Admin مدير المنتدى


عدد المساهمات : 18039 التقييم : 32911 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
 | موضوع: كتاب Rotational Molding Technology الأحد 27 أكتوبر 2013, 12:46 am | |
| 
أخوانى فى الله أحضرت لكم كتاب Rotational Molding Technology William Andrew Roy J. Crawford The Queen's University of Belfast Belfast, Northern Ireland James L. Throne Sherwood Technologies, Inc. Hinckley, Ohio
 و المحتوى كما يلي :
1 Introduction 2 Rotational Molding Technology 3 Grinding and Coloring 4 Rotational Molding Machines 5 Mold Design 6 Processing 7 Mechanical Part Design Appendix a. Troubleshooting Guide for Rotational Molding Problem Probable Cause Possible Solution Location in Book Long oven cycle Excessively thick mold Change to aluminum or beryllium-copper Section 5.1 Reduce mold wall thickness Section 5.2 Inefficient heat transfer Increase air velocity Add baffles, venturis Section 4.3.2 Section 4.3.3 Poor polymer flow Use higher melt index polymer Section 2.9.1 Poor powder flow Change to a less sticky additive package Section 3.10.6 Reclassify to remove tails Section 3.6 Coarse particles Section 3.2 Underfused parts Insufficient heat transfer Reduce mold wall thickness Section 5.2 Chanee to aluminum molds Section 5.1.2 Add bYaffles, venturis Section 4.3.3 Oven temperature too low Increase oven temperature Section 6.6-6.8 Increase heating time Section 6.6-6.8 Oven time too short Increase oven temperature Increase heating time Section 6.6-6.8 Section 6.6-6.8 Coarse powder Check powder size, size distribution Section 3.2 Replace micropellets with -35 mesh powder Section 3.8 Overcured parts Oven temperature too high Reduce oven temperature Section 6.6-6.8 Decrease heating time Section 6.6-6.8 Oven time too long Reduce oven temperature Section 6.6-6.8 Problem Probable Cause Possible Solution Location in Book Decrease heating time Section 66-6.8 Wrong polymer Change to less thermally sensitive polymer Section 2.8 Poor impact Wrong polymer Select polymer with higher inherent impact, strength lower melt index, lower density Section 2.2,2.9 High crystallinity due to Increase cooling rate long cooling time Insufficient powder fusion Increase heating time Increase oven temperature Increase air velocity in oven Change to aluminum molds, thinner mold walls Bad part design Wrong colorant Overheated parts Underfused parts Increase corner radii Increase distance between parallel walls Change to pigment that doesn't interfere with impact or crystallization rate Reduce level of masterbatched pigment Use less pigment Use precolored compounds [See comments for Overcured parts] [See comments for Underfused parts] Section 6.20 Section 6.6-6.8 Section 6.6-6.8 Section 4.3.2 Section 5.2 Section 7.6.5 Section 7.6.8 Section 3.10 Section 3.10.4 Section 3.10 Section 3.10 Problem Probable Cause Possible Solution Location in Book Long-term part Stress-cracking Change to stress-crack resistant polymer Section 2.2,-2.3 failure Old or unstable polymer Section 2.8,2.9 Redesign around inserts Section 7.6.10 Use lo;,-stress-concentration inserts Section 7.6.10 Reconsider appropriateness of original Section 7.3 design criteria W-degradation Increase UV inhibitor level Section 2.10.3 Consider more expensive UV absorber Section 2.10.3,3.10.6 Consider higher loading of carbon black Section 3.10.4 Stress-cracking Improper polymer Change to stress-crack resistant polymer Section 2.2,2.3 Improper part design Redesign pert to minimize stress Section 7.6.7 concentration Use low-stress-concentration inserts Section 7.6.10 Long cooling time Increase cooling rate to minimize shrinkage Section 6.20 particularly around inserts, cores Nonuniform wall Improper mold rotation Change speed and arm ratio Section 4.2 thickness Use reverse rotation during heating Section 4.2 Improper mold design Check mold wall thickness for nonuniformity Section 5.2 Move mold supports away from mold to Section 5.3.2 prevent them from removing heat locally Poor heat transfer Move mold away from other molds, unstack Section 4.2,4.3 molds to improve air circulation Add baffles, venturis for deep cavities Section 4.3.3 Problem Probable Cause Possible Solution Location in Book Parting line Poor mold parting line Rework parting line Section 5.3.1 bubbles Redesign mold with tongue-and-groove Section 5.3.1 parting line Clean parting line of crud, recoat with mold Section 5.7 release Misaligned support frame Rework support frame so mold halves seat properly Inadequate venting Resize vent Reposition vent to middle of mold Make certain glass wool is in vent tube Use TeflonB vent tube Use 'T-shaped vent tube Parts stick in mold Inadequate draft on female Rework mold with larger draft angles parts of mold Coat locally with mold release Section 5.3.2 Section 5.5 Section 5.5 Section 5.5 Section 5.5 Section 5.5 Section 7.6.5 Section 5.7 Heavily textured part Coat with low coefficient of friction mold Section 5.7,7.6.5 release Rework mold with larger draft angles Section 7.6.5 Lack of mold release Strip off mold release and recoat Section 5.7 Recoat with higher temperature mold Section 5.7 release Recoat with lower coefficient of friction Section 5.7 mold release Recoat with mold release that is chemically Section 5.7 compatible with polymer, additives, crosslinking agent, blowing agent Problem Probable Cause Possible Solution Location in Book Mold surface damage Look for undercuts, dings, dents, then Section 7.6.5 rework mold Flat area suction Modify mold to allow air bleed into flat area Section 5.3 Roughen mold surface in flat area Section 5.6 Interference between part Remove incidental undercuts, rework mold Section 7.6.5 and mold to move parting line, add draft to mold Remove part warm Section 6.25 Increase pry points on mold frame, use Section 5.3.4 air-driven jack screws Low-shrink polymer Use higher density polymer Section 2.2 Incomplete mold Melt viscosity high Use lower viscosity polymer Section 2.2 surface replication Increase oven temperature Section 6.6-6.8 Powder bridging Check particle size, size distribution Section 3.2 Mix micropellets with powder Section 3.8 Cold spots on mold Check local mold wall thickness Section 5.2 [also see comments for Nonuniform Wall Thickness] Bubbles in part Trapped air Moisture Reduce heating rate in last part of oven time Section 6.20 Reduce powder size Section 3.2,6.20,6.2 1 Increase powder size distribution Section 3.2,6.20,6.21 Increase vent size Section 5.5 Apply vacuum during last part of oven time Section 6.15,6.20 Adequately dry PMMA, PC, PVC drysols Section 2.7 Problem Probable Cause Possible Solution Location in Book Overcured part Decrease oven time or temperature Section 6.6-6.8 Use nitrogen purge throughout heating cycle Section 6.15 [see comments for Overcured parts] Outgassing Change additive package in polymer Section 3.10.6 Check pigment for thermal stability Section 3.10 Replace temporary mold release with Section 5.7 permanent mold release Undercured part Increase oven time or temperature Section 6.6-6.8 [see comments for Underfused parts] Wrong polymer Switch to polymer with higher melt index Section 2.9.1 Bubbles along Poor parting line Clean, rework parting line Section 5.3.1 parting line Improper mold clamping Rework mold clamping mechanism Section 5.3.3 Internal pressure during Check, clear vent Section 5.5 heating Increase vent size Section 5.5 Internal pressure during Check, clear vent, replace glass wool Section 5.5 cooling Pressurize mold during cooling Section 6.15,6.23 Blow holes around Moisture in polymer Dry polymer, esp. PMMA, PC Section 2.7 inserts Apply vacuum during heating Section 6.15 Adsorbed air on insert Precoat insert with polymer Section 5.3.5 Bridging of powder at insert Move insert away from bridging area Section 7.6.9 Change insert to more open design Section 7.6.10 Replace metal insert with plastic one Section 7.6.10 Problem Probable Cause Possible Solution Location in Book Flash at parting Poor parting line Clean, rework parting line Section 5.3.1 line Increase clamping force Section 5.3.3 Rework mold clamping mechanism Section 5.3.3 Internal pressure buildup Check, clear vent, replace glass wool Section 5.5 Increase vent size Section 5.5 Low polymer viscosity Decrease polymer melt index Section 2.9.1 Lower oven temperature Section 6.6-6.8 Warped parts Inadequate venting Increase vent size Section 5.5 Replace glass wool Section 5.5 Nonuniform cooling Maintain rotation during cooling Increase air cooling time Check vent size, glass wool quality Rework mold to replace flat areas with ribbed, corrugated, domed areas Increase water coolant temperature Minimize, remove mold release Use air pressure during water cooling time Reduce rate of external cooling Introduce internal cooling Section 6.18 Section 6.2 1 Section 5.5 Section 5.3 Section 6.23 Section 5.7 Section 6.15,6.23 Section 6.21,6.22 Section 6.24 Overcured part Decrease oven temperature Section 6.6-6.8 Decrease oven time Section 6.6-6.8 Use nitrogen purge throughout heating cycle Section 6.15 Problem Probable Cause Possible Solution Location in Book - -- Underfused part Increase oven temperature, time Section 6 . 6 4 . 8 Increase heat transfer by using aluminum Section 5.2 molds Use thinner molds Section 5.1 [see comments for Underfused parts] Wall thickness variation Check rotation ratio Scction 4.2 Remove, minimize hot spots on mold Section 5.2 Increase cooling rate Section 6.21,6.22 Local part separation from Use internal pressure during cooling Section 6.15 wall Poor parting line Improve mating surfaces on mold Section 5.3 Clean thoroughly mating surfaces on mold Section 5.3 Blocked vent Inspect vent before each cycle Section 5.5 * Adapted from J. Rucher, "A Beginner's Guide to Rotomolding," Plastics World, 48:7 (July 1997), pp. 14-16. 3 7 5 APPENDIX B. Conversion Table Metric to U.S. to Metric Length m x 3.28 ft • 0.3048 m [1111 • 10 -6 m x 10 6 ]AITI h n • 1.609 mile • 0.622 km rrm x 39.37 mils x 0.0254 n m Area rn 2 x 10.76 ft 2 X 0.0929 rn 2 c m 2 • 0.155 in z • 6.452 c m 2 m m 2 x 1.55 • 10 -3 in 2 x 645.2 m m 2 Volume fro x 35.31 f t 3 • 0.02832 m 3 rn 3 x 6.102 x 104 in 3 x 1.639 • 10 4 in 3 m m 3 x 6.102 x 10-5 in 3 • 1.639 x 10 4 m m 3 liter x 1000 c m 3 x 0.001 liter c m 3 x 29.57 fluid oz • 0.0338 c m 3 rn 3 x 264.2 U.S. gat x 3.785 x 10-3 m 3 Mass g x 0.0022 Ibm x 453.6 g kg • 2.204 Ibm x 0.4536 kg kg x 0.001 m e t r i c t o n n e x 1000 kg kg x 0.0011 U.S. ton x 907.2 kg Density g / c m 3 x 62.42 Ibm/ft 3 k g / m 3 x 0.06242 lbm/ft 3 g / c m 3 x 0.578 o z / i n 3 k g / m 3 x 5.78 x 10 -4 o z / i n 3 x 0.016 g / c m 3 x 16.02 k g / m 3 x 1.73 g / c m 3 x 1.73 x103 k g / m 3 Force N • 0.2248 lbf • 4.448 N kgf x 0.2292 lbr x 4.363 kgf kN • 0.2248 kip, 10001bf • 4.448 kN d y n e • 2.248 • 10 -6 Ibf x 4.448 x 105 d y n e d y n e x 10-5 N x 105 d y n e 3 7 6 Metric to U.S. to Metric Pressure Pa x 1.45 x 10 -4 lbf/in 2 x 6895 Pa M P a • 9.869 atm x 0.1013 M P a Pa x t0 d y n / c m 2 x 0.1 Pa Pa x 7.5 x 10 .3 1 m m Hg x 133.3 Pa Pa x 4.012 x 10 -3 1 in H 2 0 x 248.9 Pa M P a x 10 b a r x 0.1 M P a N l m m 2 x 145 lbtgin 2 • 6.895 x 10 -3 N l m m 2 Energy J • 9.478 x 10 -4 B t u x 1055 J ft-lbf x 1.286 • 10 -3 Btu x 778 fi-lbf j x 0.2388 cal x 4.187 J j x 1 x 10 7 e r g x 1 x 10-7 J M J x 2.778 x 1 0 - 7 k W h r x 3.60 x 106 M J j x 0.7375 tt-lbf x 1.356 J Energy, Power, Heat, Fluid Flow Rate W x 3.413 B t u / h r x 0.293 W W x 1 x 10 7 e r g l s x 1 x 10 -7 W W x 0.7375 ft-lbf/s • 1.356 W k W x 1.34 hp • 0.746 k W liter/min x 0.2642 gal/min x 3.785 liter/rain liter/min x 2.393 ft3/hr x 0.4719 liter/rain Heat Flux W / m 2 x 0.317 B t u / h r ft 2 x 3.155 W l m 2 calls c m 2 x 3.687 B t u / h r ft 2 x 0.2712 cal/s c m 2 W / m 2 x 6.452 x 10 -4 W / i n 2 x 1550 W / m 2 Specific Heat J / k g K cal/g ~ x 2.388 x 10 -4 B t u / l b ~ x 4187 J / k g K • 1 B t u / l b ~ x 1 c a l / g ~ Thermal Conductivity W / m K • 0.5777 W / m K x 1 . 9 2 6 x 1 0 -3 W / m K • 7.028 W / m K x 2 . 3 9 x 10 -3 B t u l h r ft ~ • 1.731 B t u i n / s ft 2 ~ x 519.2 Btu in/hr ft 2 ~ • 0.1442 c a l / c m s ~ x 418.4 W l m K W l m K W l m K W l m K 3 7 7 Metric to U.S. to Metric Vetocity km/hr x 0.6205 rniles/hr x 1.609 km/hr m / s x 3.6 km/hr x 0.2778 m / s m / s x 39.37 in/s x 0.0254 m/s m / s x 3.281 ft/s x 0.3048 m/s m / s x 1.181 x 104 ft/hr x 8.467 x 10-5 m/s Mass Flow Rate k g / s x 7.937 x 103 k g / s x 2.205 lb/hr x 1.26 x 10 -4 k g / s lb/s x 0.4536 k g / s Viscosity Pa s x 10 P a s x 1000 m2/s x 10.76 Pa s x 1.488 c e n t i p o i s e x I488 m2/s x I x 106 P a s x 1 . 4 5 x 1 0 -4 P a s x 2.088 x 10 -2 P o i s e • 0.1 c e n t i p o i s e x 0.001 ft2/s x 0.0929 lb/s ft x 0.672 lb/s ft x 0.000672 c e n t i s t o k e x 1 x 10 -6 lbf s/in 2 • 6.895 • 103 lbf s/ft 2 x 47.88 Stress M P a x 145 M P a x 0.102 M P a • 0.0725 M P a • 1 M P a x 1 l b ( i n 2 x 6.895 x 10 -3 k g t / m m 2 x 9.807 tone/in2 x 13.79 M N / m 2 x 1 N/ram 2 x l Bending Moment x 8.85 b4~n x 0.7375 Nrn/m x 0.2248 N m / m x 1.873 x 10-2 l b f i n x 0.113 lbfft x 1.356 lbf in/in x 4.448 lbf ft/in x 53.38 Fracture Toughness and Impact Strength M P a m v~ x 0.9099 ksi in v2 J/m x 0.2248 ft lbf/ft J/m x 0.01874 ft lbf/in J/m 2 • 4.757 x 10-4 ft lbr/in 2 x 1.099 x 4.448 x 53.37 x 2102 Pa s Pa s rr12/8 P a s c e n t i p o i s e mZ/s P a s P a s M P a M P a M P a M P a M P a ]N~TI Nm N m / m N, rv'm M P a m',~ J/m J/m J/m 2 Author Index A Andrzejewski, S., 11,16 Arendt, W.D., 6, 15, 96, 109 Arpaci, V.S., 247, 302 Ashby, M.F., 325,327, 363 Astarita, T., 210, 211,300 Astarita, G., 210, 211,300 Attaran, M.T., 248,302 B Balmer, R.T., 279, 282, 304, 305 Bawiskar, S., 138,147 Beall, G.L., vi, 2, 14, 112, 14 7, 160, 200, 206, 276,285,299,304, 305, 307, 310, 313, 318,319,335,340, 342, 344, 349, 351, 362, 364 Becker, H., 4, 14 Bellehumeur, C.T., 11,17, 20,69,93,108,225, 228, 234, 243,244, 301, 302, 354, 365 Benning, C.J., 28, 59, 60, 65, 68 Bent, A.A., 210, 299 Berins, M.L., 335,356, 364, 365 Bisaria, M.K., 6, 11, 15, 17 Boenig, H.V., 42, 66 Boersch, E., 1, 14, 96, 1 O4, I09 Bonis, L.J., 225,300 Bothun, G., 104, 110 Braeunig, D., 6,15 Brown, R.L., 205, 211, 212,299 Bruins, P.F., vi, 4, 14, 40, 66, 112, 147 Brydson, J.A., 20, 65, 211,300 Bucher, J., 4, 14, 367,374 Burnett, D.S., 333,335, 363, 364 Burns, M., 332, 363 C Calafut, T., 28, 65 Campbell, C.S., 210, 300 Carrino, L., 104,110 Carter, B., 4, 14, 113,147 Cellier, G., 236, 237, 242, 301 Cerro, R.L., 279, 281, 304, 305 Chabot, J.F., 4, 14 Chan, L.S., 6, 16, 69, 108 Chen, C.-H., 146, 148, 201,214,247,248, 299 Cheney, G., 11, 16 Chiou, Y.H., 228,229,237, 301 Clark, D.T., 360, 365 Collins, E.A., 38, 65 Copeland, S., 6,15, 64, 68 Covington, H., 335,364 Cowan, S.C., 210, 299 Cramez, M.C., 12, 17, 18, 99, 109, 268, 303 Crawford, R.J., vi, l, 2, 6, 11, 12, 14-18, 69, 85, 90, 94, 99, 100, 108, 109, 112, 120, 138, 140, 142, 146, 147, 148, 186, 200, 201,207,214,238, 240, 248,268,299, 302, 303, 318, 319, 323,348,349,350, 352,353,354,362, 364, 365 Crouch, J., 146,148 Cumberland, D., 85, 109 Straight-- Text Citing 379 Italic ~ Reference 380 D Rotational Molding Technology m Gibson, L.J., 325,327, de Bruin, W., 69, 90, 92, 363 108 Goddard, J.D., 239, 302 Dieber, J.A., 279,285, Gogos, G., 142, 148,240, 304, 305 250,251,273,274, Dodge, P., 11,16 3 03 Domininghaus, H., 20, Goodman, M.A., 250, 299 65, 338,339, 364 Goodman, T.R., 249, 302 Dority, S., 505, 109, 110 Gotoh, K., 81, 108 Dusinberre, G.M., 2 6 6 , Graham, B., 6, 15, 58, 64, 303 68 D'Uva, S., 287, 306 E Eilers, K., 330, 363 Elias, H.-G., 267, 268,303 Epstein, P.S., 240, 302 Ezrin, M., 56, 67, 307,362 F Fahnler, F., 39, 66 Fawcett, J., 332, 363 Fayed, M.E.,219,300 Feast, W.J., 360, 365 Fenner, R.T., 333,363 Findley, W.N., 323,362 Flannery, B.P., 333,363 Fogler, H.S., 239, 302 Foy, D., 501,110 Frenkel, Ya.I.., 225,300 Frisch, K.C., 59, 67, 291, 306 G Gachter, R., 63, 68 Gebhart, B., 333,363 Gianchandani, J., 6, 16, 279,282,283,304, 3O5 Straight - - I-I Han, C.D., 239, 302 Hang, C.C., 6, 16, 69, 108 Harkin-Jones, E.M.A., 6, 16, 38,39,40,41, 42, 65, 66, 69, 108, 279,282, 283,284, 303, 304, 305 Hartnett, J.P., 250, 261, 303 Hausner, H.H., 225,300 Hentrich, R., 154, 200 Hickey, H.F., 40, 66 Higashitani, K., 85, 108 Howard, H.R., 51,16, 501, 109, 110 Huebner, K.H., 333,363 Iwakura, K., 146,148, 205,214,247,248, 299 ,I Joesten, L., 6, 16, 64, 68 Johnson, L., 105, 110 Johnson, R.E., 279, 285, 304, 305 Jolly, R.E., 44, 66 Text Citing K Kampf, G., 44, 56, 66 Keurleker, R., 39, 66 Khemani, K.C., 291,305 Kinghorn, K.B., 6, 15 Klempner, D., 59, 67, 291, 306 Kobayashi, A., 356, 365 Kontopoulou, M., 6, 11, 15, 17, 64, 68, 234, 238,240, 241,243, 244, 301,302, 354, 365 Kreith, E, 205, 255, 216, 299, 300, 335, 364 Kuczynski, G.C., 225,300 Kumar, S., 328,363 Kurihara, K., 210, 215, 299 L Lai, J.S., 323,362 Landrock, A.H., 291,306 Lang, J., 6, 15, 96, 109 Lefas, J.A.,287,306 Levitskiy, S.R, 231,238, 301, 302 Lin, S.T., 228,229, 238, 301 Liniger, E.G., 211,300 Linoya, K., 85, 108 Lipsteuer, S.J., 93,109, 287,306 Liu, F., 287,306 Liu, G., 287, 306 Liu, S.-J., 228,229,238, 301 Liu, X., 250, 273,274, 303 Lontz, J.F., 225,300 Lowe, J., 6,15 Italic Reference Author Index 381 Lui, S.-J., 11,17 Lun, C.K.K., 210, 299 M Macauley, N., 270,303 MacKinnon, C., 191,200 Maier, C., 28, 65 Malkin, B.A., 279,280, 305 Malloy, R.A., 315,322, 323,345,346, 362-364 Malwitz, N., 291,305 Mansure, B., 6, 15 Marchal, J.-M., 287,306 Marion, R.L., 278, 304 Martin, D., 6, 16, 69, 108 Mazur, S., 225,226, 227, 228,232,233,301 McCarthy, T.J., 360, 365 McClellan, E., 6,15 McDaid, J., 69, 70, 71,73, 76, 86, 89, 90, 91, 94,108 McDonagh, J.M., 6, 15 Mello, J., 335,364 Mincey, E., 105, 110 Mish, K.D., 335,364 Mooney, P.J., 1, 14 Morawetz, H., 22, 30, 65 Moroni, G., 104, II 0 Muller, B., 6, 15, 101, 102, 110 Muller, H., 63, 68 Murphy, W.R., 270, 303 Muzzio, EJ.,243,306 N Nagy, T., 100,109 Nakajima, N., 38, 65 Narkis, M., 25, 65, 218, 225,226,227,228, 232,233,235,236, 301,347,348,364 Neuville, B., 225,300 Newman, S.J.,236,301 Nickerson, J.A., 2, 14 Nugent, P.J., 11, 12, 16-18, 140, 147, 186,200,201,214, 273,274, 299, 303, 350,352,353,354, 365 0 Ocone, R., 210, 211,300 Ogorkiewicz, R.M., 4, 14, 44, 52, 66, 67, 268, 270,271,272,303 Ohta, Y., 146,148, 201, 214,247,248,299 Okoroafor, M.O., 291, 306 Oliveira, M.J., 12, 17, 18, 99,109, 268,303 Olson, L.G., 250, 273,274, 303 Onaran, K., 323,362 Onoda, C.Y., 211,300 Orr, J., 6,16, 69,108 Otten, L., 219, 300 P Paiva, M.C., 12,18 Park, C.E, 59, 67, 291, 306 Park, C.L., 287, 306 Pasham, V.R., 250, 303 Passman, S.L., 210, 300 Peterson, A.C., 315,362 Petrucelli, F., 6,15 Pietsch, W., 81,109 Plessct, M.S., 240,302 Polini, W., 104, 110 Pop-lliev, R., 287,306 Press, W.H., 333,363 Progelhof, R.C., 20, 22, 23,44,45,50,53, 62, 63, 65-68, 217, 229,230,231,236, 237,242,267,279, 300, 301, 303, 304,315,323,328, 330,362, 363 Q R Rabinovitz, E., 6,16 Ramesh, N.S., 291,305 Rao, M.A., 81,108, 201, 205,214,299 Rauenzahn, R.M., 210, 211,300 Rauwendaal, C., 207, 299 Rees, R.L., 6, 15, 76,108 Rhodes, M., 77, 108 Richards, J.C., 205, 211, 212,299 Rigbi, Z., 6, 16 Rijksman, B., 287,306 Roark, R.J., 318, 362 Rohsenow, W.H., 250, 261,303 Rosenzweig, N., 25, 65, 218,225,226,227, 228,232,233,235, 236, 301,347, 348, 364 Ruetsch, R.R., 217,300 Rumpf, H., 205,299 Straight ~ Text Citing Italic ~ Reference 382 Rotational Molding Technology S Susnjara, K., 355,365 Saffert, R., 6,15 Swain, R., 102,110 Sarvetnick, H.A., 37, 38, Syler, R., 242,302 65,278,304 Schmitz, W.E., 4, 14 T Schneider, K., 39, 66 Takacs, E., 64, 68, 69, 93, Schneider, EJ., 249, 250, 108, 109, 243,244, 261,303 287, 302, 306, 354, Scott, J.A., 12, 17, 142, 365 14 7, 148 Tanaki, A., 36, 68 Shah, V., 44, 51,54, 57, 61, Taylor, T.J., 348,364 62, 66-68 Teoh, S.H., 6, 16, 69,108 Shinbrot, T., 243,306 Teukolsky, S.A., 333,363 Shinohara, K., 219, 300 Throne, J.L., 6, 10, 16, 20, Shrastri, R.K., 48, 49, 6 7 22, 23, 25, 44, 45, Shulman, Z.P., 231,238, 50, 53, 62, 63, 301, 302 65-68, 81,83,108, 109, 201,205,207, Shutov, F.A., 289, 291, 210,214,215,217, 293,305, 306 218,224,229,230, Silva, C., 100, 109 231,235,236,237, Sin, K.K., 6, 16, 69, 108 238,239,242,245, Smit, T., 69, 90, 92, 108 246, 247, 248, 251, Sneller, J., 287, 306 267,275, 279, 281, Sohn, M.-S., 83,109, 2 0 5 , 282,283,288,291, 211,299 293,299-305, 308, Sowa, M.W., 6, 16 315,323,327, 328, 323,330,331,340, Spence, A.G., 12, 17, 89, 341,347, 348,356, 100,109, 138, I42, 362-365 146, 147, 148,207, 238,240, 299, 302 Tordella, J.P., 44, 66 Spyrakos, C.C., 266,303, Tredwell, S., 64, 68 310, 333,334, 362, Turner, S., 47, 67 363 Turng, L.-S., 287, 306 Stanhope, B.E., 6, 15, 96, 109 U Stoeckhert, K., 154, 200 Strebel, J., 89, 90, 91,109 V Strong, A.B., 6, 15 Vetterling, W.T., 333,363 Stufft, T.J., 89, 90, 91,109 Vincent, P.I., 52, 67 Vlachopoulos, J., 6, 11, 15, 17, 64, 68, 69, 93, 108, 109, 225, 228,234, 238,240, 241,243,244,287, 301, 302, 306, 354, 365 Voldner, E., 6,15 W Walls, K.O., 12, 18 Wang, H.P., 287,306 Ward, D.W., 38, 65 Ward, W.J., 360, 365 Weber, G., 4, 14 Werner, A.C., 37, 38, 65 White, J.L., 100, 109, 138, 147, 148,201,214, 247,248,299 Wisley, B.G., 6, 16 Wright, M.J., 138, 120, 147 Wright, E.J., 248, 302 Wytkin, A., 120, 14 7 X Xin, W., 11, 16 Xu, L., 240, 302 Y Yoo, H.J., 239, 302 Young, W.C., 318,362 Z Zhang, D.Z., 210, 211, 300 Zimmerman, A.B., 4,14 S t r a i g h t - Text Citing Italic ~ Reference Subject Index A ABS 9 See also Acrylonitrile-butadiene- styrene Rotational molding grade, discussed 36 Limitations in rotational molding 36 Acrylic 9 See also PMMA, Polymethyl meth- acrylate Acrylonitrile-butadiene-styrene As thermoplastic 19 Discussed 35-36 Air temperature, inner cavity, measure- ment 140-143 Air solubility in polymer 239-241 Aluminum casting See also Mold, ah4minum, cast Procedure 152-153 Amorphous, defined 20 ARM, see Association of Rotational Molders Arms Design weight, described 122 Hollow for inert gas injection 146 Hollow for pressuring molds 146 Offset 122 Straight 122 Support of molds 122, 122F Swing diameter Described 123-125, I23F, 124F, 125F Examples of 123-125 Association of Rotational Molders 12 ASTM D-1238 24 See also Melt index ASTM D- 1693 22 See also ESCR; Environmental stress crack test ASTM D-348 26, 32 See also Heat distortion temperature ASTM D-2765 27 See also Polyethylene, crosslinked ASTM D-1238 44 ASTM E-11 46 See also Sieve, screen sizes, dis- cussed ASTM D-1921 46 See also Sieve technolog3, ASTM D- 1505 51 See also Density gradient column ASTM D-256 53 See also Impact test, pendulum; Impact test, Charpy; Impact test, lzod ASTM D-3029 53 See also Impact test, falling weight ASTM D-790 54 See also Mechanical test, flexural modulus Straight ~ Text " F " - - Figure "T" ~ T a b l e 383 384 Rotational Molding Technology ASTM D-638 64 See also Mechanical test, tensile modulus ASTM D-2990 55 See also Mechanical test, creep ASTM D-671 55 See also Mechanical test, flexural fatigue ASTM D-1693 58 See also Environmental stress crack test, notched strip ASTM D-1435 61 See also Weathering, accelerated tests ASTMD-3801 63 See also Fire retardancy, standard match test ASTM D-2863 63 See also Fire retardancy, oxygen index ASTME-11 75T See also Sieve ASTM D-1921 76 See also Particle size distribution ASTM D-1895 84, 84F See also Powder flow, test method ATM D- 1895 46 See also Sieve technology, bulk density," Sieve technology, pourability Attrition 69 See also Pulverization, described Baffles See also Molds In mold design 136, 136F Bridging, considerations for 311 Brittle fracture, impact test 51 Brittle temperature for several poly- mers 52 Bubbles 15 Bulk density Grinding factors affecting 89-91 Powder Fluidized 88T Measurement 84F, 88 Poured 88, 88T Tamped 88, 88T Vibrated 88, 88T C CAB, see Cellulose acetate butyrate CAP, see Cellulose acetate propionate Carousel machine Fixed arm 117-118, 118F Independent arm 118-119, 119F Cellulose acetate butyrate, discussed 34-35 Cellulose acetate propionate, dis- cussed 34-35 Cellulosic 9, 21 Discussed 34-35 General properties, discussion 35 Centrifugal casting 7, 15 Charge weight, calculation of 174-183 For cylinder 175, 175F For rectangle 176, 176F, 177F For various shapes 177, 179T Chemical resistance, post-applied 359-360 Chemical test Crazing 57 Haze formation 56 Plasticization 56 Solvation 56 Solvent migration 56 Stress-cracking 57 Chocolate 7 Clamshell machine Discussed 115, 115F Oven design 116 Coalescence 26 As sintering 26 Effect of particle size distribution on 87 S t r a i g h t - Text " F " - - Figure " T " - - T a b l e Subject Index 385 Color CIE standard 56 Compounding 96, 101 Dry blending 96 Concentration level effect 99F High speed mixing 97 Low-intensity 97 Low-intensity, equipment 97 Tumbling 96, 97 Turbo-blending 97 Effect of blending technique on dispersion of 100F Effect of blending technique on mechanical properties 101 Factors that affect 55 Methods of, discussed 96 Rotational molding factors that affect 56 XYZ diagram 56 Cooling Air 137,274 Cycle time for Discussion 259 Mathematical model 260, 262 Wall thickness effect on 277 Discussed 137 Effect on shrinkage/warpage 137-138 Effect of water quench on 275 Experimental and theoretical compari- son of 273-274, 274F Part release from mold during 203F, 204 Pressurized mold 276 Recrystallization during 203F, 204 Recrystallization effects during 266-274 Recrystallization effects during, modeling Temperature measurements during 202F, 203F Thermal inversion Described 262 Technical description 262-266, 263E 264F Distributed parameter model 264-265 Lumped parameter model 266 Water spray/mist 137 Cooling methods, discussed 137 Cooling rate 16 Coordinate measuring machine, discussion 360-361 Cracking, localized, impact test 51 Crazing 57 Creep modulus, see Mechanical test, creep modulus; Mechanical test, creep Crystallinity, defined 20 D Decoration Adhesives 358 Hot stamping 358 In-mold 359 Methods of, discussion 357-360, 357T Painting 358 Post-mold 359 Design Of molds, see Molds, design of Of parts, see Parts, design of" Parts design Part removal 276-277 Design, mechanical CAD/CAM in 332 Cantilever beam flexural 316 Column bending 317 Computer-aided stress analysis for 332-335 Computer-aided stress analysis for; see Finite-element analysis Computer aids for, discussed 330, 331F Computer aids in prototyping 332 Straight - - Text "F"--- Figure " T " ~ Table 386 Rotational Molding Technology Creep in 322-323 Criteria for parts 314 Finite difference analysis for 333 Finite-element analysis for 333-335 Foams, discussion 324 Skin-core foams Stiffness of 329 I-beam model for 329-330, 330F Polynomial beam model, dis- cussed 330, 331F Uniform density foams 324 Stiffness of 325 Modulus for 325 Foaming efficiency of 325,326T Tensile strength for 327 Impact characteristics of 327, 328T Ductile-brittle characteristics of 327,328F Hollow beam with kiss-off 318-321 Long-term loading 314 Moderate-term loading 314 Plate bending, edge-on 317-318 Ribbed plate 319-322 Short-term loading 314 Temperature-dependency in 323-324, 324T Tensile creep in 323,323F Three-point flexural 315 Demolding, schematic 5,5F Density gradient column 51 Density, polyethylene property changes with 25T Differential Scanning Calorimetry 268, 270,271 F, 272F DIN 6174 56 See also Color, CIE standard DIN 5033 56 See also Color, XYZ diagram Distortion 16 Dry blender Double-cone 97, 98F Double-ribbon 97 Vee mixer 97, 98F Dry blending See also Color Additives in melt-blending 98 Additives in tumble-blending 97-98 Additives suitable for 97-98 Effect on mechanical properties 99 Effect on polymer crystalline nucle- ation 99 Effect on polymer morphology 99 Henschel-type mixer 99 Rotational molding powders 97 Turbo mixing 99 Drying conditions for polymers 34T Ductile failure, impact test 51 Ductile yield, impact test 51 Ductile-brittle transition, impact test 52,52F E Electroformed nickel Procedure 155 See also Molds, electroformed nickel Environmental stress crack resistance, LDPE 50, 50F Environmental stress crack test Bentstrip 57, 57F Constant stress test 58 Defined 57 Notched strip 58 Polyethylene 58 Epoxy 9 As liquid polymer 37 ESCR, see Environmental stress crack test Ethylene vinyl acetate Chemical structure 27 Density 28 Environmental stress crack resis- tance 28 Extent ofvinyl acetate 28 Foamability 28 S t r a i g h t - Text " F " m Figure " T " - - T a b l e Subject Index 387 Melt temperature range 28 Shore hardness 28 EVA, see Ethylene vinyl acetate FDE, see Finite difference analysis FEA, see Finite-element analysis FEP, see Fluoroethylene polymer Finite difference analysis 333 Finite-element analysis 333-335 Arithmetic for 334-335 Formalization of 334T Limitations of 335 Fire retardancy Defined 62 Oxygen index 63, 63T Standard match test 63 Flexural modulus, dee Mechanical test, flexural modulus Fluorocarbon 9 Fluoroethylene polymer, as thermoplas- tic 19 Foam rotational molding Blowing agent efficiency in 290 Bubble nucleation in 291 Chemical foaming agents for 287-291,288T, 289T Endothermic 288 Exothermic 288-291 Containerized inner layer in 298 Diffusional bubble growth in 291 Discussed 287 Inertial bubble growth in 291 Limitations of 292-295 One-step process in 295-296 Oven conditions for 293,293T Physical foaming agents for 287 Single layer structures in 295 Skin/core structure in 287 Terminal bubble growth in 292 Two-step process in 296 Fracture, brittle, impact test 51 G Glass transition temperature, defined 2O Grinding 69 See also Pulverization, described Ball-mill 69 Costs associated with Discussion 91-93 Factors 92 Economies of scale 92 Frictional heat 71 Gap size effect on powder quality 89 Hammer-mill 69 Horizontal mill 72, 73F In-house v. outsourcing 91-92 Mill tooth number effect on powder quality 90 Parallel plate 69-71 Particle sieving 71 Powder characteristics 73 Particle size distribution 74 Flow 74 Bulk density 74 LLDPE 74 As related to rotational molding parameters 74, 75-76 Particle shape 75 Process control 72 Process equipment 69F, 72F Skill factors involved in 92 Temperature effect on powder quality 90--91,90F, 91F Vertical mill 70, 70F H Haze formation 57 HDPE Crystallinity of 20T See also Polyethylene, high-density Heat capacity, of powder 218 Heat transfer Straight Text "F" - - Vigur' '"Y" ' Vai;le 388 Rotational Molding Technology Coefficient of For air 274 For water 275 Combustion 129, 130T Conduction 213 Defined 127 Convection 213 Defined 127 Coefficient 127-129, 127T Effect of polymer morphology on 243,244F Modes, defined 127 Radiation 213 Defined 127 Thermal lag in mold 214, 222, 245 To coalescing powder bed 223 To powder 215-218 To powder bed 217-218 To powder particle 215 To mold 213-214 To mold assembly 139 To mold assembly, measurements of 139-140, 139F Transient heat conduction in 216F Transient heat conduction model 247 Types in rotational molding 213 Heating See also Oven; Heat transfer Cycle time of 251 Actual 258T Oven temperature effect on 255T, 256, 256T, 258 Thickness effect on 254-255, 255T, 256, 256T Direct-gas impingement 113 Discussion of 201 Effect of pressure on powder behav- ior during 244 Effect of vacuum on powder behavior during 244 Kink temperature during 202,203F, 220,253 Mathematical modeling of 245-25 l, 246F Mold cavity air temperature during 221-222 Mold energy uptake to polymer uptake ratio 252 Polymer morphology effect on rate of 223,224F Temperature measurements during 201-202, 202F, 203F Time to inner cavity temperature, thickness effect on 255 Time to kink temperature, thickness effect on 255 Overall cycle time, thickness effect on 256,257F Henry's law 239-240 And foam rotational molding 293-294 lgepal 22, 23, 24, 27, 28, 49, 58 Impact, process effects on 350, 350F, 353F,354F Impact test Charpy 53 Constant velocity puncture 53 Described 51-52 Failure type 51 Factors affecting 53 Falling weight 53 Bruceton method 53 ARM standard, see Impact test, falling weight, Bruceton method ARM standard, low-temperature, see Impact test, falling weight, Bruceton method Probit method 53 Staircase method, see Impact test, falling weight, Bruceton method Straight - - Text " F " - - Figure " T " - - T a b l e Subject Index 389 "Up-and-down" method, see Impact test, falling weight, Bruceton method Izod 53 Low-temperature, ARM terms 52 Pendulum 53 Test types 53 Tensile 53 K L Latex rubber 7 LDPE See also Polyethylene, low-density Crystallinity of 20T Environmental stress crack resis- tance, melt index effect 50, 50F Liquid polymers 69 Discussed 36 Liquid rotational molding Bubble entrainment in 284 Cascading flow in 280F, 281,283F, 286F Circulating pool in 280, 280F, 283F, 286F Discussed 278 Flow behavior in 280, 280F, 283F, 286F Hydrocyst formation in 282-283, 282F, 284F Ideal fluid for 286 Localized pooling in 285 Polymers used in 278-279 Process 279 Process controls for 285 Rimming flow in 280F, 281,283F, 286F Roleofreaction in 285 Roleofgelation in 285 Solid body rotation in 281,283F, 286F Time-dependent viscosity in 279, 279F LLDPE See also Polyethylene, linear low- density Crystallinity of 20T M Machines Basic elements of 112-113 Clamshell 115-116, 115F Cooling design in, see Cooling Compared with competition 11 l Electrically-heated molds for 120-121,120F, 121F Fixed-arm carousel 117-118, 118F Limiting factors 118 Heat transfer in, see Heat transfer Home-built 111-112 Independent-arm carousel 118-119, l19F Advantages of 118-119 Infrared heated 121 Make-Vs-buy 111 Oil-jacketed molds for 119 Oven design in, see Oven Process control of, see Process control Rock-and-roll 113-115 Shuttle 116-117, 117F Types of, discussed 112-113 Vertical 116, 116F MDPE, see Polyethylene, medium- density MechanicalProperties 16 Mechanical test Creep, defined 54-55 Creep modulus 55 Creep rupture 55 S t r a i g h t - Text " F " ~ Figure " T " - - Table 390 Rotational Molding Technology Defined 54 Flexural fatigue 55 Flexural modulus 54 Tensile modulus 54 MEKP, see Methyl ethyl ketone peroxide Melt flow index 28 See also Melt index Described 44 Melt index 28, 45F, 64 HDPE 24 LDPE 22 MDPE 23 Polyethylene property changes with 25T Process effects on 352F Quality control of 43, 44 Described 44 Melt index test conditions Nonpolyolefins 44, 45T Polyolefins 45T, 46T Melt indexer 44, 45F Melt viscosity 15, 43 Melt elastic modulus 64 Melting temperature, defined 20 Methyl ethyl ketone peroxide, catalyst for Unsaturated polyester resin 42 Micropellet 46 See also Polyvinyl chloride Coloring of 95 Comparison with conventional pellet 94, 95T Discussed 93-95 Method of production 93-94 Processing comparison with powder 94,95T Polyethylene 69 PVC, discussed 96, 96T Reason for use 93 Mold charging, schematic 5, 5F Mold cooling, schematic 5, 5F Mold heating, schematic 5, 5F Mold release 103 Cost of 199 Discussed 196 Disiloxanes 197 Early part release with 199 Fluoropolymers 197 Selection criteria for 198 Silicone 197 Spray-on 197 Surfaces coated by 198 Molds Air flow around deep pockets 136, 136F Air flow using baffles 136, 136F Air flow using venturi 136-137, 137F Alignment methods for 165, 164F Aluminum 150, 150F, 150T, 152 Cast 150, 152-153, 154F Welded 152 Machined 152, 152F Clamping of 166, 166F Commercial 149 Design of Discussion 160 For pressurization 276 Parting line 161-165 Buttorflat 161,161F Lap joint 162, 162F Tongue-and-groove 162, 163F Gaskets 163-164, 163F Electroformed nickel 149, 150T, 154-155, 155F Frames for 165 Heat transfer to 213-214 J-clamps for 166, 168F Manual clamps for 166-167 Materials for Discussed 149 Properties 150T Nonmetallic 149 Pressure buildup without venting 183 Pressurization for 340-341 S t r a i g h t - Text " F " ~ Figure " T " - - T a b l e Subject Index 391 Pressurized 146 Pry points, location for 167-168, 167F Sheet-metal 149, 149F, 150T, 151-152 Spiders for 165, 165F O Surfaces coated with mold releases 198 Surface finishes for 196 Thermal behavior of Various types 156-160, 157E 158F, 159F Equivalent mechanical thickness 156-157,157F Equivalent static thermal thick- ness 157-158, 158F Equivalent transient thermal thickness 159-160, 159F Toggle clamps for 166, 167F Useofdrop-box in 297-298 Use of drop-box on 296-298, 297F Venting of, see Venting Moment of area, second, see Moment of inertia Moment of inertia, defined 315 p Morphology Changes in PP, due to cooling rate 270T, 273,273T Crystallinity level and 267, 267T Effects of additives on 272,272T Recrystallization rates and 267-271, 268T, 269F, 270T, 271 F, 272F N Natural gas combustion 129, 130T Nylon 9 As thermoplastic 19 Chemical structure 31 Chemical types 32T Crystallinity of 20T, 32 Fiber-reinforced 9 Melting temperature 32T Moisture concerns with 310 Rotational molding grades 32, 32T Nylon 6, WLF constants for 324T Nylon 12, as liquid polymer 40 Odor Defined 62 Test Olfactory 62 Gas chromatography 62 Oven time 14 Effect on design parameters 351T Oven temperature 14 Oven Air flow around molds with deep pockets 136, 136F Air flow in 136 Design of, discussed 127, 129-131 Efficiency ofoperation of 130 Heat transfer in 131-135 Heat transfer in Examples of 133-135 PA-6 See also Nylon: Polycaprolactam As liquid polymer 36 Flexural modulus 32 Heat deflection temperature 32 Melting temperature 32 Part design Acute-angled corners in 346, 347F Aesthetics 307 Almost kiss-offs in 312 Appearance effect on 308 Application effect on 308 Assembly constraints effect on 309 Bridging criteria for 311 Cavity depth criteria for 312 Competition effect on 309 Computer-aided technique effect on 310 Straight - - Text " F " - - Figure " T " - - Table 392 Rotational Molding Technology Concerns ofwarpage in 311 Control ofwall thickness in 312 Coordinate measuring machine use in 360--361 Corner radius guidelines in 345, 345T, 347F Cost effect on 309 Criteria 307 Criteria for kiss-off 318-319 Cycle time effect on 310 Decoration effect on 309 Detentsin 312 Dimensional tolerance effect on 310 Draft angles 341-343,342T Female molds in 312 Polymer-specific 341,342T Texture 342, 342T Environment effect on 308 External threads in 312,349 Fiber-reinforcement in 312 Flat panels in 311 General guidelines for, discussed 310 General considerations for 335-349 Gussets in 312 Holes in 349 Improving mechanical strength through 312 Insert 349 Criteria for 312 Stresses around 312 Internal threads in 312, 349 Kiss-offs in 312 Limitations of 309 Market considerations 307 Material choice effect on 309 Mechanical Criteria for 314 Discussion 307, 317 Metal molded-in inserts for 313 Minimum wall thickness in 336 Mold cost effect on 309 Molded-in holes in 312 Mold texture transfer to parts in 312 Nominal wall thickness in 336 Parallel walls in 311,348 Part function effect on 308 Part wall separation for 348 Philosophy 307-310 Powder flow effect on 310 Pressurization effects on 340-341 Process effects on Discussion 350 Impact 350, 350F Melt index 352F Radius concerns in 312, 313 Right-angled corners in 345-346 Ribs in 311-312 Rim stiffening in 312 Shrinkage guidelines in 337-340 Size effect on 309 Surface decoration; see Decoration Wall thickness considerations for 311 Wall thickness in 336-337, 337T Wall thickness limitation effect on 309 Wall thickness range in 337T Warpage guidelines for 344,344T Warpage in 311 Undercuts in 311,312 Particle size distribution 75 Data presentation 79-80, 79F, 80T, 80F Discussed 74 Dry sieving 77 Elutriation 78 Fluidization 79 Light scattering 78, 79 Measurement 77-79 Sedimentation 78 Streaming 78 Test method 76, 78 Factors affecting 78 Test purpose 77 Particle shape S t r a i g h t - Text " F " - - Figure " T " - - T a b l e Subject Index 393 Acicular 81 Discussed 81 Effect on part performance 81 Methods of classification 81 Particle size analyzers 82 Physical methods 82 Shape factor 81,82T Spherical 81 Squared-egg 81 Terms defined 82T Particle size analysis 77 Parting line See also Molds, design of parting line Buttorflat 161,161F Design of 161-165 Gaskets 163-164, 163F Lap joint 162, 162F Tongue-and-groove 162, 163F See also Part design Parts Blowhole problems in 183 Cutout areas in 172 Failure Discussed 307-308 Fracture 307 Creep 307 Crazing 307 Stress cracking 307 Fatigue 307 Adhesive failure 308 Warpage 308 Shrinkage 308 Color change 308 Additive migration 308 Cracking element migration 308 Inserts for 168-171 Kiss-offs for 172, 173F Mechanical fastening of 169 Molded-in handles for 173 Molded-in inserts for 169-171,170F Molded-in threads for 171, 171F Post-molded fasteners for 169 Self-tapping screws for 168-169 Suck-holeproblems in 185 Temporary inserts for 173 Warpage with mold release 199 PC, see Polycarbonate PEEK 9 See also Polyether-ether ketone Phenolic 9 As thermoset 19 Crosslinked, discussion 19 Pigments Classes of 101 Classification of 104T Color shitt in 103 Discussion of 101 Dry-color blending of 101 Heavy metals, restricted use of 101-102 Organics 102 Azo-type 102 Polycyclic-type 102 Processing concerns of 102-103 Fluorescents 103 Plate-outof 103 Special-effect 103-104 Temperature effect on selection of 101 Pinholes 15 Plaster, molding, properties 154 PMMA, see Polymethyl methacrylate Poly-a-aminoacid, see Nylon Polyacetal 9 See also POM, Polyoxymethylene Polyamide, see Nylon Polybutylene 9 Polycaprolactam Chemical structure 39 Defined 32 Fillers for 41 Gellation rate 40 General production method 40 Time-dependent crystallinity 40F S t r a i g h t - Text "F" - - Figure " T " - - Table 394 Rotational Molding Technology Time-dependent viscosity during reaction 39F Polycarbonate 9 As thermoplastic 19 Chemical resistance, discussed 34 Chemical structure 33 Drying for rotational molding, discussed 33, 34T Flexural modulus 33 Heat distortion temperature 33 Impact strength, discussed 33 Moisture concerns with 310 WLF constants for 324T Polyester Unsaturated 9 As thermoset 19 Polyether-etherketone 21 As thermoplastic 19 Polyethylene terephthalate, crystallinity of 20, 20T Polyethylene As thermoplastic 19 Branched, see Polyethylene, low- density Chemical structure 22 Crosslinked 9 Advantages 58 Crosslinking agents 27, 58, 59T Density 27 Discussion 19-20,27 Environmental stress crack resis- tance 27 Flexural modulus 27 Gel content 27 Peroxide level 60F Time dependency 60F Test 59 Level, procedure 59 Shore hardness 27 Crystallinity of 20T Early applications 6-8 High-density Chain configuration 23F Crystalline morphology 24 Crystallinity 24 Defined 24 Density 24 Environmental stress crack resis- tance 24 Flexural modulus 24 Melt index 24 High-pressure, see Polyethylene, low-density Low-density Chain configuration 23F Crystallinity 22 Defined 22 Density 22 Environmental stress crack resis- tance 22 Flexural modulus 22 Melt index 22 Shore hardness 22 Low-pressure, see Polyethylene, high-density Linear, see Polyethylene, high- density Linear low-density Chain configuration 23F Crystallinity 27 Density 26 Defined 25-26 Environmental stress crack resis- tance 27 Flexural modulus 27 Medium-density Crystallinity 23 Defined 23 Density 23 Environmental stress crack resis- tance 23 Flexural modulus 23 Melt index 23 Metallocene, discussed 26 Micropellet 69 Odor 15 S t r a i g h t - Text " F " ~ Figure " T " - - T a b l e Subject Index 395 Powder 69 WLF constants for 324T Polyimide 21 Polymer morphology, discussed 20 Polymethyl methacrylate, chemical structure 35 Polyolefin 7 Polypropylene 9 As thermoplastic 19 Atactic, defined 28 Chemical structure 28 Copolymer Defined 29 Effect on properties 29, 29T Crystallinity of 20, 20T Fillers in 29 High-temperature stability of 29-30 Homopolymer, flexural modulus 28-29 Isotactic, defined 28 Melt flow index 28 Recrystallization of 30 Syndiotactic, defined 28 WLF constants for 324T Polystyrene 9 See also Styrenics As thermoplastic 19 Discussed 35 Impact, discussed 35 WLF constants for 324T Polytetrafluoroethylene, crystallinity of 20 Polyurethane 9 As liquid polymer 37 As thermoset 19 Chemical structure 41 Nature of reaction 42 Time-dependent viscosity during reaction 41 Polyvinyl chloride 21 As thermoplastic 19 Chemical structure 30 Drysol, discussed 30-31 Drysol hardness 31 Drysol v. micropellet 96, 96T Liquid 6 Micropellet 31 Micropelletcharacteristics 96,96T Plastisols, discussed 30 Plastisol hardness 30 Plastisol v. micropellet 96, 96T Role ofplasticizers in 30 Types of additives for 30 Porosity, discussed 242 Powder density Discussed 84-85 Related to powder flow 85F Powder Coalescence 12 Consolidation 14 Densification 12 Fusion 14 Sintering 15 Size 21 Powder particle characterization, quality control 44 Powder flow Discussed 74, 83-84 Effect of tails on 83 Grinding factors affecting 89-91 Related to powder density 85F Test method 84 Powder packing 85 See also Powder flow; Particle shape Bulk density Fluidized 88T Measurement 84F, 88 Poured 88, 88T Tamped 88, 88T Vibrated 88, 88T Deviation from ideal packing 86 Equal spheres 85-86, 86F, 86T Packing fraction defined 85-87 Particle size distribution effect 87 Powder quality See also Grinding S t r a i g h t - Text " F " ~ Figure " T " - - Table 396 Rotational Molding Technology Discussed 88-89 Grinding factors effecting 89 Powder Airborne dust generation with 207 Antistatic agents for 105-106 Avalanche flow of 208,208F, 209T, 222 Bed behavior during heating 222 Bubble dissolution in coalesced 235F Bulk densityofvarious 206T Carbon black in 106 Coalescence 203,235F Defined 223 Coulomb flowing 207 Temperature effect on 219 Densification in 203,235F Air absorption 238-243 Rayleigh's model for 238-239 Capillary action 236 Defined 236-243 Network collapse 236-237,237F, 238F Particle size distribution during coalescence 242-243 Rate of 242 Three mechanisms for 234-236 Under vacuum 237 Flow aspects of 206 Fluidizing 207 Mathematical modeling Bed 248-251 Static bed 249-250 Circulating bed 248-249,250 Moisture concerns with 310 Neck growth Compared with heating profile 226F Defined 223-234 Viscous model 225,225F, 227F Neck growth rate 226-234, 227T Creep compliance model 232-234, 232F,233F Hertzian 228 Linear viscoelastic 229F, 230-231, 231F Newtonian 227F, 228 Packing aspects of 205 Polyethylene 69 Polymer elasticity effect on coales- cence of 234 Rheology of flowing 210-211 Rotating cylinder flow of 211-213, 212F Sintering of, defined 223 Slip flow of 208-210, 208F, 209T, 222 Steady-state circulation of 207, 208F, 209T,222 Stearates for 106 UV additives for 106 Viscous flowing 207 Process control Discussed 138 Inner cavity air temperature monitor- ing for 140 Process cycle Discussion of 201 Steps in 201,204, 205T Processing and properties, general considerations 14-16 Propane combustion 129, 130T PS, see Polystyrene," Styrenics PSD 74, 77 See also Particle size distribution Pulverization, described 69 P-V-T curves HDPE 338T Polycarbonate 339T Shrinkage and 337-340 PVC plastisol 9, 21 As liquid polymer 36 Effect of heat on molecular character- istics 37F Effect of heat on viscosity 38F Fusion 37F, 38 Gellation 37F, 38 Straight Text " F " ~ Figure " T " - - T a b l e Subject Index 397 Method of production 38 Product types 39 Shore hardness 39 PVC, see Polyvinyl chloride Q Quality assurance, discussion 360 R Rayleigh's equation Inviscid 238 Newtonian 238 Viscoelastic 239 Recrystallization, part design restric- tions for 311 Ribs, design criteria for, discussed 311 Rock-and-roll machine 113, 114F, 115 Oven design 114F, 115 Products made on 113 Rotation Fixed ratio, discussed 125 Major-to-minor axis ratio 125 Speed of, discussed 125 Speed ratio Defined 126 Recommended for various geom- etries 126T Rotational molding Advantages ! 0, 12, 14 Applications 5T Basic process 5, 10 Cooling 16 Competition 4, 6, 13T Defined 4 Degradation 15 Design 8-9, l 1-12 Desirable polymer characteristics 64 Disadvantages 10-11, 14 Heating 15 History 6 Internal surface appearance 15 Markets 4, 8F Materials 9, 10F Molder consumption 21T Nature ofpolymerin 69 Polymer use 21T Powder flow 15 Rotational molding process Limitations 145 Advances in 146 Rotocasting, see Rotational molding Rotomolding, see Rotational molding S SAN, see Styrene-acrylonitrile Service station, discussed 144 Shrinkage Discussion 337-340 Guidelines for 340 Linear 338, 340T Volumetric, discussion 338 Shuttle machine 116-117, 117F Dual carriage 117, 117F Sieve technology Bulk density 46 Described 46 Dry sieving 46 Pourability 46 ARM recommendation 46 Sieve See also Powder technology Grinding 71 Dry, types of 77 Elutriation 78 Screen sizes, discussed 46 Shaker sizes 76F Sizes of 75T Sonic sifter 78 Silicone 9 As liquid polymer 37 Chemical structure 43 Method of reaction 43 Sintering 26 See also Coalescence S t r a i g h t - Text " F " - - Figure " T " q Table 398 Rotational Molding Technology Slip casting, ceramics 7 Slush molding 278 Society of Plastics Engineers Rotational Molding Division 12 Spin casting 7 Stress concentration factor 346F Stress-cracking 57 Styrene-acrylonitrile, see Styrenies Styrenics, chemical structure 35 Surface treatment Activation methods for 104 Applied graphics as 105, 105F Discussed 104 Plasma 104-105 T Tack temperature Amorphous 219,220T Crystalline 219,220T Defined 219 Related to kink temperature 220, 253, 253T Temperature measurement Correlation of Bubble dissolution time 142, 142F Coalescence time 141 Part release from mold 143 Process step 140-143, 141F Recrystallization time 143 Infrared method 144 Inner cavity air temperature 140 Interpretation 140-I 43, 141F Mold assembly 139-144 See also Heat transfer Tensile modulus, see Mechanical test, tensile modulus Testing protocol Actual part 47 Costs 48-49, 49T Defined 47 Full-scale 47-48 Segment 48 Test acceptability criteria 48 Testing Environmental stress crack resis- tance 50, 50F Full-scale 49 Molded density 51 Sections 50 Tg, see Glass transition temperature Thermal lag 214, 222,245 See also Heat transfer, to mold Mathematical model of 245 Thermal conductivity, of powder 217-218,218F Thermal diffusivity 248 Powder 218 Thermoplastics Defined 19 Discussed 6 Thermosets See also Thermosetting polymers Defined 19 Rotational molding advantages 43 Thermosetting polymers, liquids 36 Thermosetting liquids, nature of reaction 36 Thermosetting, discussed 6 Titanium dioxide Asopacifier 107 As UV additive 107 Tm, see Melting temperature Trimming Cutting characteristics 356T Various polymers 356-357 Discussion 354--357 Multiaxis 354-356, 356T Troubleshooting Discussion 360 Guidelines, Appendix A U UHMWPE, see Ultrahigh molecular weight polyethylene Straight - - Text " F " - - Figure " T " - - T a b l e Subject Index 399 UL E-84 tunnel test 62-63 See also Fire retardancy UL94 63 See also Fire retardancy, standard match test Ultrahigh molecular weight polyethyl- ene, characteristics 22 Undercuts, design criteria for, dis- cussed 311 Unload/load process station, see Service station Unsaturated polyester resin As liquid polymer 37 Chemical structure 42 Fillers for 42 Processing difficulties with 42 Reaction via MEKP 42 UPE, see Unsaturated polyester resin UV additive Carbon black as 106 Classification of 106 Hindered amine light stabilizers as 106--107 Titanium dioxide as 107 Requirements for 195 Types of 193 Selection criteria 193 Vacuum without 185 Venturi See also Molds Mold design with 136-137, 137F Vertical machine, discussed 116, 116F W Wall thickness Calculation of 174-183 Maximum allowable 180--183, 181F Warpage 16 Weathering Accelerated tests 61 Acid rain 61 Defined 6l Resistance of polymers 61 Ultraviolet effect 61 Williams-Landel-Ferry model 323-324 Constants for 324T WLF equation 323-324, 324T See also Williams-Landel-Ferry model V Venting X Design guidelines for 186-192, 190F, XLPE, see Polyethylene, crosslinked 192F Discussion 183 y Disposable 193 Permanent 193, 194F Pressure buildup without 183 Z Straight ~ Text " F " ~ Figure " T " ~ Table
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Rotational Molding Technology رابط مباشر لتنزيل كتاب Rotational Molding Technology 
|
|