
Rotating cylinder flow of  211-213,
212F
Sintering of, defined  223
Slip flow of  208-210, 208F, 209T, 222
Steady-state circulation of  207, 208F,
209T,222
Stearates for  106
UV additives for  106
Viscous flowing  207
Process  control
Discussed  138
Inner cavity air temperature monitor-
ing for  140
Process  cycle
Discussion of  201
Steps in  201,204, 205T
Processing and properties, general
considerations  14-16
Propane combustion  129, 130T
PS, see Polystyrene," Styrenics
PSD  74, 77
See also Particle size distribution
Pulverization, described  69
P-V-T curves
HDPE  338T
Polycarbonate  339T
Shrinkage and  337-340
PVC plastisol  9, 21
As liquid polymer  36
Effect of heat on molecular character-
istics  37F
Effect of heat on viscosity  38F
Fusion  37F, 38
Gellation  37F, 38
Straight  Text  " F " ~   Figure  " T " - - T a b l e  Subject  Index  397
Method  of production  38
Product  types  39
Shore  hardness  39
PVC, see Polyvinyl chloride
Q
Quality assurance,  discussion  360
R
Rayleigh's equation
Inviscid  238
Newtonian  238
Viscoelastic  239
Recrystallization, part design restric-
tions for  311
Ribs, design criteria for, discussed  311
Rock-and-roll machine  113, 114F, 115
Oven design  114F, 115
Products made on  113
Rotation
Fixed ratio, discussed  125
Major-to-minor axis ratio  125
Speed of, discussed  125
Speed ratio
Defined  126
Recommended for various geom-
etries  126T
Rotational molding
Advantages  ! 0,  12,  14
Applications  5T
Basic process  5,  10
Cooling  16
Competition  4, 6, 13T
Defined  4
Degradation  15
Design  8-9,  l 1-12
Desirable polymer characteristics  64
Disadvantages  10-11,  14
Heating  15
History  6
Internal surface appearance  15
Markets  4, 8F
Materials  9, 10F
Molder consumption  21T
Nature ofpolymerin  69
Polymer use  21T
Powder flow  15
Rotational molding process
Limitations  145
Advances  in  146
Rotocasting,  see  Rotational molding
Rotomolding,  see Rotational molding
S
SAN,  see Styrene-acrylonitrile
Service  station, discussed  144
Shrinkage
Discussion  337-340
Guidelines for  340
Linear  338, 340T
Volumetric, discussion  338
Shuttle machine  116-117,  117F
Dual carriage  117, 117F
Sieve technology
Bulk density  46
Described  46
Dry sieving  46
Pourability  46
ARM recommendation  46
Sieve
See  also Powder technology
Grinding  71
Dry, types of  77
Elutriation  78
Screen  sizes, discussed  46
Shaker sizes  76F
Sizes of  75T
Sonic sifter  78
Silicone  9
As liquid polymer  37
Chemical structure  43
Method  of reaction  43
Sintering  26
See  also  Coalescence
S t r a i g h t -   Text  " F " - -   Figure  " T " q   Table 398  Rotational  Molding  Technology
Slip casting, ceramics  7
Slush molding  278
Society of Plastics Engineers Rotational
Molding Division  12
Spin casting  7
Stress concentration factor  346F
Stress-cracking  57
Styrene-acrylonitrile, see Styrenies
Styrenics, chemical structure  35
Surface treatment
Activation methods for  104
Applied graphics as  105, 105F
Discussed  104
Plasma  104-105
T
Tack temperature
Amorphous  219,220T
Crystalline  219,220T
Defined  219
Related to kink temperature  220, 253,
253T
Temperature measurement
Correlation of
Bubble dissolution time  142, 142F
Coalescence time  141
Part release from mold  143
Process step  140-143,  141F
Recrystallization time  143
Infrared method  144
Inner cavity air temperature  140
Interpretation  140-I 43,  141F
Mold assembly  139-144
See also Heat transfer
Tensile modulus,  see Mechanical test,
tensile  modulus
Testing protocol
Actual part  47
Costs  48-49, 49T
Defined  47
Full-scale  47-48
Segment  48
Test acceptability criteria  48
Testing
Environmental stress crack resis-
tance  50, 50F
Full-scale  49
Molded density  51
Sections  50
Tg, see  Glass transition temperature
Thermal lag  214, 222,245
See also Heat transfer, to mold
Mathematical model of  245
Thermal conductivity, of powder
217-218,218F
Thermal diffusivity  248
Powder  218
Thermoplastics
Defined  19
Discussed  6
Thermosets
See also  Thermosetting polymers
Defined  19
Rotational molding advantages  43
Thermosetting polymers, liquids  36
Thermosetting liquids, nature of
reaction  36
Thermosetting,  discussed  6
Titanium dioxide
Asopacifier  107
As UV additive  107
Tm, see Melting temperature
Trimming
Cutting characteristics  356T
Various polymers  356-357
Discussion  354--357
Multiaxis  354-356, 356T
Troubleshooting
Discussion  360
Guidelines, Appendix A
U
UHMWPE,  see Ultrahigh molecular
weight polyethylene
Straight - -   Text  " F " - -   Figure  " T " - - T a b l e  Subject  Index  399
UL E-84 tunnel test  62-63
See also Fire retardancy
UL94  63
See also Fire retardancy, standard
match  test
Ultrahigh molecular weight polyethyl-
ene, characteristics  22
Undercuts, design criteria for, dis-
cussed  311
Unload/load process  station,  see
Service station
Unsaturated  polyester resin
As liquid polymer  37
Chemical structure  42
Fillers for  42
Processing difficulties with  42
Reaction via MEKP  42
UPE, see  Unsaturated polyester resin
UV additive
Carbon black as  106
Classification of  106
Hindered amine light stabilizers as
106--107
Titanium dioxide as  107
Requirements for  195
Types of  193
Selection criteria  193
Vacuum without  185
Venturi
See also Molds
Mold design with  136-137,  137F
Vertical machine, discussed  116, 116F
W
Wall thickness
Calculation of  174-183
Maximum allowable  180--183, 181F
Warpage  16
Weathering
Accelerated  tests  61
Acid rain  61
Defined  6l
Resistance of polymers  61
Ultraviolet effect  61
Williams-Landel-Ferry model  323-324
Constants for  324T
WLF equation  323-324, 324T
See also Williams-Landel-Ferry
model
V
Venting  X
Design guidelines for  186-192,  190F,  XLPE,  see Polyethylene,  crosslinked
192F
Discussion  183  y
Disposable  193
Permanent  193, 194F
Pressure buildup without  183  Z
Straight ~  Text  " F " ~   Figure  " T " ~   Table  


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Rotational Molding Technology
رابط مباشر لتنزيل كتاب Rotational Molding Technology

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Rotational Molding Technology
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: