كتاب Steel Design - صفحة 2
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Steel Design

اذهب الى الأسفل 
انتقل الى الصفحة : الصفحة السابقة  1, 2, 3  الصفحة التالية
كاتب الموضوعرسالة
rambomenaa
كبير مهندسين
كبير مهندسين
rambomenaa

عدد المساهمات : 2041
التقييم : 3379
تاريخ التسجيل : 21/01/2012
العمر : 47
الدولة : مصر
العمل : مدير الصيانة بشركة تصنيع ورق
الجامعة : حلوان

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالخميس 08 أغسطس 2013, 2:27 pm

تذكير بمساهمة فاتح الموضوع :

أخوانى فى الله
أحضرت لكم كتاب
Steel Design - Fifth Edition
William T. Segui
The University of Memphis  

كتاب Steel Design  - صفحة 2 S_d_m_10
و المحتوى كما يلي :

About the Author v
Preface xi
1 Introduction 3
1.1 Structural Design 3
1.2 Loads 6
1.3 Building Codes 7
1.4 Design Specifications 7
1.5 Structural Steel 8
1.6 Standard Cross-Sectional Shapes 12
Problems 17
2 Concepts in Structural
Steel Design 21
2.1 Design Philosophies 21
2.2 American Institute of Steel Construction
Specification 23
2.3 Load Factors, Resistance Factors, and Load
Combinations for LRFD 24
2.4 Safety Factors and Load Combinations
for ASD 26
2.5 Probabilistic Basis of Load and Resistance
Factors 30
2.6 Steel Construction Manual 34
2.7 Design Computations and Precision 36
Problems 38
3 Tension Members 41
3.1 Introduction 41
3.2 Tensile Strength 42
3.3 Effective Area 50
3.4 Staggered Fasteners 57
3.5 Block Shear 64
3.6 Design of Tension Members 67
3.7 Threaded Rods and Cables 76
3.8 Tension Members in Roof Trusses 79
3.9 Pin-Connected Members 88
Problems 90
4 Compression Members 109
4.1 Introduction 109
4.2 Column Theory 110
4.3 AISC Requirements 117
4.4 Local Stability 121
4.5 Tables for Compression
Members 130
4.6 Design 132
4.7 More on Effective Length 138
4.8 Torsional and Flexural-Torsional
Buckling 155
4.9 Built-Up Members 162
Problems 171
Contentsviii Contents
5 Beams 189
5.1 Introduction 189
5.2 Bending Stress and the Plastic
Moment 190
5.3 Stability 196
5.4 Classification of Shapes 198
5.5 Bending Strength of Compact Shapes 199
5.6 Bending Strength of Noncompact
Shapes 211
5.7 Summary of Moment Strength 215
5.8 Shear Strength 216
5.9 Deflection 224
5.10 Design 226
5.11 Floor and Roof Framing Systems 239
5.12 Holes in Beams 245
5.13 Open-Web Steel Joists 248
5.14 Beam Bearing Plates and Column
Base Plates 251
5.15 Biaxial Bending 265
5.16 Bending Strength of Various
Shapes 276
Problems 281
6 Beam–Columns 299
6.1 Definition 299
6.2 Interaction Formulas 300
6.3 Methods of Analysis for Required
Strength 305
6.4 The Moment Amplification Method 307
6.5 Braced versus Unbraced Frames 310
6.6 Members in Braced Frames 311
6.7 Members in Unbraced Frames 327
6.8 Design of Beam–Columns 339
6.9 Trusses with Top-Chord Loads Between
Joints 358
Problems 363
7 Simple Connections 377
7.1 Introduction 377
7.2 Bolted Shear Connections: Failure
Modes 380
7.3 Bearing Strength, Spacing, and Edge-Distance
Requirements 382
7.4 Shear Strength 388
7.5 Installation of High-Strength Bolts 394
7.6 Slip-Critical and Bearing-Type
Connections 396
7.7 Design Examples 402
7.8 High-Strength Bolts in Tension 416
7.9 Combined Shear and Tension in Fasteners 428
7.10 Welded Connections 441
7.11 Fillet Welds 443
Problems 461
8 Eccentric Connections 477
8.1 Examples of Eccentric Connections 477
8.2 Eccentric Bolted Connections: Shear Only 478
8.3 Eccentric Bolted Connections: Shear Plus
Tension 491
8.4 Eccentric Welded Connections: Shear
Only 496
8.5 Eccentric Welded Connections: Shear Plus
Tension 511
8.6 Moment-Resisting Connections 519
8.7 Column Stiffeners and Other
Reinforcement 536
8.8 End Plate Connections 558
8.9 Concluding Remarks 572
Problems 572
9 Composite Construction 593
9.1 Introduction 593
9.2 Shored versus Unshored Construction 604
9.3 Effective Flange Width 606
9.4 Steel Headed Stud Anchors 610
9.5 Design 613
9.6 Deflections 620
9.7 Composite Beams with Formed Steel Deck 624
9.8 Tables for Composite Beam Analysis and
Design 636
9.9 Continuous Beams 644
9.10 Composite Columns 645
Problems 65510 Plate Girders 665
10.1 Introduction 665
10.2 General Considerations 667
10.3 AISC Requirements for Proportions of Plate
Girders 670
10.4 Flexural Strength 672
10.5 Shear Strength 675
10.6 Bearing Stiffeners 680
10.7 Design 695
Problems 713
Appendix Plastic Analysis
and Design 718
A.1 Introduction 718
A.2 AISC Requirements 720
A.3 Analysis 721
A.4 Design 726
A.5 Concluding Remarks 729
References 730
Answers to Selected Problems 735
Index 739
Contents ix
A
Allowable strength design (ASD), 21, 23, 26–29,
43–44, 190, 218, 302, 447, 540–541,
564–566, 615
AISC specifications and, 23
beam–column interaction equations, 302
beams, 190, 218, 540–541
column stiffeners, 540–541
eccentric connections, 540–541, 564–566
end-plate connections, 564–566
fillet welds, 447
floor system design, 615
load combinations for, 26–29
moment equations for, 190
required strength, 21, 26
safety factor for, 26–29
shear strength, equations for, 218
tensile strength, equations for, 43–44
Allowable stress design, 21–22, 27, 44–46, 190,
219–220
allowable stress, 21–22
beams, 190, 219–220
load combinations and, 27
moment equations for, 190
shear strength, equations for, 219–220
tensile strength, equations for, 44–46
American Association of State Highway and
Transportation Officials (ASSHTO), 8
American Institute of Steel Construction (AISC),
8, 23–25, 34–36, 109–110, 117–121,
156–162, 537–541, 649–650, 670–672,
720–721
buckling analysis specifications, 156–162
column reinforcement specification
requirements, 537–541
composite column limitations and detailing
requirements, 649–650
compression member specifications, 109–110,
117–121
Manual of Steel Construction, 23
Index
plastic analysis and design, 720–721
plate girder requirements, 670–672
structural design specifications, 8, 23–24
Steel Construction Manual, 23, 25, 34–36
American Iron and Steel Institute (AISI), 8
American Railway Engineering and
Maintenance-of-Way Association
(AREMA), 8
American Society for Testing and Materials
(ASTM), 11–12
American Society of Civil Engineers
(ASCE), 7
American standard channel shape (C-shape), 14
American standard shape (S-shape), 14
American Welding Society (ASW), 444, 453
Anchors, 593–594, 610–613, 625–626
composite construction, 593–594, 610–613,
625–626
partially composite beams and, 594
plate girder connections, 593–594, 610–613,
625–626
shear strength of, 625–626
studs, 593–594, 610–613
Applied stress, 44–46
Artificial joint restraint (AJR), 329
ASD, see Allowable strength design (ASD)
Axial compression, 5
Axially loaded members, eccentric connections
and, 505–511
Axis buckling direction, 138–146
B
Balancing the welds, 506–511
Bars, 14–15, 280, 646
bending strength of, 280
deformed reinforcing, 646
solid circular, 280
structural design and, 14–15
Base metal, 441
Bay region, 239
739740 Index
Beam–columns, 5, 109, 298–375
bending coefficient, Cb, 344–345
braced frames, 310–327, 350–354
bracing design, 350–354
defined, 299–300
design of, 339–358
drift index, 354
frames, 310–338, 350–358
interaction formulas, 300–304
moment amplification, 307–311, 327–329
moments in, 299, 305–310
required strength, analysis for, 305–307
sidesway, 299–300, 327–329
structural design using, 5, 299–300
top-chord loads, 358–363
trusses, 300, 358–363
unbraced frames, 310–311, 327–338, 354–358
Beam (load) line, 520–522
Beams, 5, 188–297, 477–478, 511–524,
536–558, 568–569, 593–603, 613–645
allowable strength design (ASD) for, 190, 218,
540–541
allowable stress design for, 190
beam-to-plate welds, 568–570
bearing plates, 251–259
bending coefficient, Cb, 208–211
bending moment, 191–193
bending strength, 199–216, 276–280
bending stress, 190–196
biaxial bending, 265–276
block shear in connections, 222–224
buckling, 196–198
classification of shapes, 198–199
column base plates, 251–253, 260–265
compact shapes, 199–211
composite, 593–603, 613–644
continuous, 644–645
coped, 222–223
cross sections, 198–199, 267–270
deflection, 196–198, 224–226
design of, 226–239
double-angled shapes, 279–280
eccentric connections, 511–524, 536–558,
568–569
end-plate connections, 568–570
flanges, 198–199, 519–524, 536–558,
568–569
flexural strength, 188–189, 205–211
framed connections, 477–478, 511–513
frames, 239–244
holes, placement of, 245–248
hollow shapes (HSS), 276–278
load and resistance design (LRFD) for,
189–190, 218, 540
moment strength, 215–216
moment–strength design charts, 230–233
noncompact shapes, 211–216
open-web steel joists, 248–251
plastic moment, 193–198
plates for support of, 251–265
roof systems, 239–244, 272–276
seated connections, 511–513
shear strength, 216–224
solid circular bars, 280
stability, 196–198
tee shapes, 278–279
webs, 198–199, 252–253, 536–558, 569–570
width-to-thickness ratio, 198–199
yielding, 192–193
Bearing, pin-connected members, 89
Bearing plates, 251–259
concrete bearing stress, 253–254
thickness of, 254–259
web crippling, 253
web yielding, 252–253
Bearing stiffeners, 668–669, 680–695
Bearing strength, connections and, 382–388
Bearing stress, connection failure from, 381–382
Bearing-type connections, 396–402
Bending, 5, 111, 189–196, 265–276, 312–315,
381, 537
beam–columns, 312–315
beams, 189–196, 265–276
biaxial, 265–276
connection failure from, 381
critical buckling and, 111
flanges (local), 537
flexural strength, 189–190
moment distribution, Cm, 312–315
moment equations, 111, 189–193
plastic moment and, 193–194
stress, 190–196
Bending moment distribution, Cm, 312–315
Bending strength, 199–216, 276–280,
344–345
beams, 199–216, 276–280
beam–columns, 344–345
bending coefficient, Cb, 208–211, 344–345
biaxial bending and, 268–270
compact shapes, 199–211
double-angled shapes, 279–280
hollow shapes (HSS), 276–278
moment equations for, 199–216, 276–280
moment gradient and, 208
nominal flexural strength and, 205–211
noncompact shapes, 211–216
solid circular bars, 280
tee shapes, 278–279
weak-axis, 268–270
Biaxial bending, 265–276
beams, 265–276
roof purlins, design of, 272–276
shear center, loads applied through, 267–270
shear center, loads not applied through,
270–271
weak-axis bending strength, 268–270Index 741
Block shear, 64–67, 222–224
beams, 222–224
bolt connections and, 64–67
shear strength and, 222–224
tension members, 64–67
BOCA National Building Code, 7
Bolted connections, 57–76, 380–382, 388–440,
478–496
bearing-type, 396–402
block shear and, 64–67
combined shear and tension in, 428–440
design examples for, 402–416
eccentric, 478–496
elastic analysis, 479–483
failure modes, 380–382
fully tensioned, 394
gage distance, 71
high-strength, 388–396, 416–428
nominal body area, 388
pretensioned, 416–420
prying force, 420–428
shear in, 380–382, 478–491
shear strength of, 388–393
slenderness and, 67–68
slip-critical, 396–402, 431–432, 496
snug position, 395–396
staggered fasteners, 57–64
stitching (stitch bolts), 75–76
tensile loads applied to, 416–428
tension members, 57–76
ultimate strength analysis, 483–491
Braced frames, 149–153, 310–327, 350–354
beam–column members, 310–327, 350–354
bending moment distribution, Cm, 312–315
bracing, 321–324, 350–354
compressive members, 149–153
defined, 135
design of, 312–327, 350–354
effective length, 149–153
moment amplification, 310–311
nodal bracing, 150, 351
relative bracing, 150, 351–354
reverse-curvature bending, 312–313
rotational stiffness, 151
sidesway of, 150–153, 327–329
single-curvature bending, 311–312
stability bracing, 150, 350
stiffness reduction factor, 151–153, 313
Bracing, 150, 299–300, 321–324, 350–354
beam–columns, 321–324, 350–354
compression members, 150
design of, 650–654
diagonal, 351
nodal, 150, 351
relative, 150, 351–354
sidesway and, 150, 299–300
stability, 150, 350
x-bracing, 299–300, 351
Buckling, 110–117, 121–130, 138–146,
155–170, 196–198, 327–328, 537–539,
646–647, 650–651, 667–668, 674–675
AISC specifications for analysis of,
156–162
axis, 138–146
beams, 196–198
bending moment, 111
built-up members, 162–170
column reinforcement for, 537–539
column strength curve, 114–115
column theory, 109–117
composite columns, 646–647,
650–651
compression of column web, 537–539
critical buckling load, 110–113
deflection and, 111–113
effective length and, 116–117, 138–146
elastic stress, 156–159
Euler load, 110–113
flange local (FLB), 197
flexural strength and, 674–675
flexural, 121–130, 138–146, 155, 162
flexural–torsional, 155–159, 162
lateral–torsional (LTB), 196–198, 667,
674–675
load–deflection curves, 197–198
local (stability), 121–130
modes, 112
plate girders, 667–668, 674–675
sidesway analysis, 327–328
tangent modulus theory, 114–115
Theory of Elastic Stability, 156
torsional, 155–159
unbraced frames, 327–328
web local (WLB), 197
Building codes, 7
Building Officials and Code Administrators
(BOCA), 7
Built-up shapes, 15–16, 75–76, 162–170
buckling analysis of, 162–170
compression members (columns), 162–170
cross sections, 15–16
principle of moments, 163
parallel-axis theorem, 163
plates, 170
rolled shapes, 165–170
stitching (stitch bolt connections), 75–76
tension members, 75–76
C
Cables as tension members, 76–79
Calibrated wrench tightening, 395
Cambering, 225
Chord members, 83–84
Coefficient of variation, 31
Cold-formed shapes, 116
Collapse mechanism, 22742 Index
Column reinforcement, 536–572
AISC specification requirements, 537–541
ASD equations for, 540–541
beam-to-column connections, 558–559,
561–570
bending of flange, local, 537
compression buckling of web, 537–539
doubler plates, 539, 542, 549–550, 555
eccentric connections, 536–572
end-plate connections, 558–572
limit states for, 539–541
LRFD equations for, 540
panel zone (web) shear, 539, 541–542
stiffeners for flanges, 536–558
stiffener-to-column welds, 548–549, 554–555
web crippling, 538
web yielding, local, 537–538
yield-line theory, 570–572
Columns, 5, 108–187, 251–253, 260–265,
645–655
axis directions in, 138–146
base plates, 251–253, 260–265
buckling, 110–117, 121–130, 138–146,
155–170
built-up members, 162–170
column theory, 110–117
composite, 645–655
compression members, 109–117, 155–162
critical buckling load, 110–113
cross-sectional shapes, 121–125
deflection of, 111–113
effective length, 116–117, 138–155
Euler (buckling) load, 110–113
frames, 146–155
Guide to Stability Design Criteria, 150
Jackson–Mooreland Alignment charts,
147–148
local stability (buckling), 121–130
nonslender classification, 122
pinned-end condition, 110–111, 116, 138–139
sidesway and, 149–155
slender classification, 122
strength curve, 114–115
strength of, 539–541, 645–653
stub, 115
tangent modulus theory, 114–115
Compact shapes, bending strength of, 199–211
Composite beams, 593–603, 613–644
composite construction, 593–603
deck weight, 627
deflections, 620–624
elastic stresses, 595–600
flexural strength, 600–603
floor system design, 613–620, 624–636
formed steel decks, 594–595, 624–636
partial composite action, 626–627
plastic neutral axis (PNA), 601–602
shear strength of anchors, 625–626
slab weight, 636
tables for beam analysis and design, 636–644
transformed area, 596
transformed section, 595–596
Composite columns, 645–655
AISC limitations and detailing requirements,
649–650
buckling equations for, 646–647, 650–651
deformed reinforcing bars, 646
encased, 645–650
filled, 650–653
strength of, 645–653
tables for analysis and design, 653–655
Composite construction, 592–663
anchors, 593–594, 610–613, 625–626
composite beams, 593–603, 613–644
composite columns, 645–655
concrete curing, before and after, 604–606
continuous beams, 644–645
decks, formed steel, 594–595, 624–636
deflections, 620–624
effective flange width, 606–609
elastic stresses, 595–600
flexural strength, 600–603
floor systems, 606–620
formed steel decks, 594–595, 624–636
partial composite action, 626–627
partially composite beams, 594
plastic stress distribution, 600
shored, 604–606
slab and deck weight, 627
strength and, 645–653
structural design using, 593–595
studs, 593–594, 610–613, 625–626
tables for analysis and design, 636–644,
653–655
unshored, 604–606
Whitney equivalent stress distribution,
600–602
Compression, see Loads
Compression buckling of web, 537–539
Compression flange strength, 672–673
Compression members, 108–187
AISC specifications, 109–110, 117–121
beam–columns, 109
buckling, 110–117, 121–130, 155–170
built-up members, 162–170
column theory, 110–117
columns, 108–187
critical buckling load, 110–113
defined, 109
design of, 132–138
effective length, 116–117, 138–155
flexural buckling, 121–130, 138–146, 155, 162
flexural–torsional buckling, 155–159, 162
frames, 146–155
local stability, 121–130
nonslender classification, 122Index 743
plates, 170
rolled shapes, 115, 132–138, 165–170
slender classification, 122
stiffened and unstiffened elements,
122–125
struts, 109
tables for design of, 130–132
torsional buckling, 155–159
trial-and-error selection method, 134
width-to-thickness ratio, 122–123
Concrete bearing stress, 253–254
Concrete curing, composite construction and,
604–606
Connections, 75–76, 89, 165–170, 376–475,
476–591, 593–594, 610–613, 625–626
anchors, 593–594, 610–613, 625–626
axially loaded members, 505–511
bearing strength, 382–388
bearing-type, 396–402
behavior of, 379–380
bolted, 380–382, 388–428, 478–496
built-up members, 75–76
column reinforcement, 536–558
combined shear and tension in, 428–440,
491–496, 511–518
design examples, 402–416
eccentric, 476–591
edge–distance requirements, 385–388
elastic analysis, 479–483, 496–502
end-plate, 558–572
failure modes, 380–382
fasteners, 385–388, 428–440
fillet welds, 442–452
flanges, 519–524, 536–558, 568–569
framed beams, 477–478, 511–513
fully restrained (FR), 523–536, 558–559
groove welds, 442–443
high-strength bolts, 388–396, 416–428
moment-resisting, 519–536
partially restrained (PR), 520–523
plate girders, 593–594, 610–613, 625–626
plates, requirements for, 170
prying force, 420–428
rigid, 523–526, 558–559, 572
rivets, 377–378
rolled shapes, requirements for, 165–170
semirigid, 520
shear, 89, 380–382, 428–440, 478–518,
541–542
shear strength, 388–393
shielded metal arc welds (SMAW), 441–442
simple, 379–380
slip-critical, 396–402, 431–432, 496
spacing requirements, 385–388
studs, 593–594, 610–613, 625–626
tensile loads on, 416–440
ultimate strength analysis, 483–491,
502–505
welded, 378–380, 441–461, 496–518, 548–549
welding, 378, 441–461
Continuous beams, 644–645
Continuous casting, 13
Coped beams, 222–223
Creep, 620–621
Critical buckling load, 110–113
Cross-sectional shapes, 12–16, 41–42, 121–125,
198–199, 267–270, 665–666, 720
American standard (S-shape), 14
American standard channel (C-shape), 14
bars, 14–15, 41–42
beam classification of, 198–199
biaxial bending and, 267–270
built-up, 15–16
cold-formed, 16
compression members (columns), 121–125
double-angle, 16
gross area, 42
hollow (HSS), 15
hot-rolled, 12–16
I-beam, 14
local buckling and, 121–125
net area (section), 42
plate girders, 665–666
plates, 15, 41–42
shape factor, 718–720
shear center, loads and, 267–270
stiffened and unstiffened elements, 122–125
structural tee (split-tee), 14
tension members, 41–42
wide-flange (W-shape), 13
width-to-thickness ratio, 122–123, 198–199
Cumulative distribution function, 33
D
Dead loads, 6, 225
Decks, 594–595, 624–636
anchors, 625–626
composite construction, 594–595, 624–636
design of, 625–626
formed steel, 594–595, 624–636
partial composite action, 626–627
shear strength and, 625–626
slab weight, 627
structural use of, 594–595
Deflection, 111–113, 196–198, 224–226, 244,
620–624
beams, 196–198, 224–226, 244
cambering, 225
columns, 111–113
composite beams, 620–624
creep, 620–621
framing systems, 244
load–deflection curves, 197–198
ponding, 225–226
serviceable structure limits, 224–226
service loads for, 225744 Index
Deformation, 42–50, 305–306
excessive, 42–43
fracture, 42, 44
member moments, 305–306
stress concentrations at holes, 46–50
tensile strength and, 42–50
Deformed reinforcing bars, 646
Design charts, 230–233
Design specifications, 7–8
Design strength (moment), 24, 189–190
Design thickness, 126
Diagonal bracing, 351
Diagonal stiffeners, 550–555, 556–558
Direct analysis method, beam–columns, 306
Direct tension indicators, bolt installation, 395
Double shear, 381
Double-angle shapes, 16, 54, 279–280
bending strength of, 279–280
effective area of, 54
structural design and, 16
Doubler plates, 539, 542, 549–550, 555
Drift index, 354
Ductile steel, 9–10
elongation, measurement of, 10
stress–strain diagram for, 9
E
Earthquake loads, 6
Eccentric connections, 476–591
axially loaded members, 505–511
bolt connections, 478–496
column reinforcement, 536–558
combined shear and tension in, 491–496,
511–518
doubler plates, 539, 542, 549–550, 555
elastic analysis, 479–483, 496–502
end-plate, 558–572
moment-resisting, 519–536
shear, 478–518, 541–542
ultimate strength analysis, 483–491, 502–505
welded connections, 496–518, 548–549,
554–555
Eccentricity, defined, 477
Edge–distance requirements, fasteners,
385–388
Effective area, 50–57
defined, 51
joint efficiency, 50
round hollow shapes (HSS), 53–54
shear lag, 50–51
single and double angles, 54–55
tension members, 51–57
Effective flange width, 606–609
Effective length, 116–117, 138–155, 306
axis buckling direction and, 138–146
beam–column analysis, 306
braced frames, 149–153
column theory and, 116–117
compression members (columns), 116–117,
138–155
defined, 117
factor, 117
major axis buckling, 139
minor axis buckling, 139
pinned-end condition and, 116, 138–139
rotational stiffness and, 146–149, 151
sidesway and, 149–155
unbraced frames, 146–149
Effective net area, 43
Elastic analysis, 479–483, 496–502
bolt connections, 479–483
welded connections, 496–502
Elastic buckling stress, 156–159
Elastic design, 21–22
Elastic range, 10
Elastic stresses, composite beams, 595–600
Elongation, measurement of, 10
Encased composite columns, 645–650
End-plate connections, 558–572
ASD equations for, 564–566
beam-to-column, 558–559, 561–570
beam-to-plate welds, 568–570
column requirements for, 570–572
design procedure, 561–570
eccentric, 558–572
extended (rigid), 558–559
flanges, 568–569, 570–572
guidelines for, 560–561
LRFD equations for, 561–564
Steel Construction Manual, 559–561
thick plate theory, 560
thin plate approach, 560
webs, 569–570
yield-line theory, 559, 570–572
End returns, 454
Engineering strain, 9
Engineering stress, 9
Equilibrium method of analysis, 722–724
Euler (buckling) load, 110–113
Excessive deformation, 42–43
Extended (rigid) end-plate connections, 558–559
Eyebars, 88
F
Failure, see Block shear; Deformation; Strength;
Yielding
Failure modes, bolted connections, 380–382
Fasteners, 57–64, 67–76, 385–388
bolt connections, 57–64, 67–76
edge–distance requirements, 385–388
slenderness and, 67–68
spacing requirements, 385–388
staggered, 57–64
stitching (stitch bolts), 75–76
tension member connections, 57–64, 67–76
Filled composite columns, 650–653Index 745
Filler beams, 239
Filler factor, 396–397
Filler metal, 441
Fillet welds, 442–461
ASD for, 447
design of, 443–447
end returns, 454
length requirements, 453–454
LRFD for, 446–447
size requirements, 453
strength of, 444–446
symbols for, 456–457
First-order analysis methods, 306
Fixed-end moment (FEM), 521–522
Flange local buckling (FLB), 197
Flanges, 13–14, 198–199, 519–524, 536–558,
568–569, 672–675
beam-to-plate welds, 568–569
bending of (local), 537
column stiffeners, 536–558
compression flange strength, 672–673
cross-sectional shapes and, 13–14
eccentric connections, 519–524, 536–558
end-plate connections, 568–569
flexural strength, 672–675
moment-resisting connections, 519–524
plate girders and, 672–675
stiffener-to-column welds, 548–549, 555
tension flange yielding, 672
width-to-thickness ratio, 198–199
Flexural buckling, 121–130, 138–146, 155, 162
Flexural strength, 188–189, 205–211, 600–603,
672–675
bending strength and, 205–211
composite beams, 600–603
compression flange strength, 672–673
lateral-torsional buckling (LTB), 674–675
moment equations for, 188–189
plastic stress distribution, 600
plate girders, 672–675
tension flange yielding, 672
Whitney equivalent stress distribution, 600–602
Flexural–torsional buckling, 155–159, 162
Floor systems, 239–244, 248–251, 606–620,
624–636
ASD procedure for, 615
bay region, 239
composite construction, 606–620, 624–636
deflection of, 244
design of, 613–620
effective flange width, 606–609
filler beams, 239
formed steel decks, 624–636
framing system, 239–244
girders, 239
load path, 239
LRFD procedure for, 614–615
open-web steel joists, 248–251
slab weight, 241
studs (anchors), 610–613
tributary areas, 239–241
Force, connection prying action, 420–428
Formed steel decks, see Decks
Fracture, 42, 44
Framed beam connections, 477–478, 511–513
eccentric, 477–478
welded, 511–513
Frame systems, 4–5, 146–155, 239–244,
310–338, 350–358
beam–columns, 310–338, 350–358
bay region, 239
braced, 149–153, 310–327, 350–354
bracing design, 350–354
compression members, 146–155
deflection of, 244
effective length of, 146–155
filler beams, 239
floor systems, 239–244
girders, 239
Jackson–Mooreland Alignment charts, 147–148
load path, 239
nodal bracing, 150, 351
relative bracing, 150, 351–354
roof systems, 239–244
rotational stiffness and, 146–149, 151
sidesway and, 146–155, 299–300, 327–329
stability bracing, 150, 350
stiffness reduction factor, 151–153
structural design and, 4–5
tributary areas, 239–241
unbraced, 146–149, 153–155, 310–311,
327–338, 354–358
Frequency distribution, 30–32
Fully restrained (FR) connections, 523–536,
558–559
Fully tensioned bolts, 394
G
Gage distance, 71
Girders, defined, 239. See also Plate girders
Grades (designation) of structural steel, 11–12
Groove welds, 442–443
Gross area, 42
Guide to Design Criteria for Bolted and Riveted
Joints, 420
Guide to Stability Design Criteria, 150
Gusset plates, 41–42, 65–66
H
High-alloy steel, 11
High-strength bolts, 388–396, 416–428
calibrated wrench tightening, 395
direct tension indicators, 395
fully tensioned, 394
installation of, 394–396
shear strength of, 388–393746 Index
High-strength bolts (continued)
tensile load applied to, 416–428
turn-of-the-nut method for, 395
twist-off, 394
Histogram, 30
Holes, 46–50, 245–248
beams, placement of in, 245–248
stress concentrations at, 46–50
Hollow cross-sectional shapes (HSS), 15, 52–53,
276–278
bending strength, 276–278
effective area of, 52–53
structural design and, 15
Hooke’s law, 9
Hot-rolled shapes, 12–16, 115
I
I-beam, 14
Interaction formulas, beam–columns, 300–304
Intermediate stiffeners, 668, 678–680
International Building Code, 7
J
Jackson–Mooreland alignment charts, 147–148
Joint efficiency, 50
Joints, top-chord loads between, 358–363
Joists, open-web steel, 248–251
L
Lateral–torsional buckling (LTB), 196–198, 667,
674–675
Limit states, 22–23, 42–44, 89, 122–123,
539–541
column reinforcement, 539–541
bearing, 89
defined, 22
design, 22–23
excessive deformation, 42–43
fracture, 42, 44
pin connections, 89
shear, 89
tensile strength and, 42–44
tension, 89
width-to-thickness ratio, 122–123
Live loads, 6, 225
Load and resistance factor design (LRFD), 22,
23, 24–26, 43, 189–190, 218, 302, 446–447,
540, 561–564, 614–615
AISC specifications and, 23
beam–column interaction equations, 302
beams, 189–190, 218, 540
column stiffeners, 540
design strength, 24
end-plate connections, 561–564
fillet welds, 446–447
floor system design, 614–615
load combinations for, 24–26
load factor, 22, 24–26
moment equations for, 189–190
resistance factor, 22, 24–26
shear strength, equations for, 218
tensile strength, equations for, 43
Load combinations, 24–29, 428–440, 491–496,
511–518
ASD equations for, 26–29
bolted connections, 428–440
eccentric connections, 491–496, 511–518
fasteners, 428–440
LRFD equations for, 24–26
shear and tension, 428–440, 491–496, 511–518
structural design and, 24–29
welded connections, 511–518
Load–deflection curves, 197–198
Load factor, 22, 24–26, 30–34
defined, 22
load combinations and, 24–26
LRFD use of, 22, 24–26
probabilistic factors of, 30–34
Load path, 239
Loads, 4–6, 110–113, 224–226, 306, 358–363,
420–428, 477
axial compression, 5
beam deflection and, 224–226
bending, 5
connections, 420–428
critical buckling, 110–113
dead, 6, 225
eccentricity, 477
live, 6, 225
notional, 306
prying force, 420–428
service, 225
structural design and, 4–6
tensile, 420–428
top-chord, 358–363
vertical compression, 5
Local stability, see Stability
Low-alloy steel, 11
Lower-bound (static) theorem, 721–723
LRFD, see Load and resistance factor design
(LRFD)
M
Major axis buckling, 139
Manual for Railway Engineering, 8
Manual of Steel Construction, 23
Mean, defined, 30
Mechanism method of analysis, 724–725
Median, defined, 30
Member deformation moments, 305–306
Member translation moments, 305–306
Members, see Compression members; Tension
members
Mild steel, 9. See also Ductile steel
Minimum Design Loads for Buildings and Other
Structures, 7Index 747
Minor axis buckling, 139
Mode, defined, 30
Modulus of elasticity, 10
Moment amplification, 307–311, 327–329
amplification factor, 307, 327
beam–columns, 307–311
braced frames, 310–311
frame design, computations for, 310–311
sidesway and, 327
unbraced frames, 310–311, 327–329
Moment frames, see Unbraced frames
Moment-resisting connections, 519–536
beam (load) line, 520–522
fixed-end moment (FEM), 521–522
flanges, 519–524
fully restrained (FR), 523–536
moment-rotation curve, 520–522
partially restrained (PR), 520–523
shims, 524
Moment-rotation curve, 520–522
Moment strength, beams, 215–216
Moment–strength design charts, 230–233
Moments, 111, 189–216, 276–280, 299,
305–310, 312–315
beam equations, 189–216
beam–column analysis and, 299, 305–310,
312–315
bending strength and, 199–216, 276–280
bending, 111, 189–193
braced frame bending distribution, Cm,
312–315
design (strength), 190
gradient, 208
member deformation, 305–306
member translation, 305–306
plastic, 193–198
required strength and, 305–307
stability and, 111, 196–198
N
Net area (section), 42
Nodal bracing, 150, 351
Nominal strength, 43
Noncompact shapes, bending strength of,
211–216
Nonslender classification of columns, 122
Notional loads, 306
O
Offset method (0.2%), 11
Open-web steel joists, 248–251
P
Panel zone (web) shear, 539, 541–542
Parallel-axis theorem, 163
Partial composite action, 626–627
Partially composite beams, 594
Partially restrained (PR) connections, 520–523
Pin connections, 88–89, 110–111, 116, 138–139
compression members (columns), 110–111,
116, 138–139
effective length and, 116, 138–139
eyebars, 88
limit states, 89
tension members, 88–89
Pipes, cross-sectional shapes, 15
Plain carbon steel, 11
Plastic analysis, 193, 718–725
AISC requirements for, 720–721
lower-bound (static) theorem, 721–723
uniqueness theorem, 721
upper-bound (kinematic) theorem, 721,
724–725
Plastic design, 22, 718–721, 726–729
Plastic hinge, 193
Plastic moment, 193–198, 718–719
Plastic neutral axis (PNA), 601–602
Plastic range, 9
Plastic stress distribution, 600
Plate girders, 15, 378, 665–717
AISC requirements for, 670–672
bearing stiffeners, 668–669, 680–695
buckling, 667–668, 674–675
compression flange strength, 672–673
cross sections, 665–666
design of, 695–712
flexural strength, 672–675
intermediate stiffeners, 668, 678–680
lateral-torsional buckling (LTB), 667,
674–675
riveted connections, 666
shear flow, 669–670
shear strength, 675–680
stiffeners for, 667–669, 678–695
structural design using, 667–670
tension flange yielding, 672
tension-field action, 667–668
welding connections, 378, 666,
669–670
Plates, 15, 53–54, 170, 251–265. See also
End-plate connections
beam support and, 251–265
bearing, 251–259
column base, 251–253, 260–265
connection requirements, 170
concrete bearing stress, 253–254
defined, 15
effective area, 53–54
thickness of, 254–259
web crippling, 253
web yielding, 252–253
Ponding, 225–226
Precision and design calculations, 36–37
prepared edges, 442
Pretensioned bolts, 416–420
Principle of moments, 163748 Index
Probability density function, 31–32
Probability theory, 30–34
coefficient of variation, 31
cumulative distribution function, 33
frequency distribution, 30–32
histogram, 30
load factor, basis of, 30–34
mean, 30
median, 30
mode, 30
probability density function, 31–32
relative frequency distribution, 30
resistance factor, basis of, 30–34
safety (reliability) index, 33–34
standard deviation, 31
variance, 31
Purlins, 79–80, 272–276
biaxial bending and, 272–276
design of, 272–276
truss connections, 79–80
R
Reduction factor, 124–125
Relative bracing, 150, 351–354
Relative frequency distribution, 30
Reliability (safety) index, 33–34
Required strength, 26, 305–307
Resistance factor, 22, 24–26, 30–34
defined, 22
load combinations and, 24–26
LRFD use of, 22, 24–26
probabilistic factors of, 30–34
Rigid connections, 523–526, 558–559, 572
Riveted connections, 377–378, 666
Rolled shapes, 115, 132–138, 165–170
compression members, 132–138, 165–170
connection requirements, 165–170
buckling and, 165–170
selection of for structural design, 132–138
stub columns, 115
trial-and-error selection method, 134
Roofs, 79–88, 239–244, 248–251, 272–276,
358–363
beam–columns, 358–363
biaxial bending and, 272–276
chord members, 83–84
framing system, 239–244
load path, 239
open-web steel joists, 248–251
purlins, 79–80, 272–276
sag rods, 79–81, 272
tension members in, 79–88
top-chord loads, 358–363
tributary areas, 239–241
trusses, 79–88
working lines, 84
working point, 84
Rotational stiffness, 146–149, 151
S
Safety factors, 26–29
Safety (reliability) index, 33–34
Sag rods, 79–81, 272
Seated beam connections, 511–513
Second-order analysis methods, 306
Semirigid connections, 520
Service loads for beam deflection, 225
Serviceable structure, defined, 224
Shape factor, 718–720
Shear, 89, 380–382, 428–440, 478–518, 539,
541–542, 669–670. See also Momentresisting connections
bolted connections, 380–382, 478–496
double, 381
column reinforcement, 539, 541–542
eccentric connections, 478–518, 539, 541–542
fasteners, 428–440
flow, 669–670
panel zone (web), 539, 541–542
pin-connected members, 89
plate girders, 669–670
single, 381
tension combined with, 428–440, 491–496,
511–518
welded connections, 496–518, 669–670
Shear center, 267–270
beam cross sections, 267–270
biaxial loads applied through, 267–270
biaxial loads not applied through, 270–271
weak-axis bending strength, 268–270
Shear lag, 50–51
Shear strength, 216–224, 388–393, 625–626,
675–680
allowable (working) stress design for,
219–220
anchors (studs) in formed decks, 625–626
ASD equations for, 218
beams, 216–224
block shear and, 222–224
connections, 388–393
high-strength bolt connections, 388–393
intermediate stiffeners, 678–680
LRFD equations for, 218
plate girders, 675–680
Shielded metal arc welding (SMAW), 441–442
Shims, 524
Shored composite construction, unshored versus,
604–606
Sidesway, 146–155, 299–300, 327–329
amplification factor for, 327
artificial joint restraint (AJR), 329
braced frames, 149–153
compression members, 146–155
effective length and, 146–155
nodal bracing, 150
relative bracing, 150
stability bracing, 150Index 749
unbraced frames, 146–149, 327–329
x-bracing for, 299–310
Simple connections, 379–380
Single shear, 381
Slab weight, 241, 627
Slag, 441
Slender classification of columns, 122
Slenderness ratio, 67–68
Slip-critical connections, 396–402, 431–432, 496
Snow loads, 6
Snug position, defined, 395–396
Solid circular bars, bending strength of, 280
Spacing of fasteners, 385–388
Specifications for Structural Joints Using HighStrength Bolts, 388
Stability, 121–130, 146–155, 196–198
beams, 196–198
braced frames, 149–153
bracing, 150
buckling and, 121–130, 196–198
compression members (columns), 121–130,
148–153
cross-sectional shapes, 122–125
design thickness, 126
effective length and, 146–155
frames, 146–155
Guide to Stability Design Criteria, 150
load–deflection curves, 197–198
local (buckling), 121–130
nodal bracing, 150
plastic moment and, 196–198
reduction factor, 124–125
relative bracing, 150
sidesway and, 149–155
stiffened and unstiffened elements, 122–125
stiffness reduction factor, 151–152
unbraced frames, 146–149
width-to-thickness ratio, 122–123
Staggered fasteners, 57–64. See also Fasteners
Standard Building Code, 7
Standard deviation, 31
Steel, 8–16
American Society for Testing and Materials
(ASTM), 11–12
cross-sectional shapes of, 12–16
cold-formed shapes, 116
ductile, 9–10
elastic range, 10
engineering strain, 9
engineering stress, 9
grades (designation) of, 11–12
high-alloy, 11
Hooke’s law, 9
hot-rolled shapes, 12–16
low-alloy, 11
mild, 9
modulus of elasticity, 10
offset method (0.2%), 11
plain carbon, 11
plastic range, 9
stress–strain diagrams, 8–11
structural, 8–12
tensile test for, 8–10
ultimate tensile strength, 10
yield plateau, 9
yield point, 10
yield strength, 11–12
yield stress, 11
Young’s modulus, 10
Steel Construction Manual, 23, 25, 34–36,
559–561
Stiffened cross-sectional elements, 122–125, 198
Stiffeners, 536–558, 667–669, 678–695
AISC specification requirements for,
537–541
bearing, 668–669, 680–695
column reinforcement, 536–558
diagonal, 550–555, 556–558
eccentric connections (flanges), 536–558
intermediate, 668, 678–680
plate girders, 667–669, 678–695
shear strength and, 678–695
strength of, 539–540
tension-field action, 667–668
welds to columns, 548–549, 554–555
Stiffener-to-column welds, 548–549
flanges, 548–549, 555
webs, 554–555
Stiffness reduction factor, 151–153
Stitching (stitch bolts), 75–76
Strain, 8–9
Strain hardening, 9
Strands, flexible cables, 78–79
Strength, 10–12, 21–29, 42–50, 188–189,
199–224, 230–233, 276–280, 305–307,
539–541, 645–653, 667–669, 672–695
allowable (working) stress design, 21–22, 189,
219–220
allowable strength design (ASD), 21, 23,
26–29, 189, 218, 540–541
beam–columns, analysis for, 305–307
beams, 188–189, 199–224, 230–233,
276–280
bearing stiffeners, 668–669, 680–695
bending, 199–216, 276–280
columns, 539–541, 645–653
compact beam shapes, 199–211
composite columns, 645–653
flexural, 188–189, 205–211, 672–675
compression flange, 672–673
intermediate stiffeners, 668, 678–680
load and resistance factor design
(LRFD), 22, 23, 24–26, 188–189,
218, 540
moment equations and, 188–189, 193–216,
276–280750 Index
Strength (continued)
moment–strength design charts, 230–233
nominal, 43
noncompact beam shapes, 211–216
offset method (0.2%), 11
plate girders, 667–669, 672–695
required, 26, 305–307
safety factor for, 26–29
shear, 216–224, 675–680
stiffeners for reinforcement, 539–541,
667–669, 678–695
stress–strain curve for, 10–11
structural design and, 21–29
tensile, 42–50
tension flange yielding, 672
ultimate tensile, 10
various beam shapes, 276–280
yield, 11–12
Strength design, 23
Stress, 8–11, 41, 44–50, 77, 190–196,
595–603
allowable, 44–46
applied, 44–46
area, 77
beams, 190–196, 595–603
bearing, 381–382
bending, 190–196
composite beams, 595–603
concentrations at holes, 46–50
elastic, 595–600
elastic limit, 9–10
engineering, 9
flexural strength and, 600–603
plastic stress distribution, 600
structural steel, 8–11
tension members, 41, 44–50, 77
Whitney equivalent stress distribution,
600–602
yield, 11
Stress–strain diagrams, 8–11
Structural design, 2–19, 20–39
allowable strength design (ASD), 21, 23,
26–29
allowable (working) stress design, 21–22
American Institute of Steel Construction
(AISC), 23–24
beam–columns, 5
beams, 5
building codes, 7
collapse mechanism, 22
columns, 5
computations, 36–37
concepts in, 20–39
cross-sectional shapes, 12–16
design strength, 24
frames, 4–5
importance of, 3–5
introduction to, 2–19
limit state, 22
limit states design, 23
load and resistance factor design (LRFD), 22,
23, 24–26
load combinations, 24–26
load factor, 22, 24–26
loads, 4–6
plastic design, 22
precision, 36–37
probability theory, 30–34
requirements, 35
resistance factor, 24–26
safety factor, 26–29
specifications, 7–8, 23–24, 34–36
Steel Construction Manual, 23, 25, 34–36
steel, 8–12
strength design, 23
trusses, 4
Structural Journal of the American Society of
Civil Engineers, 23
Structural steel, see Steel
Structural tee (split-tee) shape, 14
Structural Welding Code, 444, 453
Struts, 109
Stub column, 115
Studs, 593–594, 610–613, 625–626
composite construction, 593–594, 610–613,
625–626
partially composite beams and, 594
plate girder connections, 593–594, 610–613,
625–626
shear strength of, 625–626
steel headed anchors, 593–594, 610–613
Submerged arc welding (SAW), 441–442
T
Tangent modulus theory, 114–115
Tee shapes, 14, 278–279
Tensile loads, see Tension
Tensile strength, 42–50
effective net area, 43
ASD equations for, 43–44
LRFD equations for, 43
nominal strength, 43
stress concentrations at holes, 46–50
yielding and, 42–46
Tensile test, 8–10
Tension, 89, 381, 416–440, 491–496,
511–518
bolt connections, 416–428, 491–496
connection failure from, 381
eccentric connections, 491–496,
511–518
fasteners, 428–440
pin-connected members, 89
prying force, 420–428Index 751
shear combined with, 428–440, 491–496,
511–518
welded connections, 511–518
Tension-field action, 667–668
Tension flange yielding, 672
Tension members, 40–107
block shear, 64–67
bolt connections, 57–64, 67–76
cables, 76–79
cross-sectional area of, 41–42
design of, 67–76
effective area, 50–57
gusset plates for, 41–42, 65–66
pin-connected, 88–89
roof trusses, 79–88
slenderness, 67–68
staggered fasteners, 57–64
stitching (stitch bolts), 75–76
stress in, 41, 44–50, 77
tables for design of, 73–75
tensile strength, 42–50
threaded rods, 76–79
Theory of Elastic Stability, 156, 203
Threaded rods, 76–79
Torsional buckling, 155–159
Transformed area, 596
Transformed section, 595–596
Translation, member moments, 305–306
Tributary areas, 239–241
Trusses, 4, 79–88, 248–251, 300, 358–363
beam–columns, 300, 358–363
open-web steel joists, 248–251
roof design, 79–88
structural design and, 4
tension members, 79–88
top-chord loads, 358–363
Turn-of-the-nut method, bolt installation, 395
Twist-off bolts, 394
U
Ultimate strength analysis, 483–491, 502–505
bolt connections, 483–491
welded connections, 502–505
Ultimate tensile strength, 10
Unbraced frames, 146–149, 153–155, 310–311,
327–338, 354–358
artificial joint restraint (AJR), 329
beam–column members, 310–311, 327–338,
354–358
buckling analysis, 327–328
compression members, 146–149, 153–155
design of, 327–338, 354–358
drift index, 354
effective length, 146–149, 153–155
moment amplification, 310–311, 327–329
rotational stiffness, 146–149
sidesway of, 146–149, 327–329
Uniform Building Code, 7
Uniqueness theorem, 721
Unshored composite construction, shored
versus, 604–606
Unstiffened cross-sectional elements,
122–125, 198
Upper-bound (kinematic) theorem, 721,
724–725
V
Variance, 31
Vertical compression, 5
W
Weak-axis bending strength, 268–270
Web local buckling (WLB), 197
Webs, 13–14, 198–199, 252–253, 536–558,
569–570
AISC specification requirements for,
537–541
beam-to-plate welds, 569–570
column reinforcement, 536–558
compression buckling of, 537–539
compressive force and, 252–253
crippling, 253, 538
cross-sectional shapes and, 13–14
doubler plates, 539, 542, 549–550, 555
eccentric connections, 536–558
end-plate connections, 569–570
panel zone, 539, 541–542
shear in, 539, 541–542
stiffener-to-column welds, 548–549, 554–555
width-to-thickness ratio, 198–199
yielding, 252–253, 537–538
Welded connections, 378–380, 441–461,
496–518, 548–549, 554–555, 538–570,
666, 669–670. See also Welding
axially loaded members, 505–511
balancing the welds, 506–511
beam-to-plate welds, 568–570
combined shear and tension, 511–518
eccentric, 496–518
elastic analysis, 496–502
end-plate connections, 568–570
flanges, 548–549, 555, 568–569
framed beams, 511–513
plate girders, 378, 666, 669–670
welding connections, 378, 666, 669–670
processes for, 441–461
seated beams, 511–513
shear and, 496–511
shear flow, 669–670
simple connections, 379–380
stiffener-to-column, 548–549, 554–555
ultimate strength analysis, 502–505
use of, 378–380
webs, 554–555, 569–570752 Index
Welding, 378, 441–461. See also Fillet welds
American Welding Society (ASW), 444, 453
base metal, 441
end returns, 454
filler metal, 441
fillet, 442–452
groove, 442–443
length requirements, 453–454
prepared edges, 442
shielded metal arc (SMAW), 441–442
size requirements, 453
slag, 441
Structural Welding Code, 444, 453
submerged arc (SAW), 441–442
symbols, 456–457
Whitney equivalent stress distribution, 600–602
Wide-flange shape (W-shape), 13
Width-to-thickness ratio, 122–123, 198–199
beams, 198–199
compression members (columns), 122–123
Wind loads, 6
Wire rope, 78–79
Working lines, roof truss members, 84
Working point, roof truss joints, 84
Working stress design, 21–22
X
x-bracing, 299–300, 351
Y
Yield-line theory, 559, 570–572
Yield plateau, 9
Yield point, 10
Yield strength, 11–12
Yield stress, 11
Yielding, 42–46, 192–193, 672
deformation from, 42–46
bending moment and, 192–193
tension flange in plate girders, 672
Young’s modulus, 10


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Steel Design
رابط مباشر لتنزيل كتاب Steel Design
الرجوع الى أعلى الصفحة اذهب الى الأسفل

كاتب الموضوعرسالة
rambomenaa
كبير مهندسين
كبير مهندسين


عدد المساهمات : 2041
تاريخ التسجيل : 21/01/2012

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالخميس 08 أغسطس 2013, 2:27 pm

أخوانى فى الله
أحضرت لكم كتاب
Steel Design - Fifth Edition
William T. Segui
The University of Memphis  

كتاب Steel Design  - صفحة 2 S_d_m_10
و المحتوى كما يلي :

About the Author v
Preface xi
1 Introduction 3
1.1 Structural Design 3
1.2 Loads 6
1.3 Building Codes 7
1.4 Design Specifications 7
1.5 Structural Steel 8
1.6 Standard Cross-Sectional Shapes 12
Problems 17
2 Concepts in Structural
Steel Design 21
2.1 Design Philosophies 21
2.2 American Institute of Steel Construction
Specification 23
2.3 Load Factors, Resistance Factors, and Load
Combinations for LRFD 24
2.4 Safety Factors and Load Combinations
for ASD 26
2.5 Probabilistic Basis of Load and Resistance
Factors 30
2.6 Steel Construction Manual 34
2.7 Design Computations and Precision 36
Problems 38
3 Tension Members 41
3.1 Introduction 41
3.2 Tensile Strength 42
3.3 Effective Area 50
3.4 Staggered Fasteners 57
3.5 Block Shear 64
3.6 Design of Tension Members 67
3.7 Threaded Rods and Cables 76
3.8 Tension Members in Roof Trusses 79
3.9 Pin-Connected Members 88
Problems 90
4 Compression Members 109
4.1 Introduction 109
4.2 Column Theory 110
4.3 AISC Requirements 117
4.4 Local Stability 121
4.5 Tables for Compression
Members 130
4.6 Design 132
4.7 More on Effective Length 138
4.8 Torsional and Flexural-Torsional
Buckling 155
4.9 Built-Up Members 162
Problems 171
Contentsviii Contents
5 Beams 189
5.1 Introduction 189
5.2 Bending Stress and the Plastic
Moment 190
5.3 Stability 196
5.4 Classification of Shapes 198
5.5 Bending Strength of Compact Shapes 199
5.6 Bending Strength of Noncompact
Shapes 211
5.7 Summary of Moment Strength 215
5.8 Shear Strength 216
5.9 Deflection 224
5.10 Design 226
5.11 Floor and Roof Framing Systems 239
5.12 Holes in Beams 245
5.13 Open-Web Steel Joists 248
5.14 Beam Bearing Plates and Column
Base Plates 251
5.15 Biaxial Bending 265
5.16 Bending Strength of Various
Shapes 276
Problems 281
6 Beam–Columns 299
6.1 Definition 299
6.2 Interaction Formulas 300
6.3 Methods of Analysis for Required
Strength 305
6.4 The Moment Amplification Method 307
6.5 Braced versus Unbraced Frames 310
6.6 Members in Braced Frames 311
6.7 Members in Unbraced Frames 327
6.8 Design of Beam–Columns 339
6.9 Trusses with Top-Chord Loads Between
Joints 358
Problems 363
7 Simple Connections 377
7.1 Introduction 377
7.2 Bolted Shear Connections: Failure
Modes 380
7.3 Bearing Strength, Spacing, and Edge-Distance
Requirements 382
7.4 Shear Strength 388
7.5 Installation of High-Strength Bolts 394
7.6 Slip-Critical and Bearing-Type
Connections 396
7.7 Design Examples 402
7.8 High-Strength Bolts in Tension 416
7.9 Combined Shear and Tension in Fasteners 428
7.10 Welded Connections 441
7.11 Fillet Welds 443
Problems 461
8 Eccentric Connections 477
8.1 Examples of Eccentric Connections 477
8.2 Eccentric Bolted Connections: Shear Only 478
8.3 Eccentric Bolted Connections: Shear Plus
Tension 491
8.4 Eccentric Welded Connections: Shear
Only 496
8.5 Eccentric Welded Connections: Shear Plus
Tension 511
8.6 Moment-Resisting Connections 519
8.7 Column Stiffeners and Other
Reinforcement 536
8.8 End Plate Connections 558
8.9 Concluding Remarks 572
Problems 572
9 Composite Construction 593
9.1 Introduction 593
9.2 Shored versus Unshored Construction 604
9.3 Effective Flange Width 606
9.4 Steel Headed Stud Anchors 610
9.5 Design 613
9.6 Deflections 620
9.7 Composite Beams with Formed Steel Deck 624
9.8 Tables for Composite Beam Analysis and
Design 636
9.9 Continuous Beams 644
9.10 Composite Columns 645
Problems 65510 Plate Girders 665
10.1 Introduction 665
10.2 General Considerations 667
10.3 AISC Requirements for Proportions of Plate
Girders 670
10.4 Flexural Strength 672
10.5 Shear Strength 675
10.6 Bearing Stiffeners 680
10.7 Design 695
Problems 713
Appendix Plastic Analysis
and Design 718
A.1 Introduction 718
A.2 AISC Requirements 720
A.3 Analysis 721
A.4 Design 726
A.5 Concluding Remarks 729
References 730
Answers to Selected Problems 735
Index 739
Contents ix
A
Allowable strength design (ASD), 21, 23, 26–29,
43–44, 190, 218, 302, 447, 540–541,
564–566, 615
AISC specifications and, 23
beam–column interaction equations, 302
beams, 190, 218, 540–541
column stiffeners, 540–541
eccentric connections, 540–541, 564–566
end-plate connections, 564–566
fillet welds, 447
floor system design, 615
load combinations for, 26–29
moment equations for, 190
required strength, 21, 26
safety factor for, 26–29
shear strength, equations for, 218
tensile strength, equations for, 43–44
Allowable stress design, 21–22, 27, 44–46, 190,
219–220
allowable stress, 21–22
beams, 190, 219–220
load combinations and, 27
moment equations for, 190
shear strength, equations for, 219–220
tensile strength, equations for, 44–46
American Association of State Highway and
Transportation Officials (ASSHTO), 8
American Institute of Steel Construction (AISC),
8, 23–25, 34–36, 109–110, 117–121,
156–162, 537–541, 649–650, 670–672,
720–721
buckling analysis specifications, 156–162
column reinforcement specification
requirements, 537–541
composite column limitations and detailing
requirements, 649–650
compression member specifications, 109–110,
117–121
Manual of Steel Construction, 23
Index
plastic analysis and design, 720–721
plate girder requirements, 670–672
structural design specifications, 8, 23–24
Steel Construction Manual, 23, 25, 34–36
American Iron and Steel Institute (AISI), 8
American Railway Engineering and
Maintenance-of-Way Association
(AREMA), 8
American Society for Testing and Materials
(ASTM), 11–12
American Society of Civil Engineers
(ASCE), 7
American standard channel shape (C-shape), 14
American standard shape (S-shape), 14
American Welding Society (ASW), 444, 453
Anchors, 593–594, 610–613, 625–626
composite construction, 593–594, 610–613,
625–626
partially composite beams and, 594
plate girder connections, 593–594, 610–613,
625–626
shear strength of, 625–626
studs, 593–594, 610–613
Applied stress, 44–46
Artificial joint restraint (AJR), 329
ASD, see Allowable strength design (ASD)
Axial compression, 5
Axially loaded members, eccentric connections
and, 505–511
Axis buckling direction, 138–146
B
Balancing the welds, 506–511
Bars, 14–15, 280, 646
bending strength of, 280
deformed reinforcing, 646
solid circular, 280
structural design and, 14–15
Base metal, 441
Bay region, 239
739740 Index
Beam–columns, 5, 109, 298–375
bending coefficient, Cb, 344–345
braced frames, 310–327, 350–354
bracing design, 350–354
defined, 299–300
design of, 339–358
drift index, 354
frames, 310–338, 350–358
interaction formulas, 300–304
moment amplification, 307–311, 327–329
moments in, 299, 305–310
required strength, analysis for, 305–307
sidesway, 299–300, 327–329
structural design using, 5, 299–300
top-chord loads, 358–363
trusses, 300, 358–363
unbraced frames, 310–311, 327–338, 354–358
Beam (load) line, 520–522
Beams, 5, 188–297, 477–478, 511–524,
536–558, 568–569, 593–603, 613–645
allowable strength design (ASD) for, 190, 218,
540–541
allowable stress design for, 190
beam-to-plate welds, 568–570
bearing plates, 251–259
bending coefficient, Cb, 208–211
bending moment, 191–193
bending strength, 199–216, 276–280
bending stress, 190–196
biaxial bending, 265–276
block shear in connections, 222–224
buckling, 196–198
classification of shapes, 198–199
column base plates, 251–253, 260–265
compact shapes, 199–211
composite, 593–603, 613–644
continuous, 644–645
coped, 222–223
cross sections, 198–199, 267–270
deflection, 196–198, 224–226
design of, 226–239
double-angled shapes, 279–280
eccentric connections, 511–524, 536–558,
568–569
end-plate connections, 568–570
flanges, 198–199, 519–524, 536–558,
568–569
flexural strength, 188–189, 205–211
framed connections, 477–478, 511–513
frames, 239–244
holes, placement of, 245–248
hollow shapes (HSS), 276–278
load and resistance design (LRFD) for,
189–190, 218, 540
moment strength, 215–216
moment–strength design charts, 230–233
noncompact shapes, 211–216
open-web steel joists, 248–251
plastic moment, 193–198
plates for support of, 251–265
roof systems, 239–244, 272–276
seated connections, 511–513
shear strength, 216–224
solid circular bars, 280
stability, 196–198
tee shapes, 278–279
webs, 198–199, 252–253, 536–558, 569–570
width-to-thickness ratio, 198–199
yielding, 192–193
Bearing, pin-connected members, 89
Bearing plates, 251–259
concrete bearing stress, 253–254
thickness of, 254–259
web crippling, 253
web yielding, 252–253
Bearing stiffeners, 668–669, 680–695
Bearing strength, connections and, 382–388
Bearing stress, connection failure from, 381–382
Bearing-type connections, 396–402
Bending, 5, 111, 189–196, 265–276, 312–315,
381, 537
beam–columns, 312–315
beams, 189–196, 265–276
biaxial, 265–276
connection failure from, 381
critical buckling and, 111
flanges (local), 537
flexural strength, 189–190
moment distribution, Cm, 312–315
moment equations, 111, 189–193
plastic moment and, 193–194
stress, 190–196
Bending moment distribution, Cm, 312–315
Bending strength, 199–216, 276–280,
344–345
beams, 199–216, 276–280
beam–columns, 344–345
bending coefficient, Cb, 208–211, 344–345
biaxial bending and, 268–270
compact shapes, 199–211
double-angled shapes, 279–280
hollow shapes (HSS), 276–278
moment equations for, 199–216, 276–280
moment gradient and, 208
nominal flexural strength and, 205–211
noncompact shapes, 211–216
solid circular bars, 280
tee shapes, 278–279
weak-axis, 268–270
Biaxial bending, 265–276
beams, 265–276
roof purlins, design of, 272–276
shear center, loads applied through, 267–270
shear center, loads not applied through,
270–271
weak-axis bending strength, 268–270Index 741
Block shear, 64–67, 222–224
beams, 222–224
bolt connections and, 64–67
shear strength and, 222–224
tension members, 64–67
BOCA National Building Code, 7
Bolted connections, 57–76, 380–382, 388–440,
478–496
bearing-type, 396–402
block shear and, 64–67
combined shear and tension in, 428–440
design examples for, 402–416
eccentric, 478–496
elastic analysis, 479–483
failure modes, 380–382
fully tensioned, 394
gage distance, 71
high-strength, 388–396, 416–428
nominal body area, 388
pretensioned, 416–420
prying force, 420–428
shear in, 380–382, 478–491
shear strength of, 388–393
slenderness and, 67–68
slip-critical, 396–402, 431–432, 496
snug position, 395–396
staggered fasteners, 57–64
stitching (stitch bolts), 75–76
tensile loads applied to, 416–428
tension members, 57–76
ultimate strength analysis, 483–491
Braced frames, 149–153, 310–327, 350–354
beam–column members, 310–327, 350–354
bending moment distribution, Cm, 312–315
bracing, 321–324, 350–354
compressive members, 149–153
defined, 135
design of, 312–327, 350–354
effective length, 149–153
moment amplification, 310–311
nodal bracing, 150, 351
relative bracing, 150, 351–354
reverse-curvature bending, 312–313
rotational stiffness, 151
sidesway of, 150–153, 327–329
single-curvature bending, 311–312
stability bracing, 150, 350
stiffness reduction factor, 151–153, 313
Bracing, 150, 299–300, 321–324, 350–354
beam–columns, 321–324, 350–354
compression members, 150
design of, 650–654
diagonal, 351
nodal, 150, 351
relative, 150, 351–354
sidesway and, 150, 299–300
stability, 150, 350
x-bracing, 299–300, 351
Buckling, 110–117, 121–130, 138–146,
155–170, 196–198, 327–328, 537–539,
646–647, 650–651, 667–668, 674–675
AISC specifications for analysis of,
156–162
axis, 138–146
beams, 196–198
bending moment, 111
built-up members, 162–170
column reinforcement for, 537–539
column strength curve, 114–115
column theory, 109–117
composite columns, 646–647,
650–651
compression of column web, 537–539
critical buckling load, 110–113
deflection and, 111–113
effective length and, 116–117, 138–146
elastic stress, 156–159
Euler load, 110–113
flange local (FLB), 197
flexural strength and, 674–675
flexural, 121–130, 138–146, 155, 162
flexural–torsional, 155–159, 162
lateral–torsional (LTB), 196–198, 667,
674–675
load–deflection curves, 197–198
local (stability), 121–130
modes, 112
plate girders, 667–668, 674–675
sidesway analysis, 327–328
tangent modulus theory, 114–115
Theory of Elastic Stability, 156
torsional, 155–159
unbraced frames, 327–328
web local (WLB), 197
Building codes, 7
Building Officials and Code Administrators
(BOCA), 7
Built-up shapes, 15–16, 75–76, 162–170
buckling analysis of, 162–170
compression members (columns), 162–170
cross sections, 15–16
principle of moments, 163
parallel-axis theorem, 163
plates, 170
rolled shapes, 165–170
stitching (stitch bolt connections), 75–76
tension members, 75–76
C
Cables as tension members, 76–79
Calibrated wrench tightening, 395
Cambering, 225
Chord members, 83–84
Coefficient of variation, 31
Cold-formed shapes, 116
Collapse mechanism, 22742 Index
Column reinforcement, 536–572
AISC specification requirements, 537–541
ASD equations for, 540–541
beam-to-column connections, 558–559,
561–570
bending of flange, local, 537
compression buckling of web, 537–539
doubler plates, 539, 542, 549–550, 555
eccentric connections, 536–572
end-plate connections, 558–572
limit states for, 539–541
LRFD equations for, 540
panel zone (web) shear, 539, 541–542
stiffeners for flanges, 536–558
stiffener-to-column welds, 548–549, 554–555
web crippling, 538
web yielding, local, 537–538
yield-line theory, 570–572
Columns, 5, 108–187, 251–253, 260–265,
645–655
axis directions in, 138–146
base plates, 251–253, 260–265
buckling, 110–117, 121–130, 138–146,
155–170
built-up members, 162–170
column theory, 110–117
composite, 645–655
compression members, 109–117, 155–162
critical buckling load, 110–113
cross-sectional shapes, 121–125
deflection of, 111–113
effective length, 116–117, 138–155
Euler (buckling) load, 110–113
frames, 146–155
Guide to Stability Design Criteria, 150
Jackson–Mooreland Alignment charts,
147–148
local stability (buckling), 121–130
nonslender classification, 122
pinned-end condition, 110–111, 116, 138–139
sidesway and, 149–155
slender classification, 122
strength curve, 114–115
strength of, 539–541, 645–653
stub, 115
tangent modulus theory, 114–115
Compact shapes, bending strength of, 199–211
Composite beams, 593–603, 613–644
composite construction, 593–603
deck weight, 627
deflections, 620–624
elastic stresses, 595–600
flexural strength, 600–603
floor system design, 613–620, 624–636
formed steel decks, 594–595, 624–636
partial composite action, 626–627
plastic neutral axis (PNA), 601–602
shear strength of anchors, 625–626
slab weight, 636
tables for beam analysis and design, 636–644
transformed area, 596
transformed section, 595–596
Composite columns, 645–655
AISC limitations and detailing requirements,
649–650
buckling equations for, 646–647, 650–651
deformed reinforcing bars, 646
encased, 645–650
filled, 650–653
strength of, 645–653
tables for analysis and design, 653–655
Composite construction, 592–663
anchors, 593–594, 610–613, 625–626
composite beams, 593–603, 613–644
composite columns, 645–655
concrete curing, before and after, 604–606
continuous beams, 644–645
decks, formed steel, 594–595, 624–636
deflections, 620–624
effective flange width, 606–609
elastic stresses, 595–600
flexural strength, 600–603
floor systems, 606–620
formed steel decks, 594–595, 624–636
partial composite action, 626–627
partially composite beams, 594
plastic stress distribution, 600
shored, 604–606
slab and deck weight, 627
strength and, 645–653
structural design using, 593–595
studs, 593–594, 610–613, 625–626
tables for analysis and design, 636–644,
653–655
unshored, 604–606
Whitney equivalent stress distribution,
600–602
Compression, see Loads
Compression buckling of web, 537–539
Compression flange strength, 672–673
Compression members, 108–187
AISC specifications, 109–110, 117–121
beam–columns, 109
buckling, 110–117, 121–130, 155–170
built-up members, 162–170
column theory, 110–117
columns, 108–187
critical buckling load, 110–113
defined, 109
design of, 132–138
effective length, 116–117, 138–155
flexural buckling, 121–130, 138–146, 155, 162
flexural–torsional buckling, 155–159, 162
frames, 146–155
local stability, 121–130
nonslender classification, 122Index 743
plates, 170
rolled shapes, 115, 132–138, 165–170
slender classification, 122
stiffened and unstiffened elements,
122–125
struts, 109
tables for design of, 130–132
torsional buckling, 155–159
trial-and-error selection method, 134
width-to-thickness ratio, 122–123
Concrete bearing stress, 253–254
Concrete curing, composite construction and,
604–606
Connections, 75–76, 89, 165–170, 376–475,
476–591, 593–594, 610–613, 625–626
anchors, 593–594, 610–613, 625–626
axially loaded members, 505–511
bearing strength, 382–388
bearing-type, 396–402
behavior of, 379–380
bolted, 380–382, 388–428, 478–496
built-up members, 75–76
column reinforcement, 536–558
combined shear and tension in, 428–440,
491–496, 511–518
design examples, 402–416
eccentric, 476–591
edge–distance requirements, 385–388
elastic analysis, 479–483, 496–502
end-plate, 558–572
failure modes, 380–382
fasteners, 385–388, 428–440
fillet welds, 442–452
flanges, 519–524, 536–558, 568–569
framed beams, 477–478, 511–513
fully restrained (FR), 523–536, 558–559
groove welds, 442–443
high-strength bolts, 388–396, 416–428
moment-resisting, 519–536
partially restrained (PR), 520–523
plate girders, 593–594, 610–613, 625–626
plates, requirements for, 170
prying force, 420–428
rigid, 523–526, 558–559, 572
rivets, 377–378
rolled shapes, requirements for, 165–170
semirigid, 520
shear, 89, 380–382, 428–440, 478–518,
541–542
shear strength, 388–393
shielded metal arc welds (SMAW), 441–442
simple, 379–380
slip-critical, 396–402, 431–432, 496
spacing requirements, 385–388
studs, 593–594, 610–613, 625–626
tensile loads on, 416–440
ultimate strength analysis, 483–491,
502–505
welded, 378–380, 441–461, 496–518, 548–549
welding, 378, 441–461
Continuous beams, 644–645
Continuous casting, 13
Coped beams, 222–223
Creep, 620–621
Critical buckling load, 110–113
Cross-sectional shapes, 12–16, 41–42, 121–125,
198–199, 267–270, 665–666, 720
American standard (S-shape), 14
American standard channel (C-shape), 14
bars, 14–15, 41–42
beam classification of, 198–199
biaxial bending and, 267–270
built-up, 15–16
cold-formed, 16
compression members (columns), 121–125
double-angle, 16
gross area, 42
hollow (HSS), 15
hot-rolled, 12–16
I-beam, 14
local buckling and, 121–125
net area (section), 42
plate girders, 665–666
plates, 15, 41–42
shape factor, 718–720
shear center, loads and, 267–270
stiffened and unstiffened elements, 122–125
structural tee (split-tee), 14
tension members, 41–42
wide-flange (W-shape), 13
width-to-thickness ratio, 122–123, 198–199
Cumulative distribution function, 33
D
Dead loads, 6, 225
Decks, 594–595, 624–636
anchors, 625–626
composite construction, 594–595, 624–636
design of, 625–626
formed steel, 594–595, 624–636
partial composite action, 626–627
shear strength and, 625–626
slab weight, 627
structural use of, 594–595
Deflection, 111–113, 196–198, 224–226, 244,
620–624
beams, 196–198, 224–226, 244
cambering, 225
columns, 111–113
composite beams, 620–624
creep, 620–621
framing systems, 244
load–deflection curves, 197–198
ponding, 225–226
serviceable structure limits, 224–226
service loads for, 225744 Index
Deformation, 42–50, 305–306
excessive, 42–43
fracture, 42, 44
member moments, 305–306
stress concentrations at holes, 46–50
tensile strength and, 42–50
Deformed reinforcing bars, 646
Design charts, 230–233
Design specifications, 7–8
Design strength (moment), 24, 189–190
Design thickness, 126
Diagonal bracing, 351
Diagonal stiffeners, 550–555, 556–558
Direct analysis method, beam–columns, 306
Direct tension indicators, bolt installation, 395
Double shear, 381
Double-angle shapes, 16, 54, 279–280
bending strength of, 279–280
effective area of, 54
structural design and, 16
Doubler plates, 539, 542, 549–550, 555
Drift index, 354
Ductile steel, 9–10
elongation, measurement of, 10
stress–strain diagram for, 9
E
Earthquake loads, 6
Eccentric connections, 476–591
axially loaded members, 505–511
bolt connections, 478–496
column reinforcement, 536–558
combined shear and tension in, 491–496,
511–518
doubler plates, 539, 542, 549–550, 555
elastic analysis, 479–483, 496–502
end-plate, 558–572
moment-resisting, 519–536
shear, 478–518, 541–542
ultimate strength analysis, 483–491, 502–505
welded connections, 496–518, 548–549,
554–555
Eccentricity, defined, 477
Edge–distance requirements, fasteners,
385–388
Effective area, 50–57
defined, 51
joint efficiency, 50
round hollow shapes (HSS), 53–54
shear lag, 50–51
single and double angles, 54–55
tension members, 51–57
Effective flange width, 606–609
Effective length, 116–117, 138–155, 306
axis buckling direction and, 138–146
beam–column analysis, 306
braced frames, 149–153
column theory and, 116–117
compression members (columns), 116–117,
138–155
defined, 117
factor, 117
major axis buckling, 139
minor axis buckling, 139
pinned-end condition and, 116, 138–139
rotational stiffness and, 146–149, 151
sidesway and, 149–155
unbraced frames, 146–149
Effective net area, 43
Elastic analysis, 479–483, 496–502
bolt connections, 479–483
welded connections, 496–502
Elastic buckling stress, 156–159
Elastic design, 21–22
Elastic range, 10
Elastic stresses, composite beams, 595–600
Elongation, measurement of, 10
Encased composite columns, 645–650
End-plate connections, 558–572
ASD equations for, 564–566
beam-to-column, 558–559, 561–570
beam-to-plate welds, 568–570
column requirements for, 570–572
design procedure, 561–570
eccentric, 558–572
extended (rigid), 558–559
flanges, 568–569, 570–572
guidelines for, 560–561
LRFD equations for, 561–564
Steel Construction Manual, 559–561
thick plate theory, 560
thin plate approach, 560
webs, 569–570
yield-line theory, 559, 570–572
End returns, 454
Engineering strain, 9
Engineering stress, 9
Equilibrium method of analysis, 722–724
Euler (buckling) load, 110–113
Excessive deformation, 42–43
Extended (rigid) end-plate connections, 558–559
Eyebars, 88
F
Failure, see Block shear; Deformation; Strength;
Yielding
Failure modes, bolted connections, 380–382
Fasteners, 57–64, 67–76, 385–388
bolt connections, 57–64, 67–76
edge–distance requirements, 385–388
slenderness and, 67–68
spacing requirements, 385–388
staggered, 57–64
stitching (stitch bolts), 75–76
tension member connections, 57–64, 67–76
Filled composite columns, 650–653Index 745
Filler beams, 239
Filler factor, 396–397
Filler metal, 441
Fillet welds, 442–461
ASD for, 447
design of, 443–447
end returns, 454
length requirements, 453–454
LRFD for, 446–447
size requirements, 453
strength of, 444–446
symbols for, 456–457
First-order analysis methods, 306
Fixed-end moment (FEM), 521–522
Flange local buckling (FLB), 197
Flanges, 13–14, 198–199, 519–524, 536–558,
568–569, 672–675
beam-to-plate welds, 568–569
bending of (local), 537
column stiffeners, 536–558
compression flange strength, 672–673
cross-sectional shapes and, 13–14
eccentric connections, 519–524, 536–558
end-plate connections, 568–569
flexural strength, 672–675
moment-resisting connections, 519–524
plate girders and, 672–675
stiffener-to-column welds, 548–549, 555
tension flange yielding, 672
width-to-thickness ratio, 198–199
Flexural buckling, 121–130, 138–146, 155, 162
Flexural strength, 188–189, 205–211, 600–603,
672–675
bending strength and, 205–211
composite beams, 600–603
compression flange strength, 672–673
lateral-torsional buckling (LTB), 674–675
moment equations for, 188–189
plastic stress distribution, 600
plate girders, 672–675
tension flange yielding, 672
Whitney equivalent stress distribution, 600–602
Flexural–torsional buckling, 155–159, 162
Floor systems, 239–244, 248–251, 606–620,
624–636
ASD procedure for, 615
bay region, 239
composite construction, 606–620, 624–636
deflection of, 244
design of, 613–620
effective flange width, 606–609
filler beams, 239
formed steel decks, 624–636
framing system, 239–244
girders, 239
load path, 239
LRFD procedure for, 614–615
open-web steel joists, 248–251
slab weight, 241
studs (anchors), 610–613
tributary areas, 239–241
Force, connection prying action, 420–428
Formed steel decks, see Decks
Fracture, 42, 44
Framed beam connections, 477–478, 511–513
eccentric, 477–478
welded, 511–513
Frame systems, 4–5, 146–155, 239–244,
310–338, 350–358
beam–columns, 310–338, 350–358
bay region, 239
braced, 149–153, 310–327, 350–354
bracing design, 350–354
compression members, 146–155
deflection of, 244
effective length of, 146–155
filler beams, 239
floor systems, 239–244
girders, 239
Jackson–Mooreland Alignment charts, 147–148
load path, 239
nodal bracing, 150, 351
relative bracing, 150, 351–354
roof systems, 239–244
rotational stiffness and, 146–149, 151
sidesway and, 146–155, 299–300, 327–329
stability bracing, 150, 350
stiffness reduction factor, 151–153
structural design and, 4–5
tributary areas, 239–241
unbraced, 146–149, 153–155, 310–311,
327–338, 354–358
Frequency distribution, 30–32
Fully restrained (FR) connections, 523–536,
558–559
Fully tensioned bolts, 394
G
Gage distance, 71
Girders, defined, 239. See also Plate girders
Grades (designation) of structural steel, 11–12
Groove welds, 442–443
Gross area, 42
Guide to Design Criteria for Bolted and Riveted
Joints, 420
Guide to Stability Design Criteria, 150
Gusset plates, 41–42, 65–66
H
High-alloy steel, 11
High-strength bolts, 388–396, 416–428
calibrated wrench tightening, 395
direct tension indicators, 395
fully tensioned, 394
installation of, 394–396
shear strength of, 388–393746 Index
High-strength bolts (continued)
tensile load applied to, 416–428
turn-of-the-nut method for, 395
twist-off, 394
Histogram, 30
Holes, 46–50, 245–248
beams, placement of in, 245–248
stress concentrations at, 46–50
Hollow cross-sectional shapes (HSS), 15, 52–53,
276–278
bending strength, 276–278
effective area of, 52–53
structural design and, 15
Hooke’s law, 9
Hot-rolled shapes, 12–16, 115
I
I-beam, 14
Interaction formulas, beam–columns, 300–304
Intermediate stiffeners, 668, 678–680
International Building Code, 7
J
Jackson–Mooreland alignment charts, 147–148
Joint efficiency, 50
Joints, top-chord loads between, 358–363
Joists, open-web steel, 248–251
L
Lateral–torsional buckling (LTB), 196–198, 667,
674–675
Limit states, 22–23, 42–44, 89, 122–123,
539–541
column reinforcement, 539–541
bearing, 89
defined, 22
design, 22–23
excessive deformation, 42–43
fracture, 42, 44
pin connections, 89
shear, 89
tensile strength and, 42–44
tension, 89
width-to-thickness ratio, 122–123
Live loads, 6, 225
Load and resistance factor design (LRFD), 22,
23, 24–26, 43, 189–190, 218, 302, 446–447,
540, 561–564, 614–615
AISC specifications and, 23
beam–column interaction equations, 302
beams, 189–190, 218, 540
column stiffeners, 540
design strength, 24
end-plate connections, 561–564
fillet welds, 446–447
floor system design, 614–615
load combinations for, 24–26
load factor, 22, 24–26
moment equations for, 189–190
resistance factor, 22, 24–26
shear strength, equations for, 218
tensile strength, equations for, 43
Load combinations, 24–29, 428–440, 491–496,
511–518
ASD equations for, 26–29
bolted connections, 428–440
eccentric connections, 491–496, 511–518
fasteners, 428–440
LRFD equations for, 24–26
shear and tension, 428–440, 491–496, 511–518
structural design and, 24–29
welded connections, 511–518
Load–deflection curves, 197–198
Load factor, 22, 24–26, 30–34
defined, 22
load combinations and, 24–26
LRFD use of, 22, 24–26
probabilistic factors of, 30–34
Load path, 239
Loads, 4–6, 110–113, 224–226, 306, 358–363,
420–428, 477
axial compression, 5
beam deflection and, 224–226
bending, 5
connections, 420–428
critical buckling, 110–113
dead, 6, 225
eccentricity, 477
live, 6, 225
notional, 306
prying force, 420–428
service, 225
structural design and, 4–6
tensile, 420–428
top-chord, 358–363
vertical compression, 5
Local stability, see Stability
Low-alloy steel, 11
Lower-bound (static) theorem, 721–723
LRFD, see Load and resistance factor design
(LRFD)
M
Major axis buckling, 139
Manual for Railway Engineering, 8
Manual of Steel Construction, 23
Mean, defined, 30
Mechanism method of analysis, 724–725
Median, defined, 30
Member deformation moments, 305–306
Member translation moments, 305–306
Members, see Compression members; Tension
members
Mild steel, 9. See also Ductile steel
Minimum Design Loads for Buildings and Other
Structures, 7Index 747
Minor axis buckling, 139
Mode, defined, 30
Modulus of elasticity, 10
Moment amplification, 307–311, 327–329
amplification factor, 307, 327
beam–columns, 307–311
braced frames, 310–311
frame design, computations for, 310–311
sidesway and, 327
unbraced frames, 310–311, 327–329
Moment frames, see Unbraced frames
Moment-resisting connections, 519–536
beam (load) line, 520–522
fixed-end moment (FEM), 521–522
flanges, 519–524
fully restrained (FR), 523–536
moment-rotation curve, 520–522
partially restrained (PR), 520–523
shims, 524
Moment-rotation curve, 520–522
Moment strength, beams, 215–216
Moment–strength design charts, 230–233
Moments, 111, 189–216, 276–280, 299,
305–310, 312–315
beam equations, 189–216
beam–column analysis and, 299, 305–310,
312–315
bending strength and, 199–216, 276–280
bending, 111, 189–193
braced frame bending distribution, Cm,
312–315
design (strength), 190
gradient, 208
member deformation, 305–306
member translation, 305–306
plastic, 193–198
required strength and, 305–307
stability and, 111, 196–198
N
Net area (section), 42
Nodal bracing, 150, 351
Nominal strength, 43
Noncompact shapes, bending strength of,
211–216
Nonslender classification of columns, 122
Notional loads, 306
O
Offset method (0.2%), 11
Open-web steel joists, 248–251
P
Panel zone (web) shear, 539, 541–542
Parallel-axis theorem, 163
Partial composite action, 626–627
Partially composite beams, 594
Partially restrained (PR) connections, 520–523
Pin connections, 88–89, 110–111, 116, 138–139
compression members (columns), 110–111,
116, 138–139
effective length and, 116, 138–139
eyebars, 88
limit states, 89
tension members, 88–89
Pipes, cross-sectional shapes, 15
Plain carbon steel, 11
Plastic analysis, 193, 718–725
AISC requirements for, 720–721
lower-bound (static) theorem, 721–723
uniqueness theorem, 721
upper-bound (kinematic) theorem, 721,
724–725
Plastic design, 22, 718–721, 726–729
Plastic hinge, 193
Plastic moment, 193–198, 718–719
Plastic neutral axis (PNA), 601–602
Plastic range, 9
Plastic stress distribution, 600
Plate girders, 15, 378, 665–717
AISC requirements for, 670–672
bearing stiffeners, 668–669, 680–695
buckling, 667–668, 674–675
compression flange strength, 672–673
cross sections, 665–666
design of, 695–712
flexural strength, 672–675
intermediate stiffeners, 668, 678–680
lateral-torsional buckling (LTB), 667,
674–675
riveted connections, 666
shear flow, 669–670
shear strength, 675–680
stiffeners for, 667–669, 678–695
structural design using, 667–670
tension flange yielding, 672
tension-field action, 667–668
welding connections, 378, 666,
669–670
Plates, 15, 53–54, 170, 251–265. See also
End-plate connections
beam support and, 251–265
bearing, 251–259
column base, 251–253, 260–265
connection requirements, 170
concrete bearing stress, 253–254
defined, 15
effective area, 53–54
thickness of, 254–259
web crippling, 253
web yielding, 252–253
Ponding, 225–226
Precision and design calculations, 36–37
prepared edges, 442
Pretensioned bolts, 416–420
Principle of moments, 163748 Index
Probability density function, 31–32
Probability theory, 30–34
coefficient of variation, 31
cumulative distribution function, 33
frequency distribution, 30–32
histogram, 30
load factor, basis of, 30–34
mean, 30
median, 30
mode, 30
probability density function, 31–32
relative frequency distribution, 30
resistance factor, basis of, 30–34
safety (reliability) index, 33–34
standard deviation, 31
variance, 31
Purlins, 79–80, 272–276
biaxial bending and, 272–276
design of, 272–276
truss connections, 79–80
R
Reduction factor, 124–125
Relative bracing, 150, 351–354
Relative frequency distribution, 30
Reliability (safety) index, 33–34
Required strength, 26, 305–307
Resistance factor, 22, 24–26, 30–34
defined, 22
load combinations and, 24–26
LRFD use of, 22, 24–26
probabilistic factors of, 30–34
Rigid connections, 523–526, 558–559, 572
Riveted connections, 377–378, 666
Rolled shapes, 115, 132–138, 165–170
compression members, 132–138, 165–170
connection requirements, 165–170
buckling and, 165–170
selection of for structural design, 132–138
stub columns, 115
trial-and-error selection method, 134
Roofs, 79–88, 239–244, 248–251, 272–276,
358–363
beam–columns, 358–363
biaxial bending and, 272–276
chord members, 83–84
framing system, 239–244
load path, 239
open-web steel joists, 248–251
purlins, 79–80, 272–276
sag rods, 79–81, 272
tension members in, 79–88
top-chord loads, 358–363
tributary areas, 239–241
trusses, 79–88
working lines, 84
working point, 84
Rotational stiffness, 146–149, 151
S
Safety factors, 26–29
Safety (reliability) index, 33–34
Sag rods, 79–81, 272
Seated beam connections, 511–513
Second-order analysis methods, 306
Semirigid connections, 520
Service loads for beam deflection, 225
Serviceable structure, defined, 224
Shape factor, 718–720
Shear, 89, 380–382, 428–440, 478–518, 539,
541–542, 669–670. See also Momentresisting connections
bolted connections, 380–382, 478–496
double, 381
column reinforcement, 539, 541–542
eccentric connections, 478–518, 539, 541–542
fasteners, 428–440
flow, 669–670
panel zone (web), 539, 541–542
pin-connected members, 89
plate girders, 669–670
single, 381
tension combined with, 428–440, 491–496,
511–518
welded connections, 496–518, 669–670
Shear center, 267–270
beam cross sections, 267–270
biaxial loads applied through, 267–270
biaxial loads not applied through, 270–271
weak-axis bending strength, 268–270
Shear lag, 50–51
Shear strength, 216–224, 388–393, 625–626,
675–680
allowable (working) stress design for,
219–220
anchors (studs) in formed decks, 625–626
ASD equations for, 218
beams, 216–224
block shear and, 222–224
connections, 388–393
high-strength bolt connections, 388–393
intermediate stiffeners, 678–680
LRFD equations for, 218
plate girders, 675–680
Shielded metal arc welding (SMAW), 441–442
Shims, 524
Shored composite construction, unshored versus,
604–606
Sidesway, 146–155, 299–300, 327–329
amplification factor for, 327
artificial joint restraint (AJR), 329
braced frames, 149–153
compression members, 146–155
effective length and, 146–155
nodal bracing, 150
relative bracing, 150
stability bracing, 150Index 749
unbraced frames, 146–149, 327–329
x-bracing for, 299–310
Simple connections, 379–380
Single shear, 381
Slab weight, 241, 627
Slag, 441
Slender classification of columns, 122
Slenderness ratio, 67–68
Slip-critical connections, 396–402, 431–432, 496
Snow loads, 6
Snug position, defined, 395–396
Solid circular bars, bending strength of, 280
Spacing of fasteners, 385–388
Specifications for Structural Joints Using HighStrength Bolts, 388
Stability, 121–130, 146–155, 196–198
beams, 196–198
braced frames, 149–153
bracing, 150
buckling and, 121–130, 196–198
compression members (columns), 121–130,
148–153
cross-sectional shapes, 122–125
design thickness, 126
effective length and, 146–155
frames, 146–155
Guide to Stability Design Criteria, 150
load–deflection curves, 197–198
local (buckling), 121–130
nodal bracing, 150
plastic moment and, 196–198
reduction factor, 124–125
relative bracing, 150
sidesway and, 149–155
stiffened and unstiffened elements, 122–125
stiffness reduction factor, 151–152
unbraced frames, 146–149
width-to-thickness ratio, 122–123
Staggered fasteners, 57–64. See also Fasteners
Standard Building Code, 7
Standard deviation, 31
Steel, 8–16
American Society for Testing and Materials
(ASTM), 11–12
cross-sectional shapes of, 12–16
cold-formed shapes, 116
ductile, 9–10
elastic range, 10
engineering strain, 9
engineering stress, 9
grades (designation) of, 11–12
high-alloy, 11
Hooke’s law, 9
hot-rolled shapes, 12–16
low-alloy, 11
mild, 9
modulus of elasticity, 10
offset method (0.2%), 11
plain carbon, 11
plastic range, 9
stress–strain diagrams, 8–11
structural, 8–12
tensile test for, 8–10
ultimate tensile strength, 10
yield plateau, 9
yield point, 10
yield strength, 11–12
yield stress, 11
Young’s modulus, 10
Steel Construction Manual, 23, 25, 34–36,
559–561
Stiffened cross-sectional elements, 122–125, 198
Stiffeners, 536–558, 667–669, 678–695
AISC specification requirements for,
537–541
bearing, 668–669, 680–695
column reinforcement, 536–558
diagonal, 550–555, 556–558
eccentric connections (flanges), 536–558
intermediate, 668, 678–680
plate girders, 667–669, 678–695
shear strength and, 678–695
strength of, 539–540
tension-field action, 667–668
welds to columns, 548–549, 554–555
Stiffener-to-column welds, 548–549
flanges, 548–549, 555
webs, 554–555
Stiffness reduction factor, 151–153
Stitching (stitch bolts), 75–76
Strain, 8–9
Strain hardening, 9
Strands, flexible cables, 78–79
Strength, 10–12, 21–29, 42–50, 188–189,
199–224, 230–233, 276–280, 305–307,
539–541, 645–653, 667–669, 672–695
allowable (working) stress design, 21–22, 189,
219–220
allowable strength design (ASD), 21, 23,
26–29, 189, 218, 540–541
beam–columns, analysis for, 305–307
beams, 188–189, 199–224, 230–233,
276–280
bearing stiffeners, 668–669, 680–695
bending, 199–216, 276–280
columns, 539–541, 645–653
compact beam shapes, 199–211
composite columns, 645–653
flexural, 188–189, 205–211, 672–675
compression flange, 672–673
intermediate stiffeners, 668, 678–680
load and resistance factor design
(LRFD), 22, 23, 24–26, 188–189,
218, 540
moment equations and, 188–189, 193–216,
276–280750 Index
Strength (continued)
moment–strength design charts, 230–233
nominal, 43
noncompact beam shapes, 211–216
offset method (0.2%), 11
plate girders, 667–669, 672–695
required, 26, 305–307
safety factor for, 26–29
shear, 216–224, 675–680
stiffeners for reinforcement, 539–541,
667–669, 678–695
stress–strain curve for, 10–11
structural design and, 21–29
tensile, 42–50
tension flange yielding, 672
ultimate tensile, 10
various beam shapes, 276–280
yield, 11–12
Strength design, 23
Stress, 8–11, 41, 44–50, 77, 190–196,
595–603
allowable, 44–46
applied, 44–46
area, 77
beams, 190–196, 595–603
bearing, 381–382
bending, 190–196
composite beams, 595–603
concentrations at holes, 46–50
elastic, 595–600
elastic limit, 9–10
engineering, 9
flexural strength and, 600–603
plastic stress distribution, 600
structural steel, 8–11
tension members, 41, 44–50, 77
Whitney equivalent stress distribution,
600–602
yield, 11
Stress–strain diagrams, 8–11
Structural design, 2–19, 20–39
allowable strength design (ASD), 21, 23,
26–29
allowable (working) stress design, 21–22
American Institute of Steel Construction
(AISC), 23–24
beam–columns, 5
beams, 5
building codes, 7
collapse mechanism, 22
columns, 5
computations, 36–37
concepts in, 20–39
cross-sectional shapes, 12–16
design strength, 24
frames, 4–5
importance of, 3–5
introduction to, 2–19
limit state, 22
limit states design, 23
load and resistance factor design (LRFD), 22,
23, 24–26
load combinations, 24–26
load factor, 22, 24–26
loads, 4–6
plastic design, 22
precision, 36–37
probability theory, 30–34
requirements, 35
resistance factor, 24–26
safety factor, 26–29
specifications, 7–8, 23–24, 34–36
Steel Construction Manual, 23, 25, 34–36
steel, 8–12
strength design, 23
trusses, 4
Structural Journal of the American Society of
Civil Engineers, 23
Structural steel, see Steel
Structural tee (split-tee) shape, 14
Structural Welding Code, 444, 453
Struts, 109
Stub column, 115
Studs, 593–594, 610–613, 625–626
composite construction, 593–594, 610–613,
625–626
partially composite beams and, 594
plate girder connections, 593–594, 610–613,
625–626
shear strength of, 625–626
steel headed anchors, 593–594, 610–613
Submerged arc welding (SAW), 441–442
T
Tangent modulus theory, 114–115
Tee shapes, 14, 278–279
Tensile loads, see Tension
Tensile strength, 42–50
effective net area, 43
ASD equations for, 43–44
LRFD equations for, 43
nominal strength, 43
stress concentrations at holes, 46–50
yielding and, 42–46
Tensile test, 8–10
Tension, 89, 381, 416–440, 491–496,
511–518
bolt connections, 416–428, 491–496
connection failure from, 381
eccentric connections, 491–496,
511–518
fasteners, 428–440
pin-connected members, 89
prying force, 420–428Index 751
shear combined with, 428–440, 491–496,
511–518
welded connections, 511–518
Tension-field action, 667–668
Tension flange yielding, 672
Tension members, 40–107
block shear, 64–67
bolt connections, 57–64, 67–76
cables, 76–79
cross-sectional area of, 41–42
design of, 67–76
effective area, 50–57
gusset plates for, 41–42, 65–66
pin-connected, 88–89
roof trusses, 79–88
slenderness, 67–68
staggered fasteners, 57–64
stitching (stitch bolts), 75–76
stress in, 41, 44–50, 77
tables for design of, 73–75
tensile strength, 42–50
threaded rods, 76–79
Theory of Elastic Stability, 156, 203
Threaded rods, 76–79
Torsional buckling, 155–159
Transformed area, 596
Transformed section, 595–596
Translation, member moments, 305–306
Tributary areas, 239–241
Trusses, 4, 79–88, 248–251, 300, 358–363
beam–columns, 300, 358–363
open-web steel joists, 248–251
roof design, 79–88
structural design and, 4
tension members, 79–88
top-chord loads, 358–363
Turn-of-the-nut method, bolt installation, 395
Twist-off bolts, 394
U
Ultimate strength analysis, 483–491, 502–505
bolt connections, 483–491
welded connections, 502–505
Ultimate tensile strength, 10
Unbraced frames, 146–149, 153–155, 310–311,
327–338, 354–358
artificial joint restraint (AJR), 329
beam–column members, 310–311, 327–338,
354–358
buckling analysis, 327–328
compression members, 146–149, 153–155
design of, 327–338, 354–358
drift index, 354
effective length, 146–149, 153–155
moment amplification, 310–311, 327–329
rotational stiffness, 146–149
sidesway of, 146–149, 327–329
Uniform Building Code, 7
Uniqueness theorem, 721
Unshored composite construction, shored
versus, 604–606
Unstiffened cross-sectional elements,
122–125, 198
Upper-bound (kinematic) theorem, 721,
724–725
V
Variance, 31
Vertical compression, 5
W
Weak-axis bending strength, 268–270
Web local buckling (WLB), 197
Webs, 13–14, 198–199, 252–253, 536–558,
569–570
AISC specification requirements for,
537–541
beam-to-plate welds, 569–570
column reinforcement, 536–558
compression buckling of, 537–539
compressive force and, 252–253
crippling, 253, 538
cross-sectional shapes and, 13–14
doubler plates, 539, 542, 549–550, 555
eccentric connections, 536–558
end-plate connections, 569–570
panel zone, 539, 541–542
shear in, 539, 541–542
stiffener-to-column welds, 548–549, 554–555
width-to-thickness ratio, 198–199
yielding, 252–253, 537–538
Welded connections, 378–380, 441–461,
496–518, 548–549, 554–555, 538–570,
666, 669–670. See also Welding
axially loaded members, 505–511
balancing the welds, 506–511
beam-to-plate welds, 568–570
combined shear and tension, 511–518
eccentric, 496–518
elastic analysis, 496–502
end-plate connections, 568–570
flanges, 548–549, 555, 568–569
framed beams, 511–513
plate girders, 378, 666, 669–670
welding connections, 378, 666, 669–670
processes for, 441–461
seated beams, 511–513
shear and, 496–511
shear flow, 669–670
simple connections, 379–380
stiffener-to-column, 548–549, 554–555
ultimate strength analysis, 502–505
use of, 378–380
webs, 554–555, 569–570752 Index
Welding, 378, 441–461. See also Fillet welds
American Welding Society (ASW), 444, 453
base metal, 441
end returns, 454
filler metal, 441
fillet, 442–452
groove, 442–443
length requirements, 453–454
prepared edges, 442
shielded metal arc (SMAW), 441–442
size requirements, 453
slag, 441
Structural Welding Code, 444, 453
submerged arc (SAW), 441–442
symbols, 456–457
Whitney equivalent stress distribution, 600–602
Wide-flange shape (W-shape), 13
Width-to-thickness ratio, 122–123, 198–199
beams, 198–199
compression members (columns), 122–123
Wind loads, 6
Wire rope, 78–79
Working lines, roof truss members, 84
Working point, roof truss joints, 84
Working stress design, 21–22
X
x-bracing, 299–300, 351
Y
Yield-line theory, 559, 570–572
Yield plateau, 9
Yield point, 10
Yield strength, 11–12
Yield stress, 11
Yielding, 42–46, 192–193, 672
deformation from, 42–46
bending moment and, 192–193
tension flange in plate girders, 672
Young’s modulus, 10


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Steel Design
رابط مباشر لتنزيل كتاب Steel Design
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى


عدد المساهمات : 18967
تاريخ التسجيل : 01/07/2009

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالخميس 08 أغسطس 2013, 5:59 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
محمد محمد أحمد
مهندس فعال جدا جدا
مهندس فعال جدا جدا


عدد المساهمات : 654
تاريخ التسجيل : 14/11/2012

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالخميس 08 أغسطس 2013, 11:29 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
rambomenaa
كبير مهندسين
كبير مهندسين


عدد المساهمات : 2041
تاريخ التسجيل : 21/01/2012

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالجمعة 09 أغسطس 2013, 12:05 am

الرجوع الى أعلى الصفحة اذهب الى الأسفل
mechri
مهندس تحت الاختبار
مهندس تحت الاختبار


عدد المساهمات : 68
تاريخ التسجيل : 21/02/2013

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالثلاثاء 13 أغسطس 2013, 12:33 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
rambomenaa
كبير مهندسين
كبير مهندسين
rambomenaa

عدد المساهمات : 2041
التقييم : 3379
تاريخ التسجيل : 21/01/2012
العمر : 47
الدولة : مصر
العمل : مدير الصيانة بشركة تصنيع ورق
الجامعة : حلوان

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالأربعاء 14 أغسطس 2013, 6:09 am

الرجوع الى أعلى الصفحة اذهب الى الأسفل
kingstone1
مهندس تحت الاختبار
مهندس تحت الاختبار
kingstone1

عدد المساهمات : 1
التقييم : 1
تاريخ التسجيل : 30/03/2014
العمر : 47
الدولة : العراق
العمل : مهندس
الجامعة : التكنولوجية

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالأحد 30 مارس 2014, 10:35 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
أبو مدنى
مهندس تحت الاختبار
مهندس تحت الاختبار
أبو مدنى

عدد المساهمات : 74
التقييم : 76
تاريخ التسجيل : 22/07/2011
العمر : 40
الدولة : مصر إم الدنيا
العمل : مهندس

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالثلاثاء 01 أبريل 2014, 12:59 am

الرجوع الى أعلى الصفحة اذهب الى الأسفل
ahmed raaft
مهندس تحت الاختبار
مهندس تحت الاختبار
ahmed raaft

عدد المساهمات : 54
التقييم : 54
تاريخ التسجيل : 16/12/2010
العمر : 38
الدولة : مصر
العمل : مهندس ميكانيكا
الجامعة : بنـــــــــــــــــــها

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالثلاثاء 01 أبريل 2014, 8:10 am

ألـــــــــــــــف شــــــــــــــــــــــــــــــــــــكر على الكتاب وياريت لو فى كتب اخرى فى مجالاات تصميم الجمالونات والمنشأت لامعدنية
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18967
التقييم : 35407
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Steel Design  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Steel Design    كتاب Steel Design  - صفحة 2 Emptyالإثنين 07 أبريل 2014, 1:04 pm

ahmed raaft كتب:
ألـــــــــــــــف شــــــــــــــــــــــــــــــــــــكر على الكتاب وياريت لو فى كتب اخرى فى مجالاات تصميم الجمالونات والمنشأت لامعدنية



لا شكر على واجب
إن شاء الله هناك المزيد والمزيد
وإن كان هناك كتاب بعينه فنرجو عمل طلب هنا بالتفصيل
منتدى الطلبات والإستفسارات

وسيتم الرد عليك فى أقرب وقت إن شاء الله
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Steel Design
الرجوع الى أعلى الصفحة 
صفحة 3 من اصل 3انتقل الى الصفحة : الصفحة السابقة  1, 2, 3  الصفحة التالية
 مواضيع مماثلة
-
» كتاب Steel Structures : Design and Behavior 5th Edition
» كتاب Cold-Formed Steel Design
» كتاب Steel Design, 5th Ed By William Segui
» كتاب Optimum Design of Steel Structures
» حل كتاب Steel Design Fifth Edition Solution Manual

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: