Admin مدير المنتدى
عدد المساهمات : 18959 التقييم : 35383 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب The Physics of Vibrations and Waves الثلاثاء 21 مايو 2013, 10:03 am | |
|
أخوانى فى الله أحضرت لكم كتاب
The Physics of Vibrations and Waves - H. J. Pain Sixth Edition H. J. Pain Formerly of Department of Physics, Imperial College of Science and Technology, London, UK
ويتناول الموضوعات الأتية :
Introduction to First Edition xi Introduction to Second Edition xii Introduction to Third Edition xiii Introduction to Fourth Edition xiv Introduction to Fifth Edition xv Introduction to Sixth Edition xvi 1 Simple Harmonic Motion 1 Displacement in Simple Harmonic Motion 4 Velocity and Acceleration in Simple Harmonic Motion 6 Energy of a Simple Harmonic Oscillator 8 Simple Harmonic Oscillations in an Electrical System 10 Superposition of Two Simple Harmonic Vibrations in One Dimension 12 Superposition of Two Perpendicular Simple Harmonic Vibrations 15 Polarization 17 Superposition of a Large Number n of Simple Harmonic Vibrations of Equal Amplitude a and Equal Successive Phase Difference d 20 Superposition of n Equal SHM Vectors of Length a with Random Phase 22 Some Useful Mathematics 25 2 Damped Simple Harmonic Motion 37 Methods of Describing the Damping of an Oscillator 43 3 The Forced Oscillator 53 The Operation of i upon a Vector 53 Vector form of Ohm’s Law 54 The Impedance of a Mechanical Circuit 56 Behaviour of a Forced Oscillator 57 Behaviour of Velocity v in Magnitude and Phase versus Driving Force Frequency x 60 Behaviour of Displacement versus Driving Force Frequency x 62 Problem on Vibration Insulation 64 Significance of the Two Components of the Displacement Curve 66 Power Supplied to Oscillator by the Driving Force 68 Variation of Pav with x. Absorption Resonance Curve 69 The Q-Value in Terms of the Resonance Absorption Bandwidth 70 The Q-Value as an Amplification Factor 71 The Effect of the Transient Term 74 4 Coupled Oscillations 79 Stiffness (or Capacitance) Coupled Oscillators 79 Normal Coordinates, Degrees of Freedom and Normal Modes of Vibration 81 The General Method for Finding Normal Mode Frequencies, Matrices, Eigenvectors and Eigenvalues 86 Mass or Inductance Coupling 87 Coupled Oscillations of a Loaded String 90 The Wave Equation 95 5 Transverse Wave Motion 107 Partial Differentiation 107 Waves 108 Velocities in Wave Motion 109 The Wave Equation 110 Solution of the Wave Equation 112 Characteristic Impedance of a String (the string as a forced oscillator) 115 Reflection and Transmission of Waves on a String at a Boundary 117 Reflection and Transmission of Energy 120 The Reflected and Transmitted Intensity Coefficients 120 The Matching of Impedances 121 Standing Waves on a String of Fixed Length 124 Energy of a Vibrating String 126 Energy in Each Normal Mode of a Vibrating String 127 Standing Wave Ratio 128 Wave Groups and Group Velocity 128 Wave Group of Many Components. The Bandwidth Theorem 132 Transverse Waves in a Periodic Structure 135 Linear Array of Two Kinds of Atoms in an Ionic Crystal 138 Absorption of Infrared Radiation by Ionic Crystals 140 Doppler Effect 141 6 Longitudinal Waves 151 Sound Waves in Gases 151 vi Contents Energy Distribution in Sound Waves 155 Intensity of Sound Waves 157 Longitudinal Waves in a Solid 159 Application to Earthquakes 161 Longitudinal Waves in a Periodic Structure 162 Reflection and Transmission of Sound Waves at Boundaries 163 Reflection and Transmission of Sound Intensity 164 7 Waves on Transmission Lines 171 Ideal or Lossless Transmission Line 173 Coaxial Cables 174 Characteristic Impedance of a Transmission Line 175 Reflections from the End of a Transmission Line 177 Short Circuited Transmission Line ðZL ¼ 0Þ 178 The Transmission Line as a Filter 179 Effect of Resistance in a Transmission Line 183 Characteristic Impedance of a Transmission Line with Resistance 186 The Diffusion Equation and Energy Absorption in Waves 187 Wave Equation with Diffusion Effects 190 Appendix 191 8 Electromagnetic Waves 199 Maxwell’s Equations 199 Electromagnetic Waves in a Medium having Finite Permeability l and Permittivity e but with Conductivity r ¼ 0 202 The Wave Equation for Electromagnetic Waves 204 Illustration of Poynting Vector 206 Impedance of a Dielectric to Electromagnetic Waves 207 Electromagnetic Waves in a Medium of Properties l, e and r (where r 6¼ 0) 208 Skin Depth 211 Electromagnetic Wave Velocity in a Conductor and Anomalous Dispersion 211 When is a Medium a Conductor or a Dielectric? 212 Why will an Electromagnetic Wave not Propagate into a Conductor? 214 Impedance of a Conducting Medium to Electromagnetic Waves 215 Reflection and Transmission of Electromagnetic Waves at a Boundary 217 Reflection from a Conductor (Normal Incidence) 222 Electromagnetic Waves in a Plasma 223 Electromagnetic Waves in the Ionosphere 227 9 Waves in More than One Dimension 239 Plane Wave Representation in Two and Three Dimensions 239 Wave Equation in Two Dimensions 240 Contents vii Wave Guides 242 Normal Modes and the Method of Separation of Variables 245 Two-Dimensional Case 246 Three-Dimensional Case 247 Normal Modes in Two Dimensions on a Rectangular Membrane 247 Normal Modes in Three Dimensions 250 Frequency Distribution of Energy Radiated from a Hot Body. Planck’s Law 251 Debye Theory of Specific Heats 253 Reflection and Transmission of a Three-Dimensional Wave at a Plane Boundary 254 Total Internal Reflection and Evanescent Waves 256 10 Fourier Methods 267 Fourier Series 267 Application of Fourier Sine Series to a Triangular Function 274 Application to the Energy in the Normal Modes of a Vibrating String 275 Fourier Series Analysis of a Rectangular Velocity Pulse on a String 278 The Spectrum of a Fourier Series 281 Fourier Integral 283 Fourier Transforms 285 Examples of Fourier Transforms 286 The Slit Function 286 The Fourier Transform Applied to Optical Diffraction from a Single Slit 287 The Gaussian Curve 289 The Dirac Delta Function, its Sifting Property and its Fourier Transform 292 Convolution 292 The Convolution Theorem 297 11 Waves in Optical Systems 305 Light. Waves or Rays? 305 Fermat’s Principle 307 The Laws of Reflection 307 The Law of Refraction 309 Rays and Wavefronts 310 Ray Optics and Optical Systems 313 Power of a Spherical Surface 314 Magnification by the Spherical Surface 316 Power of Two Optically Refracting Surfaces 317 Power of a Thin Lens in Air (Figure 11.12) 318 Principal Planes and Newton’s Equation 320 Optical Helmholtz Equation for a Conjugate Plane at Infinity 321 The Deviation Method for (a) Two Lenses and (b) a Thick Lens 322 The Matrix Method 325 viii Contents 12 Interference and Diffraction 333 Interference 333 Division of Amplitude 334 Newton’s Rings 337 Michelson’s Spectral Interferometer 338 The Structure of Spectral Lines 340 Fabry -- Perot Interferometer 341 Resolving Power of the Fabry -- Perot Interferometer 343 Division of Wavefront 355 Interference from Two Equal Sources of Separation f 357 Interference from Linear Array of N Equal Sources 363 Diffraction 366 Scale of the Intensity Distribution 369 Intensity Distribution for Interference with Diffraction from N Identical Slits 370 Fraunhofer Diffraction for Two Equal Slits ðN ¼ 2Þ 372 Transmission Diffraction Grating (N Large) 373 Resolving Power of Diffraction Grating 374 Resolving Power in Terms of the Bandwidth Theorem 376 Fraunhofer Diffraction from a Rectangular Aperture 377 Fraunhofer Diffraction from a Circular Aperture 379 Fraunhofer Far Field Diffraction 383 The Michelson Stellar Interferometer 386 The Convolution Array Theorem 388 The Optical Transfer Function 391 Fresnel Diffraction 395 Holography 403 13 Wave Mechanics 411 Origins of Modern Quantum Theory 411 Heisenberg’s Uncertainty Principle 414 Schro¨dinger’s Wave Equation 417 One-dimensional Infinite Potential Well 419 Significance of the Amplitude wnðxÞ of the Wave Function 422 Particle in a Three-dimensional Box 424 Number of Energy States in Interval E to E þ dE 425 The Potential Step 426 The Square Potential Well 434 The Harmonic Oscillator 438 Electron Waves in a Solid 441 Phonons 450 14 Non-linear Oscillations and Chaos 459 Free Vibrations of an Anharmonic Oscillator -- Large Amplitude Motion of a Simple Pendulum 459 Contents ix Forced Oscillations – Non-linear Restoring Force 460 Thermal Expansion of a Crystal 463 Non-linear Effects in Electrical Devices 465 Electrical Relaxation Oscillators 467 Chaos in Population Biology 469 Chaos in a Non-linear Electrical Oscillator 477 Phase Space 481 Repellor and Limit Cycle 485 The Torus in Three-dimensional ð_x; x; t) Phase Space 485 Chaotic Response of a Forced Non-linear Mechanical Oscillator 487 A Brief Review 488 Chaos in Fluids 494 Recommended Further Reading 504 References 504 15 Non-linear Waves, Shocks and Solitons 505 Non-linear Effects in Acoustic Waves 505 Shock Front Thickness 508 Equations of Conservation 509 Mach Number 510 Ratios of Gas Properties Across a Shock Front 511 Strong Shocks 512 Solitons 513 Bibliography 531 References 531 Appendix 1: Normal Modes, Phase Space and Statistical Physics 533 Mathematical Derivation of the Statistical Distributions 542 Appendix 2: Kirchhoff’s Integral Theorem 547 Appendix 3: Non-Linear Schro¨dinger Equation 551 Index
أتمنى أن تستفيدوا منه وأن ينال إعجابكم
رابط تنزيل كتاب The Physics of Vibrations and Waves - H. J. Pain
|
|