كتاب Mechanics and Analysis of Composite Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Mechanics and Analysis of Composite Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
محمد محمد أحمد
مهندس فعال جدا جدا
مهندس فعال جدا جدا
محمد محمد أحمد

عدد المساهمات : 655
التقييم : 697
تاريخ التسجيل : 14/11/2012
العمر : 29
الدولة : EGYPT
العمل : Student
الجامعة : Menoufia

كتاب Mechanics and Analysis of Composite Materials  Empty
مُساهمةموضوع: كتاب Mechanics and Analysis of Composite Materials    كتاب Mechanics and Analysis of Composite Materials  Emptyالثلاثاء 16 يوليو 2013, 10:43 pm

أخوانى فى الله
أحضرت لكم كتاب
Mechanics and Analysis of Composite Materials
Valery V. Vasiliev
Professor of Aerospace Composite Structures
Director of School of Mechanics and Design
Russian State University of Technology, Moscow
Evgeny V. Morozov
Professor of Manufacturing Systems
School of Mechanical Engineering
University of Natal, South Africa

كتاب Mechanics and Analysis of Composite Materials  M_a_a_11
و المحتوى كما يلي :


CONTENTS
Preface v
Chapter 1. Introduction 1
1 . 1 Structural Materials I
1.2. Composite Materials 9
1.2.1. Fibers for Advanced Composites 10
1.2.2. Matrix Materials 16
1.2.3. Processing 2 1
1.3. References 27
Chapter 2. Fundamentals of Mechanics of Solids 29
Stresses 29
Equilibrium Equations 30
Stress Transformation 32
Principal Stresses 34
Displacements and Strains 36
Transformation of Small Strains 39
Compatibility Equations 40
Admissible Static and Kinematic Fields 41
Constitutive Equations for an Elastic Solid 41
Formulations of the Problem 48
Variational Principles 49
Principle of Minimum Total Potential Energy 50
Principle of Minimum Strain Energy 52
Mixed Variational Principles 52
References 53
Chapter 3. Mechanics of a Unidirectional Ply 55
3.1. Ply Architecture 55
3.2. Fiber-Matrix Interaction 58
3.2.1. Theoretical and Actual Strength 58
3.2.2. Statistical Aspects of Fiber Strength 62
3.2.3. Stress Diffusion in Fibers Interacting Through the Matrix 65
3.2.4. Fracture Toughness 79
3.3. Micromechanics of a Ply 80
3.4. Mechanical Properties of a Ply under Tension, Shear, and
Compression 95X Cunrenrs
3.4.1.
3.4.2.
3.4.3.
3.4.4.
3.4.5.
3.5.
3.6.
3.7.
Longitudinal Tension 95
Transverse Tension 97
In-Plane Shear 100
Longitudinal Compression 103
Transverse Compression 113
Hybrid Composites 113
Phenomenological Homogeneous Model of a Ply
References 119
117
Chapter 4. Mechanics of a Composite Layer 121
4.1.
4.1.1.
4.1.2.
4.2.1.
4.2.2.
4.3.1.
4.3.2.
4.4.1.
4.4.2.
4.5.1.
4.5.2.
4.5.3.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
Isotropic Layer 121
Linear Elastic Model 121
Nonlinear Models I24
Unidirectional Orthotropic Layer 140
Linear Elastic Model 140
Nonlinear Models 142
Unidirectional Anisotropic Layer 147
Linear Elastic Model 147
Nonlinear Models 161
Orthogonally Reinforced Orthotropic Layer 163
Linear Elastic Model 163
Nonlinear Models 166
Angle-Ply Orthotropic Layer 184
Linear Elastic Model 185
Nonlinear Models 188
Free-Edge Effects 201
Fabric Layers 205
Lattice Layer 2I2
Spatially Reinforced Layers and Bulk Materials 214
References 222
Chapter 5. Mechanics of Laminates 225
5.1.
5.2.
5.3.
5.4.
5.4.1.
5.4.2.
5.4.3.
5.5.
5.6.
5.7.
5.8.
Stiffness Coefficients of a Generalized Anisotropic Layer 225
Stiffness Coefficients of a Homogeneous Layer 236
Stiffness Coefficients of a Laminate 238
Quasi-Homogeneous Laminates 240
Laminate Composed of Identical Homogeneous Layers 240
Laminate Composed of Inhomogeneous Orthotropic Layers 240
Laminate Composed of Angle-Ply Layers 242
Quasi-Isotropic Laminates 243
Symmetric Laminates 245
Antisymmetric Laminates 248
Sandwich Structures 249Contents xi
5.9. Coordinate of the Reference Plane 251
5.10. Stresses in Laminates 254
5.11. Example 256
5.12. References 269
Chapter 6. Failure Criteria and Strength of Laminates 271
6.1. Failure Criteria for an Elementary Composite Layer or Ply 271
6.1.1. Maximum Stress and Strain Criteria 274
6.1.2. Approximation Strength Criteria 281
6.1.3. Interlaminar Strength 284
6.2. Practical Recommendations and Discussion 285
6.3. Examples 294
6.4. References 300
Chapter 7. Environmental, Special Loading, and Manufacturing Effects 301
7.1. Temperature Effects 301
7.I . 1. Thermal Conductivity 302
7.1.2. Thermoelasticity 307
7.2. Hydrothermal Effects and Aging 317
7.3. Time and Time-Dependent Loading Effects 319
7.3.1. Viscoelasticity 319
7.3.2. Durability 332
7.3.3. Cyclic Loading 334
7.3.4. Impact Loading 340
7.4. Manufacturing Effects 350
7.5. References 362
Chapter 8. Optimal Composite Structures 365
8.1. Optimal Fibrous Structures 365
8.2. Composite Laminates of Uniform Strength 372
8.3. Application to Pressure Vessels 379
8.4. References 392
Author Index 393
AUTHOR INDEX
[Plain numbers refer to text pages on which the author (or his/her work) is cited.
Boldface numbers refer to the pages where bibliographic references are listed.]
Abdel-Jawad, Y.A. 78 119
Abu-Farsakh, G.A. 78 119
Abu-Laila, Kh.M. 78 119
Adams, R.D. 335 363
Adkins, J.E. 124 222
Aleksandrov, A.Ya. 239 269
Alfutov, N.A. 200 222
Anderson, J.A. 338 362
Annin, B.D. 275 300
Aoki, T. 87 120
Apinis, R.P. 337 362
Artemchuk, V.Ya. 315 363
Ashkenazi, E.K. 284 300
Ashton, J.E. 253 269
Ami, V.D. 180 223
Baev, L.V. 275 300
Barbero, E.J. 283 300
Barnes, J.A. 310-311 362
Belyankin, F.P. 276 300
Birger, LA. 134 222
Bogdanovich, A.E. 15 27 91 119
Broutman, L.J. 271 300 329 363
Brukker, L.E. 239 269
Bulavs, F.Ya. 95, 117 120 211 223
272 300 320, 332 363
Bulmanis, V.N. 318 362
Buskel, N.C.R. 338 363
Chamis, C.C. 156 222
Chen, H.-J. 239 269
Cherevatsky, A.S. 196 222
Chiao, T.T. 77 119 181 222
Chou, T.W. 15 27 338 363
Crasto, AS. 112-1 13 119
Curtis, A.R. 112 120
Dow, N.F. 107
Doxsee, L. 341 363
Dudchenko, A.A. 169 223
Dvorak, G.J. 340 363
Elpatievskii, A.N. 174, 180 223
Ermakov, Yu.N. 334335 363
Farrow, G.J. 310-311 362
Fukuda, H.
Fukui, S. 205 222
15 27 77 120
Gere, J.M. 108 120
Gilman, J.J. 59 120
Gol'denblat, 1.1.
Gong, X.J. 151, 156 223
Goodey, W.J. 17 28 66 120
Grakova, T.S. 318 362
Green, A.E. 124 222
Gudmundson, P. 180 223
Gunyaev, G.M. 116 120 319
Gurdal, Z. 41 53
Gurvich, M.R. 95, 117 120 211 223
Gutans, Yu.A. 63 120
271, 277, 286, 291 300
Griffith, A.A. 61-62 120
272 300 320, 332 363
Ha, S.K. 315 362
Hahn, H.T.
Hamilton, J.G. 311 362
Haresceugh, R.I. 112 120
Hashimoto, S. 205 222
Hashin, Z.
Herakovich, C.T. v, 142, 146, 162 222
Hodgkinson, J.M. 338 363
145, 180 222 271 300
94 120 180 222
271 300 359 362 379, 391 392394 Author index
Hondo, A. 205 222
Huber, M.T. 293
Hyer, M.W. 359 362
Ilyushin, A.A. 133, 139 223
Ishida, T. 340 363
Ivanovskii, V.S. 352 363
Jackson, D. 310-311 362
Jeong, T.H. 87 120
Jones, R.M. 91, 96, 107 120 143 223
278 300
Kanagawa, Y. 340 363
Kanovich, M.Z. 118-1 I9 120
Karmishin, A.V. 253 269
Karpinos, D.M. 20 28
Katarzhnov, Yu.1. 279-280 300
Kawata, K. 205 222
Khonichev, V.I. 337 362
Kim, H.G. 87 120
Kim, R.Y. 112-113 119
Kincis, T.Ya. 96, 113 120
Kingston-Lee, D.M. 308 363
KO,F.K. 15 27
Kobayashi, R. 205 222
Koltunov, M.A. 118-1 19 120
Kondo, K. 87 120
Kopnov, V.A. 271, 277, 286, 291 300
Krock, R.H. 271 300 329 363
Kruklinsh, A.A. 95, 117 120 211 223
Kruzhkova, E.Yu. 318 363
Kurshin, L.M. 239 269
Kutinov, V.F. 336, 355
272 300 320, 332 363
Lagace, P.A. 96 120 186, 196223
Lapotkin, V.A. 315 363
Lee, D.J. 87 120
Li, L. 341 363
Limonov, V.A. 338 362
Lungren, J.-E. 180 223
Margolin, G.G. 276 300
Matthews, F.L. 338 363
Mikelsons, M.Ya. 63, 337-338 362
Mileiko, S.T. 79 120
Milyutin, G.I. 318 362
Mises, R. 293
Miyazawa, T. 77 120
Morozov, E.V. 222 223 277 300
360-362 363
Morton, J. 338 363
Murakami, S. 340 363
Nanyaro, A.P. 284 300
Natrusov, V.I. 118-1 19 120
Ni, R.G. 335 363
Obraztsov, I.F.
Otani, N. 205 222
79 120 200 222 379.
391 392
Pagano, N.J. 150,221 223
Pastore, C.M.
Patterson, J.M. 311 362
Perov, Yu.Yu. 318 363
Peters, S.T. 9, 15, 27 28
Phillips, L.M. 308 363
Pleshkov, L.V. 118-1 19 120
Polyakov, V.A.
Popkova, L.K. 360-362 363
Popov, N.S. 318 362
Prevo, K.M. 311 363
Prokhorov, G. 275
Protasov, V.D. 336, 339 363
Prusakov, A.P. 239 269
15 27 91 119
15 28 215-216 223
Rabotnov, Yu.N. 331 363
Rach, V.A. 352 363
Reese, E. 338 363
Reifsnaider, K.L. 180 223
Rogers, E.F. 308 363
Roginskii, S.L. 118-1 19 120
Rosen, B.W. 94, 107 120
Rowlands, R.E. 271 300
Roze, A.V. 87, 354 363
Rrenjie, W. 341 363
Salov, O.V. 183223
Salov, V.A. 182-183 223
Schapery, R.A. 329 363
Schulte, K. 338 363
Scott, M.L. 15 27
Sendeckyj, G.P. 271 300
Shen, S.H. 317 363
Sibiryakov, A.V. 344 363
329 363Author index 395
Sih, G.C.
Simms, 1.J. 310-311 362
Skudra, A.M.
272 300 320, 332 363
Sobol’, L.A. 315 363
Soutis, C. 316 363
Springer, G.S. 315, 317 362-363
Strife, J.R. 31 1 363
Sukhanov, A.V. 315 363
77 119 181 222 275 300
95, 117 120 211 223
Takana. N. 205 222
Tamuzh, V.P. 77 119 156 222 275 300
Taraschuch, 1.V. 338 362
Tarnopol’skii, Yu.M.
336, 338 362 339 363
15,20 28 64, 87,96,
113 120 215-216 223 354 362-363
391 392
Tatarnikov, O.V. 277 300
Tennyson, R.C. 284 300
Tikhomirov, P.V. 78 120
Timoshenko, S.P. 108 120
Toland, R.H. 271 300
Tomatsu, H. 77 120
Tsai, S.W.
271,278 300
Tsushima, E. 340 363
Turkmen, D. 316 363
145, 150, 180 222-223 239 269
Van Fo Fy (Vanin), G.A. 88,91 120
Varshavskii, V.Ya. 115 120
Vasiliev, V.V. 20 28 41 53 64 120 157,
169, 174, 180-181, 183, 215, 217
222-223 254, 261 269 285, 294 300
344 363 379-380, 391,392
Verchery, G.
253 269
Verpoest, I. 341 363
Vicario, A.A. Jr. 271 300
Volkov, N. 275
Vorobey, V.V. 277 300
150-1 51, 156 223
Wada, A. 15 27
Wharram, G.E. 284 300
Whitford, L.E. 221 223
Whitney, J.M. 253 269
Woolstencroft, D.H. I12 120
Wostenholm, G. 310-31 1 362
Wu, E.M. 271 300
Yakushiji, M. 15 27
Yates, B. 310-311 362
Yatsenko, V.F. 276 300
Yunshu, W. 341 363
Yushanov. S.P. 78 120
Zabolotskii, A.A. 115 120
Zakrzhevskii, A.M. 318 362
Zhenlong, G. 341 363
Zhigun, I.G.
Zinoviev, P.A. 200 222 334-335 363
15 28 215-216 223SUBJECT INDEX
absorption of moisture 180
acting pulse 343
active loading 132
actual fiber distribution 56
actual strength 58, 62
adhesion 17
adhesion failure 97, 102
adhesion strength 119
admissible kinematic field 41
admissible static field 41
admissible stress state 92
advanced composites 9, 377
aging 317, 319
aging theory 331
Al2O3-A1 composite 96, 167
alumina (A1203) fibers 7, 13
aluminum alloy 131-132, 138
aluminum matrix composite materials 20
aluminum shear web 378
amplitude of stress 334
angle of rotation 157, 226
angle of rotation of a body element 40
angle of rotation of the element 191
angle of rotation of the normal 263
angle-ply antisymmetric panel 359
angle-ply carbon-epoxy laminate 340
angle-ply composite cylinder 361
angle-ply laminate 3I 1
angle-ply layer
angle-ply orthotropic layer 184
angle-ply structure 248
anisotropic layer 148, 309
antisymmetric laminates 248, 356
apparent coefficientsof thermal
apparent cross-sectional area 207
apparent CTE of a unidirectional ply 308
apparent (effective) mechanical characapparent longitudinal modulus of the
apparent material stiffness 142
185, 187, 195-196, 201,
260, 267
expansion 315
teristics I18
PlY 86
apparent modulus 92, 160, 207, 245,
apparent modulus of an angle-ply
apparent modulus of elasticity 207
apparent shear modulus 86
apparent strain 324
apparent stress 324
apparent thermal conductivity 302-303,
apparent thermal expansion coeffiapproach macrophenomenological 273
approximation criterion 292-293
approximation polynomial criteria 291
approximation strength criteria 274, 281,
aramid (aromatic polyamide) fibers 12
aramid composite 370
aramid epoxy angle-ply composites 311
aramid fabric skin 306
aramid fabric-epoxy composite 208, 304
aramid fibers 6, 112
aramid-epoxy composite layer 344
aramid-epoxy composite material 8, 336,
aramidasbestos fibers 14
asymptotic solutions for inhomogeneous
solids 91
atoms’ interaction curve 60
automobile leaf-springs 337, 339
average shear strains 231
average strains 232
average stresses 231-232, 243, 377
averaging of stress and strain fields 91
axial displacement 157, 263
352
specimen 204
306
cients 310
293
344
319
bagasse fibers 14
balanced laminates 242
ballistic limit 347
ballistic test 346-347
397398 Subject index
bamboo fibers 14
basalt fibers 6, 11
bending 158, 227, 229,237, 355
bending fatigue test 338
bending moment 157
bending stiffness coefficients of the
laminate 239
bending stiffness coefficients 229
bending stiffnesses 239, 241, 253
bending-stretching coupling 242
biaxial braided fabrics 210
biaxial compression of a unidirectional
composite 118
bismaleimide resin 6, 19
blade of the turbojet engine compressor
346
body forces 29, 31, 42, 5I
boron carbide (B4C)fibers 7, 13
boron fibers 7, 13, 21, 112
boron nitride fibers 7
boron-aluminum composite 20, 79, 96,
boron-aluminum unidirectional
boron-poxy composite 96,167,304,344,
boron-epoxy optimal laminate 378
Borsic 13
boundary and initial conditions 341
boundary and interface conditions 169
boundary conditions 69,73
boundary conditions for free longitudinal
houndary-layer solution 266
braided structures 210
braiding 22-23, 215
brittle and ductile metal alloys 79
brittle materials 79
brittle matrix 277
bulk materials 214
bulk modulus 124
bundle of fibers 64
burst pressure 179-180, 299-300
162-163, 167
composite 146
376
edges of the specimen 203
capron fibers 6
carbon composites 378
carbon fabric tape 206
carbon fabric-poxy composite 208
carbon fibers 7, 11, 21, 112
carbon matrix 21, 26, 277
carbon-carbon composites 2I , 96, 167,
carbon-carbon conical shell 27
carbon-carbon fabric composite 316
carbon-carbon unidirectional composite
carbon-epoxy composite 25, 57, 96, 113,
167, 304, 316, 336, 378
carbon-epoxy cylindrical pressure
vessel 177
carbon-epoxy external skin 306
carbon-epoxy lattice layer 306
carbon-epoxy lattice spacecraft fitcarbon+poxy layer 154, 161, 187
carbon-poxy unidirectional ply 177, 197
carbon-PEEK composite 96, I67
carbon-phenolic composite 21
carbon-epoxy ply 75
Carbonic HM-85 fibers 12
carbonization 11, 21, 301
Cartesian coordinate frame 32, 138
Cartesian coordinates 29-30
Castigliano’s formulas 125-126
ceramic composites 21, 30I
ceramic fibers 13, 21
ceramic matrix 21, 277
ceramic matrix composites 21
change of the fibers orientation angles
changes of curvatures of the laminate 256
chemical shrinkage of the resin 360
chemical vapor deposition
circumferential crack 61
circumferential plies 296
circumferential unidirectional layer 140
circumferential winding 25, 350
circumferentially wound cylinder 96
Clapeyron’s theorem 50
coal pitch 12
coefficient of moisture expansion 3I8
coefficient of the strength variation 64
coefficient of thermal expansion
coefficientsof the compliance matrix 219
cohesion failure 97, 102
coir fibers 14
combined stress state 278
301
112, 277-278
ting 213
196
13, 21, 24
(CTE) 307Subject index 399
Compatibility conditions 40
compatibility conditions at fiber-matrix
compatibility equations 40, 52, 69-70
compatible deformation of the layers 255
complementary elastic potential 125-126,
compliance 1
compliance coefficients 86, 152, 156, 230
compliance matrix 45-46
composite beam theory 157
composite body of a space telescope 305
composite bundles 66
composite fibers 182
composite laminate 121, 124
composite laminates of uniform
composite lattice shear web structure 214
composite layer 121, 140
composite materials 9, 21-22, 163
composite panel 378
composite pins 215
composite pressure vessel 370, 391
composite profiles 23
composite section of a space telescope 306
composite shell with radial reinforcement
composite structures of uniform
compression across the fibers 95, 200
compression along the fibers 95
compression failure modes 104
compression molding 24
compression strength of composites 112
compressive cycle 338
compressive direct pulse 343
compressive stress 197
concept of the accumulation of material
damage 332
constitutive equation 5, 324
constitutive equation of the deformation
theory 139
constitutive equation of the hereditary
theory 321
constitutive equations 3, 41, 45, 48, 53,
interfaces I10
128, 143
strength 372
1I9
strength 365
70, 81, 85, 92, 125, 127-128, 130, 136,
140-141, 143-144, 146, 153, 164, 166,
201, 21 1, 218, 229, 237, 242-244, 262,
328, 362, 372
constitutive equations for an angle-ply
layer 186
constitutive equations for an anisotropic
layer 227
constitutive equations for an anisotropic
unidirectional layer 147, 149
constitutive equations for the generalized
layer 235
constitutive equations for the monotropic
model of the ply 84, 366
constitutive equations for transverse
shear 230, 232-233
constitutive equations of the deformation
theory of plasticity 132, 136
constitutive equations of the flow
theory 137
constitutive equations of thermoelastisity
310
constitutive equations of thermoplasticity 315
constitutive equations relating transverse
shear stresses 186
constitutive law 3
convolution theorem 327
coordinate of the reference plane 251
coordinates of the layer 140
cotton fibers 14
coupling 248
coupling coefficients 162, 241, 249
coupling effects 229, 271
coupling stiffness coefficients 253
coupling stiffnesses
coupling stiffness coefficients of the
laminate 239
crack 61, 168, 171
crack induced by the fiber damage 67
crack length 61
crack propagation 336
cracked cross-ply composite laminate 180
cracks in the matrix
cracks parallel to fibers 279
creep 5, 8, 319
creep compliance 321-322, 327, 329-330
creep compliance function 321
creep curve 320, 329
creep deformation 5, 331
creep diagram 320, 325, 331
creep kernel 321
151, 154, 239, 241
176, 197-200, 205,
297, 340, 376400 Subject index
creep problem 329
creep strain 8
creep test 319, 322
CRISM vi, 23, 25-27, 122-123, 148, 185,
critical stress 62
cross-ply antisymmetric panel 357
cross-ply glass-epoxy layer 183
cross-ply laminate 166, 369
cross-ply layer 163, 166, 248
cross-ply layer in a plane stress state
cross-ply layer with a crack
CTE 307, 313, 360
cubic constitutive law 128
cubic criterion 284
curing 301, 318, 351
curved composite pipe 196
cycle of vibration 334
cyclic loading 334-336, 338
206, 213-214, 294, 306, 350
175
168
dacron fibers 6
damping capacity 346
deflection 160, 263
deformable epoxy matrix 182
deformation theory of plasticity 128, 139
degradation of material properties 318
degraded ply 176
delamination 77, 112, 172, 205, 285, 340,
343-344
differential equilibrium equations 32
direct stress wave 344
directions of principal strains 368
directions of principal stresses 377
displacement boundary conditions 48
displacement formulation 48
displacements 36, 39, 42, 73, 226
dissipation factor 33&335
dome meridian 387
dry bundle of fibers 76
ductile materials 79
durability 332
effect of aging 319
effective (apparent) moduli 81
effective (apparent) stiffnesses 213
effective (apparent) transverse modulus
effective elastic constants 84
effective modulus 114
88
effective strength 66
eight-sector test fixture 102
elastic constants 47, 21 1, 222, 304,
elastic constants of a unidirectional
ply 81, 170
elastic deformation 5
elastic energy 3
elastic material 3, 43
elastic model 3-4
elastic potential 4, 44, 46, 61, 125, 128,
elastic potential energy 334
elastic solid 41, 126
elastic strains 128, 145, 307
elastic volume deformation 129
elastic waves 344
elastic-plastic behavior of metal layer
elastic-plastic material model 5, 162
elastic-plastic material 133
elastic-plastic Poisson’s ratio 129
elastic-viscoelastic analogy 327, 329
elasticity theory 145
elastomers 124
elementary cross-ply couples 240
elementary layer 55
elliptic integrals 387
elongation 2
energy criteria 49
energy dissipation 334-335
energy of buckled fibers 109
engineering elastic constants 237
environmental effects 301
epoxy matrix 17
epoxy resin 6, 17, 23, 100, 180
equilibrium equations 30, 48, 51-53, 69,
Euclidean space 41,49
Euler integral 383
experimental ballistic limit 348
experimental creep diagram 322
experimental isochrone stress-strain
experimental material characteristics 272
experimental stressstrain curve 138
experimental stress-strain diagram 142,
experimental thermal expansion
307-308
145
128
169, 202,262, 365
diagram 331
146
coefficients 308Subject index 401
exponential approximation 322
extension-shear coupling coefficient 46
extension-twisting coupling effect 249
fabric carbonfabric composites 208, 209, 276-277, 304,
338, 375
fabric count 209
fabric layers 205
fabric weave 209
fabric-epoxy composites 376
facings 249-250
failure criteria 293
failure criteria for an elementary composite
failure criteria of approximation type 273
failure criterion 271, 282, 378
failure envelope 27I , 275-276, 278,
failure mechanism 95
failure mode
failure mode under longitudinal
compression 106
failure modes of the unidirectional composite under in-plane pure shear
failure modes of unidirectional rings
failure of longitudinal plies 174
failure of the fibers
failure of the laminate 376
failure of the matrix 179, 197, 297
failure surface 271-275
failure under compression along the
fibers 103
failure under transverse compression
fatigue curve 337
fatigue diagram 337, 339
fatigue failure 339
fatigue fracture 336, 340
fatigue strength 80, 180, 336, 338
fiber bending stiffness 112
fiber buckling 107
fiber defects 76
fiber elasticity modulus 68
fiber failure 97, 102
fiber fraction 91
fiber fragmentation test 77
fiber ineffective length 77
fiber modulus 82, 86
layer/ply 271
282-283
113, 272-273, 278, 280,
299-300
100
102
115, 176, 179
113
fiber orientation angle after the
deformation I94
fiber placement technology 24
fiber processability 15
fiber properties 82
fiber sensitivity to damage 66
fiber strength 62, 82
fiber strength deviation 64
fiber strength in compression I12
fiber volume fraction 55, 66, 79, 84, 91,
96, 106,208, 304
fiber with a crack 61
fiber-matrix adhesion strength I19
fiber-matrix interaction 58, 77
fiber-matrix interface 80
fiberglass composites I80
fiberglass fabric 23
fiberglass fabric composite 209
fibcrs 9, 55
fibers bending 107
fibers for advanced composites 6, 10
fibers microbuckling 107
fibers orientation angles 365, 378
fibrous technology 22
filament winding 24, 26, 184, 256, 301,
filament wound composite pressure
filament wound fiberglass pressure
filament wound glass-epoxy pressure
filament wound membrane shells of
filament wound pressure vessel 371
fill direction 375
fill yarns 207-208
filled materials 9
finite element method 135
first-order micromechanical model 118,
307
first-order microstructural model of a
hybrid unidirectional ply 114
first order microstructural model 308
first order model of a unidirectional
first-order model of a ply
fixture for transverse tension and com-
352
vessel 121, 123, 140
vessel 299-300
vessel 331
revolution 379
PlY 85
84, 90, 92, 304
pression of unidirectional strips 104402 Subject index
flexural strength 319
flow theory of plasticity 136, 139
flying projectile 346
foam core 239, 249-250, 344, 346
force boundary conditions 32, 48, 52
force-deflection curve 347
formation of cracks 174
four-layered structure of the space
telescope 313
fourth-order criterion 284
Fracture Mechanics 61-62
fracture toughness 79
fracture work 347
free shear deformation 161
free temperature strains 360
free tension 158
free-edgeeffect in an angle-ply specimen
free-edge effects 201, 205
furfural resin 21
201
generalized anisotropic layer 225
generalized strains 227, 229
geodesic line 385
geodesic winding 26
geometrically nonlinear problem of the ply
glass fabric 208
glass fabric-epoxy composite 208, 304
glass fabric-epoxy-phenolic composite
glass fibers 6, 10
glass transition temperature 18-19
glass-epoxy composite 77, 96, 167, 182,
glass-epoxy composite material 118
glass-epoxy fabric composite 275-276
glass-epoxy fabric tape 294
glass-epoxy sandwich layer 170
glass-epoxy unidirectional composite
glass-phenolic fabric composite 276
global coordinate frame 121, 147
global coordinates of the laminate
271
graphite fibers 1 1
graphitization 11, 21
Green’s formulas 44
Green’s integral transformation 32, 50
deformation 189
339
256, 304, 360, 370, 376
183,278
hand lay-up 24-25, 301
heat transfer 303
heat transfer in an orthotropic ply 304
helical plies 296
helicopter rotor blades 337
hereditary theory 320, 326-327
hereditary theory constitutive
equations 326
hexagonal array 58
hexagonal fiber distribution 56
high-cycle fatigue 338
high-modulus carbon fibers 7, 11
high-strength carbon fibers 7, 11
higher-order microstructural models 90,
highly deformable composite material
high-modulus (HM) and high-strength
high-modulus carbon-poxy composite
history of loading 4-5, 136, 138
homogeneous layer 225
homogeneous model of the laminate 242
homogeneous orthotropic layer 163
honeycomb core 249
Hooke’s law 4, 121, 128, 136, 149, 205,
307, 380
hoop layer 260,267
Huber-Mises plasticity criterion 292
hybrid composites 113-1 14
hybrid composite elements I2
hybrid thermoset-thermoplastic unidirectional composite 183
hybrid unidirectional composites 116
hygrothermal effects 317
hyperbolic shell 387
304
195
(HS) carbon fibers 12
308
impact energy 340
impact loading 340
impact resistance 349
impact tensile stress 346
impregnation 22
incompressible material 124, 129
inflection point 388
inhomogeneous microstructure 80
initial static strength 333
initial strains 134
initial stresses 134Subject index 403
initial tension of the tape 352
in-plane contraction 229
in-plane deformation 359
in-plane displacements 357
in-plane extension 229
in-plane loading 243
in-plane normal stress 80
in-plane shear 95, 100,227, 229, 273, 278,
in-plane shear of the laminate 372
in-plane shear strength 96, 208
in-plane shear stress 80
in-plane stressed state of the layer 237
in-plane stresses 143
in-plane tension or compression 227
in-plane thermal conductivities of the
instant elastic strain 322
instantaneous modulus of the material
integral equilibrium equations 32
interaction of fracture modes 112
interaction of normal stresses 276
interaction of stresses 276, 283
interaction of the fabric layers 349
interaction of the layers 262
interlaminar delamination 341
interlaminar fracture 284
interlaminar normal stress 341
interlaminar shear stiffness 204
interlaminar shear strength 284-285
interlaminar shear stress 201, 205
interlaminar strength 284
interlaminar stresses 255, 260
interstage composite lattice structure 214
invariant characteristics (invariants) of the
invariant combination of stiffness
invariant constitutive equations 126
invariant of the strength tensor 290-291
invariant stiffness characteristics 151
inverse Laplace transformation 329-330
isochrone stress-strain diagram 320
isotensoid 386
isotensoid shape 390
isotropic layer 121, 377
isotropic material 47
isotropic polymeric material 128
323, 356
laminate 305
324
stressed state 35
coefficients 151
iteration methods I36
iterative linearization 133
jute fibers 14
kinematic boundary conditions 48
kinematically admissible field 4142,
knitted fabrics 210
knitting patterns 210
K-number 15
49-50
Lagrange’s multipliers 52-53
lamina 55
laminate 238, 240, 271, 302-303, 318,
365
laminate characteristics 225
laminate composed of angle-ply
laminate composed of identical homogelaminate composed of inhomogeneous
laminate curvatures 3I3
laminate failure I67
laminate in-plane deformation 313
laminate out-of-plane deformation 313
laminate load-carrying capacity 271
laminate middle plane 245
laminate reference surface 263
laminate stiffness coefficient 374
laminate strength 284, 293
laminate structure 368
laminate thickness 366
laminate twist 313
laminate under impact load 342
laminated composite material 24
laminated polymeric composite panel 355
laminates of uniform strength 375
Laplace transforms 326-327, 329
Laplace transformation 326, 329
large strains 194
lattice layer 212
lattice structure 212-213, 215
layer 121, 255, 303
layer failure 172
layer fracture 271
layer of aluminum foil 306
layer shrinkage 360
layers 242
neous layers 240
orthotropic layers 240404 Subject index
layer stiffnesses 175, 229
layer strength 272
layer-wise array 58
layer-wise fiber distribution 57, 87
layer with cracks 172
lay-up manufacturing 206
lay-up method 206
lay-up technology 24
least-squares method 144
limited creep 325-326
linear elastic material model 44,127
linear elastic model 4, 44,121, 140, 147,
163, 185
linear elastic solid 126, 128
linear elasticity problem 327
linear material structure 22
linear strain-displacement equations 38
linear viscoelasticity problem 327
linear-viscoelastic material behavior 320
linear-viscoelastic material 320
linen fibers 14
local buckling of fibers 107
local buckling of plies 341
local waviness 354
longitudinal compression 103, 112-1 13,
longitudinal compression of a unidireclongitudinal compressive strength 96,
longitudinal conductivity 304
longitudinal CTE 304
longitudinal modulus 96-97, 208, 316
longitudinal modulus of a ply 81
longitudinal modulus of a unidirectional
longitudinal stress 85
longitudinal tensile strength 95-97, 208
longitudinal tension 95, 273, 323
long-term loading 332, 334
long-term strength of composite materials
long-time modulus 324, 326
low-cycle fatigue 338
low-cycle loading 339
lower bound for the actual transverse shear
stiffness 233, 235
lower bound on the apparent transverse
modulus 93
273, 280
tional ply 279
208, 316
composite 208
332
machine lay-up 24
macroheterogeneity 22
magnesium matrix 20
mandrel 359-361
manufacturing effects 301, 350
mass fraction 55
master curve 130
material aging 318
material anisotropy 46
material coordinates 140
material damage accumulation 332, 336
material degradation 332
material durability 333
material failure 79, 118, 278
material failure under transverse tension
material fracture 60
material hardening 200
material long-term strength 338
material macrostructure 22
material microstructure 22
material penetration 340
material porosity 57
material relaxation time 335
material shrinkage 352, 359
material stiffness
material strength
material strength characteristics 287
material strength in compression 341
material strength in shear 156
material strength under compression 283,
355
material strength under tension and in
shear 291
matrix 9, 16, 55
matrix cracking 196
matrix degradation 180, 319
matrix fraction 55, 91
matrix material 9, 16
matrix modulus 81, 86
matrix of compliance coefficients 45
matrix shear modulus 68, 77, 82
matrix shear stiffness 77
matrix stiffness 16, 67, 76
matrix strength 8142
matrix viscosity 17
matrix volume fraction 55, 84, 304
maximum bending stiffness 247
97
1-2, 16, 180, 318
1 , 16, 273, 277, 283,
291, 308, 318, 340Subject index 405
maximum shear stress 77
maximum shear stress criterion 293
maximum strain criterion 274, 279
maximum strain failure criterion 278
maximum stress criterion 274-278, 283,
maximum stress strength criterion 197
mean strength 65
mean stress 123, 338
mean value of the fiber strength 63
mechanical characteristics of the fibers 81
mechanical characteristics of the
mechanical properties of a ply 95
mechanics of laminates 225
Mechanics of Materials 9
Mechanics of Solids 8, 29, 48-49, 272
mechanism of the crack stopping 80
melts 22
membrane stiffness coefficients 229, 239
membrane stiffnesses 239, 241, 297-298
membrane-bending coupling 242
membrane-bending coupling coefficients 229, 236, 252
memory function 321
meridian of the optimal shell 381
metal alloys 6
metal fibers 13
metal layer 124
metal mandrel 23
metal matrices 19
metal matrix composites
metal pins 215
metal wires 6
method of elastic solutions 133-135,
method of elastic variables 134, 136
method of Lagrange multipliers 366
method of reduced bending stiffnesses
method of reduced or minimum bending
method of successive loading 134, 136,
method of variable elasticity parameters
microbuckling of fibers 341
microcomposite material 82
microcomposite strand 82
285, 295, 375
matrix 81
13, 20, 316
I89
254
stiffnesses 253
197, 317
134
microcracking of the matrix 166
microcracks 62
microheterogeneity 22
micromechanical analysis 95
micromechanical models 83, 87, 91
micromechanics 81 , 91
micromechanics of a ply 80
microphenomenological approach 271
microstructural approach 332
microstructural model of the secondmicrostructural model 272
microstructural thermal stresses 308
microstructure of the material 90
middle plane of the layer 236
mineral fibers 11
mineral-fiber composites 301
mixed variational principles 52
mode of failure 281, 297
model bundles 64
model isotensoid 390
model of a unidirectional ply with a broken
modes of fiber local buckling 107
modulus of an angle-ply layer 204
modulus of elasticity 4, 46, 59, 123, 245
modulus of the =t4angle-ply layer
moisture 301
moisture absorption 317
moisture concentration 317
moisture content 317
moisture diffusion coefficient 317
moisture diffusion process 317
monotropic layer 369
monotropic model 83, 385
monotropic model of unidirectional ply
multiaxial woven fabrics 209
multi-dimensionally reinforced materials
order 89
fiber 67
187
298, 365, 375-376, 378
216
natural fibers 14
natural silk fibers 14
near net-shape manufacturing of tubes and
profiles 210
needle punching 215
Newton’s method 134-1 35
nickel matrix 20
nitron fibers 6406 Subject index
nonlinear behavior of isotropic polymeric
nonlinear behavior of a cross-ply
nonlinear behavior of an angle-ply
nonlinear behavior of composite material
nonlinear behavior of elastomers 124
nonlinear constitutive equations 161, 188
nonlinear constitutive theory 124, 142
nonlinear deformation of an anisotropic
nonlinear elastic behavior of a unidirecnonlinear elastic material 133
nonlinear elastic material model 5, 124,
nonlinear elastic models 126
nonlinear elastic-plastic behavior of metal
nonlinear hereditary theory 331
nonlinear material behavior 5
nonlinear models 124, 142, 161, 166, 188
nonlinear phenomenological model of the
nonlinear stress-strain diagram 17, 127,
nonlinear viscoelastic behavior 331
nonsymmetric laminate 257
normal deflection 226
normal element 226
normal stress 29, 33, 72
normalized strength 15-16
number of layers 225
nylon 6
material 128
layer 166
layer 188
145
unidirectional layer 161
tional layer 143
I62
layers 128
cross-ply layer 174
211
oblique plane 33
off-axis compression 278
off-axis tension 278
off-axis test 155-157
off-axis test of a unidirectional
one-term exponential approximation 323
one-term exponential approximation of the
optimal angles 368
optimal composite structures 365
optimal composite vessel 370
composite 153
creep compliance 326
optimal filament wound shell 381-383,
optimal laminate 368-370, 372, 374-377
optimal orientation angles 377-378
optimal structural parameters of the
optimal structure of the end closure of
optimal structures 369
optimality conditions 367, 376
optimality criterion 365, 373
organic fibers 12
organic resin 21
organosilicone resin 6, 19
orthogonally reinforced orthotropic
orthotropic angle-ply *4 layer 187
orthotropic core 250
orthotropic homogeneous material 118
orthotropic laminate 239
orthotropic layer 140, 233, 271-272, 309,
orthotropic material 4W7, 146,287,290,
orthotropic ply 80, 271
385
laminate 374
pressure vessel 387
layer 163
373
327
PA1 6, 19
PAN-based carbon fibers 11
parametric equation for the shell
PEEK 6, 19
periodical system of fibers 91
permanent failure 174
petroleum pitch 12
phenol-formaldehyde resin 6
phenolic resin 21
phenomenological homogeneous model of
a ply 117
phenomenological model 217
phenomenological model of a composite
material 118
phenomenological theory 29
Physics of Solids 59
pitch 21
pitch-based carbon fibers 11
plain weave 209
plane laminated material structure 22, 24
plane stress state 130, 143, 146, 163, 271,
meridian 383
372Subject index 407
plastic behavior 130
plastic deformation 5
plastic Poisson’s ratio 132
plastic potential
145-146
plastic strain 5, 8, 128-130, 137, 145
plasticity criterion of maximum shear
stress 293
plasticity theory 130
ply degradation 177, 197
ply interaction 201
ply longitudinal modulus 115
ply microstructure 81, 83
ply orientation 121
ply stiffness across the fibers 91
ply stiffness in shear 91
ply strength 365
ply thermal conductivity 305
ply transverse stiffness 91
ply waviness 353-355
ply dissipation factor 335
Poisson’s effect 279
Poisson’s ratio 46, 86, 96-97, 123, 208,
polar opening 388
polyacrylonitrile (PAN) filaments I1
polyamide-imide (PAI) 6
polyester 6
polyester resin 6. 17
polyetheretherketone (PEEK) 6
polyethylene 6
polyethylene fibers 7, 12
polyimidc resin 6, 17, 19
polymeric and metal matrices 99
polymeric composites 18, 301, 318
polymeric layer 124
polymeric matrices 17-1 8, 318-3 19
polynomial approximation 125
polynomial criterion 281, 284
polyphenylenesulfide (PPS) 6
polypropylene fibers 6
polystyrene 6
polysulfone (PSU) 6, 19
potential energy 3, 43
potential energy of the body
power approximation 130-133, 138
power hardening law 132
power law for the plastic potential
128, 130, 137-1 38,
ply 55, 121
245, 252
46
146
preimpregnated fiberglass fabric 25
preliminary tension 24, 352
prepreg 22-23
pressure vessel 26, 140, 179,369-370,379,
principal axes 34, 36
principal coordinates 34, 36
principal material axes 140,217,255,271,
principal material coordinates 147,
388
291, 309, 335
153-154, 161, 163, 166, 211, 218, 260,
285-287, 295, 304, 368, 374, 380
principal planes 35-36
principal strains 373
principal stresses 34-36, 293, 373, 376,
principle of minimum strain energy 52,
principle of minimum total potential
process of the failure 349
processing 21
processing temperature 18-1 9
projectile residual velocity 347
projectile striking velocity 347
properties of unidirectional composites
proportional loading 138-1 39, 156
protective coatings 21
pultrusion 22-23, 301
pure shear 35, 286, 372
pure shear in a twisted tubular specimen
103
pure transverse shear of a cross-ply
layer 165
pyrolysis 11, 13, 21, 26
pyrolytic carbon 21
pyrolytic carbon matrix 24
381
91, 169, 234
energy 51,93, 233
96
quadratic approximation strength
quartz fibers 6, IO
quasi-homogeneous laminates 240
quasi-isotropic laminates 243, 245, 369,
quasi-isotropic materials 377
quasi-isotropic properties of the
quasi-static test 347
criterion 293
377
laminates 244408 Subject index
radial compression 262
radial displacement 263
radius of polar opening 390
rate of loading 5, 319
rayon organic filaments 11
rectangular pulse 343
reference plane 225, 236, 252
reference surface 267
reference surface of the laminate 314
reflected pulse 343
regular inclusions 90
regular system of cracks
reinforced materials 9
relaxation diagram 325
relaxation kernel 322
relaxation modulus 322, 327
residual strain 5,8, 361
resin transfer molding 26
resultants of the shear stresses 230
rheologic characteristics of structural
rheological mechanical model 323
rice fibers 14
Riemannian (curved) space 41
rotation 33, 226
rotation angle 40-41, 194
rule of mixtures 86
Russian Composite Center - Central
171
materials 319
Institute of Special Machinery
(CRISM) vi
safety factor 180
sandwich laminate 230, 250
sandwich structure 239, 249, 252, 344
satin weave 209
secant modulus 5, 7, 131-133, 143
second-order model of a ply 87, 90, 98
second-order polynomial approximation
second-order polynomial criterion 285
second-order tensor criterion 286
sewing 215
shear deformation 142, 156
shear failure under compression 105
shear mode of buckling 108
shear mode of fracture 113
shear modulus 46, 96, 123, 208
shear modulus of a ply 81
shear modulus of an angle-ply layer
281
188
shear stiITness 142
shear strain 38-39, 69, 85, 294
shear strain in the matrix layer 69
shear strength 365
shear stress 29, 34, 72, 85, 197, 198
shear stress concentration 77
shear-shear coupling coefficient 46, 153
shear-extension coupling 242
shear-extension coupling coefficient 46,
shear-twisting coupling 242
short fibers 215
shrinkage characteristics of a unidirectional
ply 362
shrinkage strains 360
silicon carbide 13, 21
silicon carbide (Sic) fibers 7, 13
simplest approximation criterion 283
simulation of pure shear in a square
single fiber fragmentation test 77
singular approximations 326
sisal fibers 14
sixth-order approximation 143
small strains 39
small variation of displacements 51
small variation of strains 51
space of stresses 271
spatial (3D, 4D) structures 24
spatial material structure 22, 215
spatially reinforced composites 215, 217
spatially reinforced layers 214
spatially reinforced structure 217
special loading effects 301
specific elastic energy 4
specific energy 60
specific heat 302
specific modulus 4, 6-7
specific stiffness 365
specific strain energy 44, 47
specific strength 2, 6-7, 365, 369, 391
specific surface energy 60
specimen buckling I13
specimens of matrix material 82
spider silk fibers 14
square array 58
square fiber distribution 56
stacking sequence 225, 252-253, 344, 365
stacking-sequencenotations 240, 247
153
frame 105Subject index 409
standard types of specimens 95
static boundary conditions 48
static strength 79
statically admissible stress field 49
statically and kinematically admissible
stress and strain fields 94
Statics of Solids 230
stiffness 1
stiffness coefficients 45, 150-1 51, 164,
217, 219, 225, 230, 232, 235, 237, 247,
251, 313
layer 236
stiffnesscoefficients of a homogeneous
stiffness coefficientsof a laminate 238
stiffness coefficientsof an orthotropic
stiffness degradation 339
stiffness matrix 46, 218
stiffnessof composite materials 339
stiffnessesof the degraded layer 176
stitching 215
strain 2, 37
strain concentration factor 106
strain energy 3, 129, 143, 234
strain energy of fibers 109
strain energy of the matrix
strain intensity 129
strain interaction 279
strain transformation 39
strain-displacement equations 38, 48, 53,
strength analysis 271, 293
strength criterion 271, 284, 287,
strength deviation 63
strength dispersion 64
strength matrix 289
strength of a composite bundle of
strength of a dry bundle of fibers 66, 96
strength of a unidirectional ply 64
strength of laminates 271
strength of the optimal laminate 378
strength scatter 63
strength tensor 285-286, 291
strength variation 65
stress 2, 29, 33
stress analysis of the matrix in the vicinity
layer 237
109
202, 230
289-290
fibers 66, 96
of fibers 91
stress concentration 77, 171, 201, 205,
stress concentration in the matrix 96
stress diffusion 16, 171
stress diffusion in fibers 65
stress diffusion in the vicinity of damaged
or broken fibers 181
stress formulation 48, 69
stress function 69
stress intensity
stress invariants 126-1 27
stress ratio 338
stress relaxation 319, 325
stress resultants and couples 227-229
stress space 139, 272
stress tensor 285
stress transformation 32
stress wave 343
stress-strain curve 3, 5, 100, 124-125,
144, 162, 200
stress-strain diagram of the cross-ply
layer 174
stress-strain diagram 3-4, 7, 10, 12,
17, 64, 79, 97, 99, 133, 182, 209.
319
336-337
128, 130, 137, 292
stresses in laminates 254
stresses in the principal material coordistretching ability 209
structural failure criteria 273
structural materials I
structural nonlinearity 189
structural strength criteria 274, 281
structure of uniform stress 382
structure of uniform stress and
strain 368
sun radiation 318
surface cracks 62
surface tractions 29, 31, 42, 51
symmetric f45" angle-ply laminate 369
symmetric kq5 angle-ply laminate 370
symmetric &4 angle-ply layer 310
symmetric angle-ply layer 186
symmetric laminates 245, 247
symmetric system of helical ribs
symmetry conditions 143
symmetry conditions for shear
synthetic fibers 6
nates 164
212
stresses 32410 Subject index
system of circumferential ribs 212
system of cracks parallel to fibers 168
table rolling 22-23
tangent modulus
tape orientation angle 384
tape overlap 352
teflon 6
teflon fibers 6
temperature coefficients 312
temperature effects 301
temperature gradient 305
temperature resistance 18
tensile interface stress 344
tensile load cycle 338
tensile stiffnesses 151
tensile strength 96-97, 100, 316
tensile strength of unidirectional
tensile test 153
tension across the fibers 95
tension along the fibers 95
tension in two orthogonal directions 368
tension of f45" angle-ply specimen
tension of a cross-ply laminate 166
tension of angle-ply specimens 204
tensor criterion 290, 293
tensor strength criterion 290
tensor-polynomial criterion 292
tensor-polynomial strength criteria 29I ,
test fixtures for composite rings 101
testing of a microcomposite specimen 83
tex-number 15
textile denier-numbers (den) 15
theorem of proportional loading 139
theoretical density 57
theoretical prediction of material
stiffness 197
theoretical strength 58, 60, 62
theoretical strength of glass 62
theory of composite beams 217
theory of elasticity 134
theory of plasticity
thermal coefficients of the layer 314
thermal conductivity 301-302, 304
thermal conductivity of the fiber 304
thermal expansion coefficients 308-309
thermal resistance 306, 316
5, 7, 132, 138, 339
composites 78
188
293
128, 145, 292
thermal strains
thermal stresses 301, 307
thermoelastic behavior of a unidirectional
thermoelastic deformation 317
thermoelasticity 301, 307
thennoelasticity constitutive equations
thermo-mechanical diagram 18
thermoplastic carbon composite 311
thermoplastic matrices 17-19, 183
thermoplastic polymers 6, 121, 184
thermoset matrices 17
thermoset polymeric resins 6
thermostable structures 114
thick fiberglass rings 205
thin-walled cylindrical drive shaft 294
thin-walled tubular specimens 273
three-dimensional constitutive
three-dimensional stressed state of a
three-dimensionally woven or braided
three-dimensional weaving 215
three-point beam bending test 217
time of relaxation 325
time-dependent behavior of polymeric
composites 3I9
Timoshenko energy method 108
titanium carbide fibers 7
titanium matrix 20
Toray T-1000 carbon fibers
total potential energy of the body 51
total shear strain 165
toughness 21
tow 15-16, 55
tow processability 15
tow tex-number 57
translational displacement 226
transverse compression 113, 273
transverse compressive strength 96, 208
transverse conductivity 304
transverse CTE 304
transverse deformability 181
transverse extension failure mode I05
transverse force 157
transverse impact loads 340
301, 307, 309-310, 317,
356
composite ply 307
311
equations 217
layer 124
fabrics 215
12Subject index 41 1
transverse modulus 96, 100, 141, 208
transverse modulus of a ply 81
transverse normal stress
transverse shear compliance 249
transverse shear deformation 202, 260,
transverse shear forces 230
transverse shear modulus 142, 165
transverse shear modulus of the ply 202
transverse shear stiffness coefficients 247
transverse shear stiffnesses 236, 239,
transverse shear 237
transverse shear stress 202, 262, 284
transverse strains 85
transverse strength 365
transverse strength of a unidirectional
transverse tensile strain 279
transverse tensile strength 96, 100, 208
transverse tension 84, 92, 97, 102, 168,
273, 323
transverse tension of a ply 91
triaxial braid 210
triaxial reinforcement 215
tubular specimen for shear test
tubular specimens 274
twill weave 209
twist 361
twisting 227, 229, 237, 356, 359
two-dimensional (2D) braiding 24
two-layered angle-ply laminate 358
two-layered orthotropic cross-ply
two-matrix fiberglass composite 162, 182
two-matrix fiberglass unidirectional
two-matrix glass-epoxy composite 183,
two-stage impregnation 181
124, 198, 266,
278, 284
263
249-250
material 99
105
laminate 356
composite 144
189
ultimate elongation 79, 95, 124, 168, 180
ultimate elongation across the fibers 180
ultimate elongation along the fibers 180
ultimate elongations 1I5
ultimate fiber volume fraction 58
ultimate pressure 296, 391
ultimate strain 16-17
ultimate stress 2, 95, 274, 278
ultimate tensile stress 6-7, 14
ultimate theoretical stress 59
uniaxial longitudinal loading 143
uniaxial tension
unidirectional anisotropic layer 147
unidirectional aramid-epoxy composite
unidirectional boron-aluminum
unidirectional boron-epoxy composite
unidirectional carbon-epoxy composite
unidirectional carbon-epoxy layer 154
unidirectional carbon-glass epoxy
unidirectional composite 76, 142, 144,
unidirectional composite ply 80, 303,
unidirectional-epoxy composites 376
unidirectional glass4poxy composite
unidirectional layer 147, 297, 359
unidirectional orthotropic layer 140
unidirectional ply 5 - 5 6 , 121, 255,
unidirectional tape 55
unidirectional tow (roving) 15
unidirectional two-matrix composite 183
unidirectional weave 209
unidirectionally reinforced plates 96
uniformly stressed composite strucuniformly stressed fibers 365, 371
universal form of the polynomial criterion
universal stress-strain curve 131
universal stress-strain diagram 130
upper bound for the actual transverse shear
upper bound on the apparent transverse
129, 131, 138, 175, 197
material 99, 338
composite 79
material 100
material 98, 335
composite 117
217, 287, 304, 329, 351
327-328, 335, 365
material 97, 322
277-278, 304, 308
tures 391
282
stiffness 233-234
modulus 94
variation of the strain energy 51
variational equations 5 1
variational principle of minimum strain
energy 52412 Subject index
variational principle of minimum total
potential energy 51
variational principles 49, 91
viscoelastic deformation 319
viscoelastic material 334
viscoelastisity 319
viscose fibers 6
viscous strain 321
volume deformation 123
volume fraction 55, 57, 86, 95
volume modulus 124
warp direction 207, 221, 276, 375
warp yarns 207
warping 355
warping of laminates 359
water absorption 318
wave interaction 344
wave propagation 341
weave patterns 209
weight-saving factor 378
wet process 22
whiskers 60, 215
winding 351-352, 380
winding of a lattice layer 213
winding of unidirectional composite
wood compressed along the fibers
105
wood fibers 14
wool fibers 14
work of external forces 43
work of fracture 80
work of internal forces 43
woven composites 206
woven fabric composites 210
woven structure 206-207
tapes 384
yarn 15
zero thermal expansion 114, 311
zero-order model of a ply 83


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Mechanics and Analysis of Composite Materials
رابط مباشر لتنزيل كتاب Mechanics and Analysis of Composite Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 16770
التقييم : 29368
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Mechanics and Analysis of Composite Materials  Empty
مُساهمةموضوع: رد: كتاب Mechanics and Analysis of Composite Materials    كتاب Mechanics and Analysis of Composite Materials  Emptyالثلاثاء 16 يوليو 2013, 11:48 pm

جزاك الله خيراً وبارك الله فيك وجعله فى ميزان حسناتك

الرجوع الى أعلى الصفحة اذهب الى الأسفل
محمد محمد أحمد
مهندس فعال جدا جدا
مهندس فعال جدا جدا
محمد محمد أحمد

عدد المساهمات : 655
التقييم : 697
تاريخ التسجيل : 14/11/2012
العمر : 29
الدولة : EGYPT
العمل : Student
الجامعة : Menoufia

كتاب Mechanics and Analysis of Composite Materials  Empty
مُساهمةموضوع: رد: كتاب Mechanics and Analysis of Composite Materials    كتاب Mechanics and Analysis of Composite Materials  Emptyالأربعاء 17 يوليو 2013, 4:19 pm

جزاك الله خيرا

الرجوع الى أعلى الصفحة اذهب الى الأسفل
MUAMMARASBIGA
مهندس تحت الاختبار
مهندس تحت الاختبار
MUAMMARASBIGA

عدد المساهمات : 5
التقييم : 7
تاريخ التسجيل : 02/06/2013
العمر : 43
الدولة : ليبيا
العمل : الشركة العامة للكهرباء
الجامعة : النجم الساطع

كتاب Mechanics and Analysis of Composite Materials  Empty
مُساهمةموضوع: رد: كتاب Mechanics and Analysis of Composite Materials    كتاب Mechanics and Analysis of Composite Materials  Emptyالسبت 05 أكتوبر 2013, 12:57 pm

بارك الله فيك

الرجوع الى أعلى الصفحة اذهب الى الأسفل
ahmed mohab
مهندس تحت الاختبار
مهندس تحت الاختبار
ahmed mohab

عدد المساهمات : 7
التقييم : 9
تاريخ التسجيل : 01/10/2013
العمر : 27
الدولة : مصر
العمل : طالب
الجامعة : المنوفيه

كتاب Mechanics and Analysis of Composite Materials  Empty
مُساهمةموضوع: رد: كتاب Mechanics and Analysis of Composite Materials    كتاب Mechanics and Analysis of Composite Materials  Emptyالسبت 05 أكتوبر 2013, 9:01 pm

الله عليك يا هندسه هو ده ^_^

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Mechanics and Analysis of Composite Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: