Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب A Mathematical Introduction to Robotic Manipulation الثلاثاء 14 مايو 2013, 5:09 pm | |
|
أخوانى فى الله أحضرت لكم كتاب
A Mathematical Introduction to Robotic Manipulation - Murray
ويتناول الموضوعات الأتية :
Introduction Brief History Multifingered Hands and Dextrous Manipulation Outline of the Book Manipulation using single robots Coordinated manipulation using multifingered robot hands Nonholonomic behavior in robotic systems Bibliography Rigid Body Motion Rigid Body Transformations Rotational Motion in R Properties of rotation matrices Exponential coordinates for rotation Other representations Rigid Motion in R Homogeneous representation Exponential coordinates for rigid motion and twists Screws: a geometric description of twists Velocity of a Rigid Body Rotational velocity Rigid body velocity Velocity of a screw motion Coordinate transformations Wrenches and Reciprocal Screws Wrenches Screw coordinates for a wrench Reciprocal screws Summary Bibliography Exercises Manipulator Kinematics Introduction Forward Kinematics Problem statement The product of exponentials formula Parameterization of manipulators via twists Manipulator workspace Inverse Kinematics A planar example Paden-Kahan subproblems Solving inverse kinematics using subproblems General solutions to inverse kinematics problems The Manipulator Jacobian End-effector velocity End-effector forces Singularities Manipulability Redundant and Parallel Manipulators Redundant manipulators Parallel manipulators Four-bar linkage Stewart platform Summary Bibliography Exercises Robot Dynamics and Control Introduction Lagrange’s Equations Basic formulation Inertial properties of rigid bodies Example: Dynamics of a two-link planar robot Newton-Euler equations for a rigid body Dynamics of Open-Chain Manipulators The Lagrangian for an open-chain robot Equations of motion for an open-chain manipulator Robot dynamics and the product of exponentials formula Lyapunov Stability Theory Basic definitions The direct method of Lyapunov The indirect method of Lyapunov Examples Lasalle’s invariance principle Position Control and Trajectory Tracking Problem description Computed torque PD control Workspace control Control of Constrained Manipulators Dynamics of constrained systems Control of constrained manipulators Example: A planar manipulator moving in a slot Summary Bibliography Exercises Multifingered Hand Kinematics Introduction to Grasping Grasp Statics Contact models The grasp map Force-Closure Formal definition Constructive force-closure conditions Grasp Planning Bounds on number of required contacts Constructing force-closure grasps Grasp Constraints Finger kinematics Properties of a multifingered grasp Example: Two SCARA fingers grasping a box Rolling Contact Kinematics Surface models Contact kinematics Grasp kinematics with rolling Summary Bibliography Exercises Hand Dynamics and Control Lagrange’s Equations with Constraints Pfaffian constraints Lagrange multipliers Lagrange-d’Alembert formulation The nature of nonholonomic constraints Robot Hand Dynamics Derivation and properties Internal forces Other robot systems Redundant and Nonmanipulable Robot Systems Dynamics of redundant manipulators Nonmanipulable grasps Example: Two-fingered SCARA grasp Kinematics and Statics of Tendon Actuation Inelastic tendons Elastic tendons Analysis and control of tendon-driven fingers Control of Robot Hands Extending controllers Hierarchical control structures Summary Bibliography Exercises Nonholonomic Behavior in Robotic Systems Introduction Controllability and Frobenius’ Theorem Vector fields and flows Lie brackets and Frobenius’ theorem Nonlinear controllability Examples of Nonholonomic Systems Structure of Nonholonomic Systems Classification of nonholonomic distributions Examples of nonholonomic systems, continued Philip Hall basis Summary Bibliography Exercises Nonholonomic Motion Planning Introduction Steering Model Control Systems Using Sinusoids First-order controllable systems: Brockett’s system Second-order controllable systems Higher-order systems: chained form systems General Methods for Steering Fourier techniques Conversion to chained form Optimal steering of nonholonomic systems Steering with piecewise constant inputs Dynamic Finger Repositioning Problem description Steering using sinusoids Geometric phase algorithm Summary Bibliography Exercises Future Prospects Robots in Hazardous Environments Medical Applications for Multifingered Hands Robots on a Small Scale: Microrobotics A Lie Groups and Robot Kinematics Lie Groups and Robot Kinematics Differentiable Manifolds Manifolds and maps Tangent spaces and tangent maps Cotangent spaces and cotangent maps Vector fields Differential forms Lie Groups Definition and examples The Lie algebra associated with a Lie group The exponential map Canonical coordinates on a Lie group Actions of Lie groups The Geometry of the Euclidean Group Basic properties Metric properties of SE() Volume forms on SE() B A Mathematica Package for Screw Calculus Bibliography Index
أتمنى أن تستفيدوا منه وأن ينال إعجابكم
رابط تنزيل كتاب A Mathematical Introduction to Robotic Manipulation - Murray
|
|