|
| | كتاب Materials Science and Engineering - An Introduction | |
| |
كاتب الموضوع | رسالة |
---|
rambomenaa كبير مهندسين
عدد المساهمات : 2041 التقييم : 3379 تاريخ التسجيل : 21/01/2012 العمر : 47 الدولة : مصر العمل : مدير الصيانة بشركة تصنيع ورق الجامعة : حلوان
| موضوع: كتاب Materials Science and Engineering - An Introduction الثلاثاء 27 نوفمبر 2012, 9:50 am | |
|
تذكير بمساهمة فاتح الموضوع : أخوانى فى الله أحضرت لكم كتاب Materials Science and Engineering - An Introduction Eighth Edition William D. Callister, Jr. Department of Metallurgical Engineering The University of Utah David G. Rethwisch Department of Chemical and Biochemical Engineering The University of Iowa
و المحتوى كما يلي :
LIST OF SYMBOLS xxi 1. Introduction Learning Objectives 2 1.1 Historical Perspective 2 1.2 Materials Science and Engineering 3 1.3 Why Study Materials Science and Engineering? 5 1.4 Classification of Materials 5 Materials of Importance—Carbonated Beverage Containers 10 1.5 Advanced Materials 11 1.6 Modern Materials’ Needs 13 1.7 Processing/Structure/Properties/Performance Correlations 14 Summary 16 References 17 Question 17 2. Atomic Structure and Interatomic Bonding 18 Learning Objectives 19 2.1 Introduction 19 ATOMIC STRUCTURE 19 2.2 Fundamental Concepts 19 2.3 Electrons in Atoms 20 2.4 The Periodic Table 26 ATOMIC BONDING IN SOLIDS 28 2.5 Bonding Forces and Energies 28 2.6 Primary Interatomic Bonds 30 2.7 Secondary Bonding or van der Waals Bonding 34 Materials of Importance—Water (Its Volume Expansion Upon Freezing) 37 2.8 Molecules 38 Summary 38 Equation Summary 39 Processing/Structure/Properties/Performance Summary 40 Important Terms and Concepts 40 References 40 Questions and Problems 41 Contents • xiii3. The Structure of Crystalline Solids 44 Learning Objectives 45 3.1 Introduction 45 CRYSTAL STRUCTURES 46 3.2 Fundamental Concepts 46 3.3 Unit Cells 47 3.4 Metallic Crystal Structures 47 3.5 Density Computations 51 3.6 Polymorphism and Allotropy 52 3.7 Crystal Systems 52 Materials of Importance—Tin (Its Allotropic Transformation) 53 CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND PLANES 55 3.8 Point Coordinates 55 3.9 Crystallographic Directions 57 3.10 Crystallographic Planes 64 3.11 Linear and Planar Densities 68 3.12 Close-Packed Crystal Structures 70 CRYSTALLINE AND NONCRYSTALLINE MATERIALS 72 3.13 Single Crystals 72 3.14 Polycrystalline Materials 72 3.15 Anisotropy 73 3.16 X-Ray Diffraction: Determination of Crystal Structures 74 3.17 Noncrystalline Solids 79 Summary 80 Equation Summary 82 Processing/Structure/Properties/Performance Summary 83 Important Terms and Concepts 83 References 83 Questions and Problems 84 4. Imperfections in Solids 90 Learning Objectives 91 4.1 Introduction 91 POINT DEFECTS 92 4.2 Vacancies and Self-Interstitials 92 4.3 Impurities in Solids 93 4.4 Specification of Composition 95 MISCELLANEOUS IMPERFECTIONS 99 4.5 Dislocations–Linear Defects 99 4.6 Interfacial Defects 102 Materials of Importance—Catalysts (and Surface Defects) 105 xiv • Contents 4.7 Bulk or Volume Defects 106 4.8 Atomic Vibrations 106 MICROSCOPIC EXAMINATION 107 4.9 Basic Concepts of Microscopy 107 4.10 Microscopic Techniques 108 4.11 Grain Size Determination 113 Summary 114 Equation Summary 116 Processing/Structure/Properties/Performance Summary 117 Important Terms and Concepts 118 References 118 Questions and Problems 118 Design Problems 121 5. Diffusion 122 Learning Objectives 123 5.1 Introduction 123 5.2 Diffusion Mechanisms 125 5.3 Steady-State Diffusion 126 5.4 Nonsteady-State Diffusion 128 5.5 Factors That Influence Diffusion 132 5.6 Diffusion in Semiconducting Materials 137 Materials of Importance—Aluminum for Integrated Circuit Interconnects 140 5.7 Other Diffusion Paths 142 Summary 142 Equation Summary 143 Processing/Structure/Properties/Performance Summary 144 Important Terms and Concepts 144 References 144 Questions and Problems 145 Design Problems 148 6. Mechanical Properties of Metals 150 Learning Objectives 151 6.1 Introduction 151 6.2 Concepts of Stress and Strain 152 ELASTIC DEFORMATION 156 6.3 Stress–Strain Behavior 156 6.4 Anelasticity 159 6.5 Elastic Properties of Materials 160 PLASTIC DEFORMATION 162 6.6 Tensile Properties 162 6.7 True Stress and Strain 1706.8 Elastic Recovery After Plastic Deformation 173 6.9 Compressive, Shear, and Torsional Deformations 173 6.10 Hardness 174 PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS 180 6.11 Variability of Material Properties 180 6.12 Design/Safety Factors 182 Summary 184 Equation Summary 186 Processing/Structure/Properties/Performance Summary 187 Important Terms and Concepts 188 References 188 Questions and Problems 188 Design Problems 195 7. Dislocations and Strengthening Mechanisms 197 Learning Objectives 198 7.1 Introduction 198 DISLOCATIONS AND PLASTIC DEFORMATION 199 7.2 Basic Concepts 199 7.3 Characteristics of Dislocations 201 7.4 Slip Systems 202 7.5 Slip in Single Crystals 204 7.6 Plastic Deformation of Polycrystalline Materials 208 7.7 Deformation by Twinning 210 MECHANISMS OF STRENGTHENING IN METALS 211 7.8 Strengthening by Grain Size Reduction 212 7.9 Solid-Solution Strengthening 213 7.10 Strain Hardening 215 RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH 218 7.11 Recovery 219 7.12 Recrystallization 219 7.13 Grain Growth 224 Summary 225 Equation Summary 228 Processing/Structure/Properties/Performance Summary 228 Important Terms and Concepts 229 References 229 Questions and Problems 229 Design Problems 233 Contents • xv 8. Failure 234 Learning Objectives 235 8.1 Introduction 235 FRACTURE 236 8.2 Fundamentals of Fracture 236 8.3 Ductile Fracture 236 8.4 Brittle Fracture 239 8.5 Principles of Fracture Mechanics 242 8.6 Fracture Toughness Testing 250 FATIGUE 255 8.7 Cyclic Stresses 255 8.8 The S–N Curve 257 8.9 Crack Initiation and Propagation 259 8.10 Factors That Affect Fatigue Life 262 8.11 Environmental Effects 264 CREEP 265 8.12 Generalized Creep Behavior 265 8.13 Stress and Temperature Effects 266 8.14 Data Extrapolation Methods 268 8.15 Alloys for High-Temperature Use 269 Summary 270 Equation Summary 273 Important Terms and Concepts 274 References 275 Questions and Problems 275 Design Problems 279 9. Phase Diagrams 281 Learning Objectives 282 9.1 Introduction 282 DEFINITIONS AND BASIC CONCEPTS 283 9.2 Solubility Limit 283 9.3 Phases 284 9.4 Microstructure 284 9.5 Phase Equilibria 285 9.6 One-Component (or Unary) Phase Diagrams 286 BINARY PHASE DIAGRAMS 287 9.7 Binary Isomorphous Systems 287 9.8 Interpretation of Phase Diagrams 289 9.9 Development of Microstructure in Isomorphous Alloys 294 9.10 Mechanical Properties of Isomorphous Alloys 297 9.11 Binary Eutectic Systems 298 Materials of Importance—Lead-Free Solders 3049.12 Development of Microstructure in Eutectic Alloys 305 9.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 311 9.14 Eutectoid and Peritectic Reactions 313 9.15 Congruent Phase Transformations 315 9.16 Ceramic and Ternary Phase Diagrams 316 9.17 The Gibbs Phase Rule 316 THE IRON–CARBON SYSTEM 319 9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 319 9.19 Development of Microstructure in Iron–Carbon Alloys 322 9.20 The Influence of Other Alloying Elements 330 Summary 331 Equation Summary 333 Processing/Structure/Properties/Performance Summary 334 Important Terms and Concepts 335 References 335 Questions and Problems 335 10. Phase Transformations: Development of Microstructure and Alteration of Mechanical Properties 342 Learning Objectives 343 10.1 Introduction 343 PHASE TRANSFORMATIONS 344 10.2 Basic Concepts 344 10.3 The Kinetics of Phase Transformations 344 10.4 Metastable Versus Equilibrium States 355 MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON–CARBON ALLOYS 356 10.5 Isothermal Transformation Diagrams 356 10.6 Continuous Cooling Transformation Diagrams 367 10.7 Mechanical Behavior of Iron–Carbon Alloys 370 10.8 Tempered Martensite 375 10.9 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 378 xvi • Contents Materials of Importance—Shape-Memory Alloys 379 Summary 381 Equation Summary 383 Processing/Structure/Properties/Performance Summary 384 Important Terms and Concepts 385 References 385 Questions and Problems 385 Design Problems 390 11. Applications and Processing of Metal Alloys 391 Learning Objectives 392 11.1 Introduction 392 TYPES OF METAL ALLOYS 393 11.2 Ferrous Alloys 393 11.3 Nonferrous Alloys 406 Materials of Importance—Metal Alloys Used for Euro Coins 416 FABRICATION OF METALS 417 11.4 Forming Operations 417 11.5 Casting 419 11.6 Miscellaneous Techniques 420 THERMAL PROCESSING OF METALS 422 11.7 Annealing Processes 422 11.8 Heat Treatment of Steels 425 11.9 Precipitation Hardening 436 Summary 442 Processing/Structure/Properties/Performance Summary 444 Important Terms and Concepts 444 References 447 Questions and Problems 447 Design Problems 449 12. Structures and Properties of Ceramics 451 Learning Objectives 452 12.1 Introduction 452 CERAMIC STRUCTURES 453 12.2 Crystal Structures 453 12.3 Silicate Ceramics 464 12.4 Carbon 468 Materials of Importance—Carbon Nanotubes 471 12.5 Imperfections in Ceramics 472 12.6 Diffusion in Ionic Materials 476 12.7 Ceramic Phase Diagrams 476MECHANICAL PROPERTIES 480 12.8 Brittle Fracture of Ceramics 480 12.9 Stress–Strain Behavior 485 12.10 Mechanisms of Plastic Deformation 487 12.11 Miscellaneous Mechanical Considerations 489 Summary 491 Equation Summary 494 Processing/Structure/Properties/Performance Summary 494 Important Terms and Concepts 495 References 495 Questions and Problems 495 Design Problems 500 13. Applications and Processing of Ceramics 501 Learning Objectives 502 13.1 Introduction 502 TYPES AND APPLICATIONS OF CERAMICS 503 13.2 Glasses 503 13.3 Glass-Ceramics 503 13.4 Clay Products 505 13.5 Refractories 505 13.6 Abrasives 507 13.7 Cements 508 13.8 Advanced Ceramics 509 Materials of Importance—Piezoelectric Ceramics 512 FABRICATION AND PROCESSING OF CERAMICS 512 13.9 Fabrication and Processing of Glasses and Glass-Ceramics 513 13.10 Fabrication and Processing of Clay Products 518 13.11 Powder Pressing 523 13.12 Tape Casting 525 Summary 526 Processing/Structure/Properties/Performance Summary 528 Important Terms and Concepts 529 References 530 Questions and Problems 530 Design Problem 531 14. Polymer Structures 532 Learning Objectives 533 14.1 Introduction 533 14.2 Hydrocarbon Molecules 534 Contents • xvii 14.3 Polymer Molecules 535 14.4 The Chemistry of Polymer Molecules 537 14.5 Molecular Weight 541 14.6 Molecular Shape 544 14.7 Molecular Structure 545 14.8 Molecular Configurations 547 14.9 Thermoplastic and Thermosetting Polymers 550 14.10 Copolymers 551 14.11 Polymer Crystallinity 552 14.12 Polymer Crystals 556 14.13 Defects in Polymers 558 14.14 Diffusion in Polymeric Materials 559 Summary 561 Equation Summary 563 Processing/Structure/Properties/Performance Summary 564 Important Terms and Concepts 565 References 565 Questions and Problems 565 15. Characteristics, Applications, and Processing of Polymers 569 Learning Objectives 570 15.1 Introduction 570 MECHANICAL BEHAVIOR OF POLYMERS 570 15.2 Stress–Strain Behavior 570 15.3 Macroscopic Deformation 573 15.4 Viscoelastic Deformation 574 15.5 Fracture of Polymers 578 15.6 Miscellaneous Mechanical Characteristics 580 MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 581 15.7 Deformation of Semicrystalline Polymers 581 15.8 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 582 Materials of Importance—Shrink-Wrap Polymer Films 587 15.9 Deformation of Elastomers 588 CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS 590 15.10 Crystallization 590 15.11 Melting 592 15.12 The Glass Transition 592 15.13 Melting and Glass Transition Temperatures 59215.14 Factors That Influence Melting and Glass Transition Temperatures 594 POLYMER TYPES 596 15.15 Plastics 596 Materials of Importance—Phenolic Billiard Balls 598 15.16 Elastomers 599 15.17 Fibers 601 15.18 Miscellaneous Applications 601 15.19 Advanced Polymeric Materials 603 POLYMER SYNTHESIS AND PROCESSING 607 15.20 Polymerization 607 15.21 Polymer Additives 610 15.22 Forming Techniques for Plastics 611 15.23 Fabrication of Elastomers 614 15.24 Fabrication of Fibers and Films 614 Summary 616 Equation Summary 619 Processing/Structure/Properties/Performance Summary 619 Important Terms and Concepts 620 References 620 Questions and Problems 621 Design Questions 625 16. Composites 626 Learning Objectives 627 16.1 Introduction 627 PARTICLE-REINFORCED COMPOSITES 629 16.2 Large-Particle Composites 630 16.3 Dispersion-Strengthened Composites 634 FIBER-REINFORCED COMPOSITES 634 16.4 Influence of Fiber Length 634 16.5 Influence of Fiber Orientation and Concentration 636 16.6 The Fiber Phase 645 16.7 The Matrix Phase 646 16.8 Polymer-Matrix Composites 647 16.9 Metal-Matrix Composites 653 16.10 Ceramic-Matrix Composites 655 16.11 Carbon–Carbon Composites 656 16.12 Hybrid Composites 657 16.13 Processing of Fiber-Reinforced Composites 657 STRUCTURAL COMPOSITES 660 16.14 Laminar Composites 660 16.15 Sandwich Panels 661 Materials of Importance—Nanocomposites in Tennis Balls 662 xviii • Contents Summary 663 Equation Summary 666 Important Terms and Concepts 667 References 667 Questions and Problems 668 Design Problems 671 17. Corrosion and Degradation of Materials 673 Learning Objectives 674 17.1 Introduction 674 CORROSION OF METALS 675 17.2 Electrochemical Considerations 675 17.3 Corrosion Rates 682 17.4 Prediction of Corrosion Rates 683 17.5 Passivity 690 17.6 Environmental Effects 692 17.7 Forms of Corrosion 692 17.8 Corrosion Environments 700 17.9 Corrosion Prevention 701 17.10 Oxidation 703 CORROSION OF CERAMIC MATERIALS 706 DEGRADATION OF POLYMERS 707 17.11 Swelling and Dissolution 707 17.12 Bond Rupture 709 17.13 Weathering 710 Summary 711 Equation Summary 713 Important Terms and Concepts 714 References 715 Questions and Problems 715 Design Problems 718 18. Electrical Properties 719 Learning Objectives 720 18.1 Introduction 720 ELECTRICAL CONDUCTION 721 18.2 Ohm’s Law 721 18.3 Electrical Conductivity 721 18.4 Electronic and Ionic Conduction 722 18.5 Energy Band Structures in Solids 722 18.6 Conduction in Terms of Band and Atomic Bonding Models 725 18.7 Electron Mobility 727 18.8 Electrical Resistivity of Metals 728 18.9 Electrical Characteristics of Commercial Alloys 731 Materials of Importance—Aluminum Electrical Wires 731SEMICONDUCTIVITY 733 18.10 Intrinsic Semiconduction 733 18.11 Extrinsic Semiconduction 736 18.12 The Temperature Dependence of Carrier Concentration 740 18.13 Factors That Affect Carrier Mobility 742 18.14 The Hall Effect 746 18.15 Semiconductor Devices 748 ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS 754 18.16 Conduction in Ionic Materials 755 18.17 Electrical Properties of Polymers 756 DIELECTRIC BEHAVIOR 757 18.18 Capacitance 757 18.19 Field Vectors and Polarization 759 18.20 Types of Polarization 762 18.21 Frequency Dependence of the Dielectric Constant 764 18.22 Dielectric Strength 765 18.23 Dielectric Materials 765 OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 765 18.24 Ferroelectricity 766 18.25 Piezoelectricity 767 Summary 767 Equation Summary 770 Processing/Structure/Properties/Performance Summary 772 Important Terms and Concepts 773 References 774 Questions and Problems 774 Design Problems 779 19. Thermal Properties 781 Learning Objectives 782 19.1 Introduction 782 19.2 Heat Capacity 782 19.3 Thermal Expansion 785 Materials of Importance—Invar and Other Low-Expansion Alloys 788 19.4 Thermal Conductivity 789 19.5 Thermal Stresses 792 Summary 794 Equation Summary 795 Important Terms and Concepts 796 References 796 Questions and Problems 796 Design Problems 798 Contents • xix 20. Magnetic Properties 800 Learning Objectives 801 20.1 Introduction 801 20.2 Basic Concepts 801 20.3 Diamagnetism and Paramagnetism 805 20.4 Ferromagnetism 807 20.5 Antiferromagnetism and Ferrimagnetism 809 20.6 The Influence of Temperature on Magnetic Behavior 813 20.7 Domains and Hysteresis 814 20.8 Magnetic Anisotropy 818 20.9 Soft Magnetic Materials 819 Materials of Importance—An Iron–Silicon Alloy That Is Used in Transformer Cores 821 20.10 Hard Magnetic Materials 822 20.11 Magnetic Storage 825 20.12 Superconductivity 828 Summary 832 Equation Summary 834 Important Terms and Concepts 835 References 835 Questions and Problems 835 Design Problems 839 21. Optical Properties 840 Learning Objectives 841 21.1 Introduction 841 BASIC CONCEPTS 841 21.2 Electromagnetic Radiation 841 21.3 Light Interactions with Solids 843 21.4 Atomic and Electronic Interactions 844 OPTICAL PROPERTIES OF METALS 845 OPTICAL PROPERTIES OF NONMETALS 846 21.5 Refraction 846 21.6 Reflection 848 21.7 Absorption 849 21.8 Transmission 852 21.9 Color 853 21.10 Opacity and Translucency in Insulators 854 APPLICATIONS OF OPTICAL PHENOMENA 855 21.11 Luminescence 855 Materials of Importance—Light-Emitting Diodes 856 21.12 Photoconductivity 858 21.13 Lasers 85821.14 Optical Fibers in Communications 863 Summary 865 Equation Summary 868 Important Terms and Concepts 869 References 869 Questions and Problems 869 Design Problem 871 22. Economic, Environmental, and Societal Issues in Materials Science and Engineering 872 Learning Objectives 873 22.1 Introduction 873 ECONOMIC CONSIDERATIONS 873 22.2 Component Design 874 22.3 Materials 874 22.4 Manufacturing Techniques 875 ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS 875 22.5 Recycling Issues in Materials Science and Engineering 878 Materials of Importance—Biodegradable and Biorenewable Polymers/ Plastics 881 Summary 884 References 884 Design Questions 885 Appendix A The International System of Units (SI) A1 xx • Contents Appendix B Properties of Selected Engineering Materials A3 B.1 Density A3 B.2 Modulus of Elasticity A6 B.3 Poisson’s Ratio A10 B.4 Strength and Ductility A11 B.5 Plane Strain Fracture Toughness A16 B.6 Linear Coefficient of Thermal Expansion A17 B.7 Thermal Conductivity A21 B.8 Specific Heat A24 B.9 Electrical Resistivity A26 B.10 Metal Alloy Compositions A29 Appendix C Costs and Relative Costs for Selected Engineering Materials A31 Appendix D Repeat Unit Structures for Common Polymers A36 Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials A40 Mechanical Engineering Online Support Module Biomaterials Online Support Module Glossary G1 Answers to Selected Problems S0 Index I1The number of the section in which a symbol is introduced or explained is given in parentheses. List of Symbols A area Å angstrom unit Ai atomic weight of element i (2.2) APF atomic packing factor (3.4) a lattice parameter: unit cell x-axial length (3.4) a crack length of a surface crack (8.5) at% atom percent (4.4) B magnetic flux density (induction) (20.2) B r magnetic remanence (20.7) BCC body-centered cubic crystal structure (3.4) b lattice parameter: unit cell y-axial length (3.7) b Burgers vector (4.5) C capacitance (18.18) Ci concentration (composition) of component i in wt% (4.4) concentration (composition) of component i in at% (4.4) , Cp heat capacity at constant volume, pressure (19.2) CPR corrosion penetration rate (17.3) CVN Charpy V-notch (8.6) %CW percent cold work (7.10) c lattice parameter: unit cell z-axial length (3.7) c velocity of electromagnetic radiation in a vacuum (21.2) D diffusion coefficient (5.3) C y Ci¿ D dielectric displacement (18.19) DP degree of polymerization (14.5) d diameter d average grain diameter (7.8) dhkl interplanar spacing for planes of Miller indices h, k, and l (3.16) E energy (2.5) E modulus of elasticity or Young’s modulus (6.3) e electric field intensity (18.3) Ef Fermi energy (18.5) Eg band gap energy (18.6) E r(t) relaxation modulus (15.4) %EL ductility, in percent elongation (6.6) e electric charge per electron (18.7) electron (17.2) erf Gaussian error function (5.4) exp e, the base for natural logarithms F force, interatomic or mechanical (2.5, 6.3) f Faraday constant (17.2) FCC face-centered cubic crystal structure (3.4) G shear modulus (6.3) H magnetic field strength (20.2) Hc magnetic coercivity (20.7) HB Brinell hardness (6.10) HCP hexagonal close-packed crystal structure (3.4) eHK Knoop hardness (6.10) HRB, HRF Rockwell hardness: B and F scales (6.10) HR15N, HR45Wsuperficial Rockwell hardness: 15N and 45W scales (6.10) HV Vickers hardness (6.10) h Planck’s constant (21.2) (hkl) Miller indices for a crystallographic plane (3.10) I electric current (18.2) I intensity of electromagnetic radiation (21.3) i current density (17.3) iC corrosion current density (17.4) J diffusion flux (5.3) J electric current density (18.3) Kc fracture toughness (8.5) KIc plane strain fracture toughness for mode I crack surface displacement (8.5) k Boltzmann’s constant (4.2) k thermal conductivity (19.4) l length l c critical fiber length (16.4) ln natural logarithm log logarithm taken to base 10 M magnetization (20.2) polymer number-average molecular weight (14.5) polymer weight-average molecular weight (14.5) mol% mole percent N number of fatigue cycles (8.8) NA Avogadro’s number (3.5) Nf fatigue life (8.8) n principal quantum number (2.3) n number of atoms per unit cell (3.5) n strain-hardening exponent (6.7) n number of electrons in an electrochemical reaction (17.2) n number of conducting electrons per cubic meter (18.7) n index of refraction (21.5) M w Mn xxii • List of Symbols n for ceramics, the number of formula units per unit cell (12.2) ni intrinsic carrier (electron and hole) concentration (18.10) P dielectric polarization (18.19) P–B ratio Pilling–Bedworth ratio (17.10) p number of holes per cubic meter (18.10) Q activation energy Q magnitude of charge stored (18.18) R atomic radius (3.4) R gas constant %RA ductility, in percent reduction in area (6.6) r interatomic distance (2.5) r reaction rate (17.3) rA, rC anion and cation ionic radii (12.2) S fatigue stress amplitude (8.8) SEM scanning electron microscopy or microscope T temperature Tc Curie temperature (20.6) TC superconducting critical temperature (20.12) Tg glass transition temperature (13.9, 15.12) Tm melting temperature TEM transmission electron microscopy or microscope TS tensile strength (6.6) t time t r rupture lifetime (8.12) Ur modulus of resilience (6.6) [u w] indices for a crystallographic direction (3.9) V electrical potential difference (voltage) (17.2, 18.2) VC unit cell volume (3.4) VC corrosion potential (17.4) VH Hall voltage (18.14) Vi volume fraction of phase i (9.8) velocity vol% volume percent y yWi mass fraction of phase i (9.8) wt% weight percent (4.4) x length x space coordinate Y dimensionless parameter or function in fracture toughness expression(8.5) y space coordinate z space coordinate lattice parameter: unit cell y–z interaxial angle (3.7) , , phase designations l linear coefficient of thermal expansion (19.3) lattice parameter: unit cell x–z interaxial angle (3.7) lattice parameter: unit cell x–y interaxial angle (3.7) shear strain (6.2) precedes the symbol of a parameter to denote finite change engineering strain (6.2) dielectric permittivity (18.18) dielectric constant or relative permittivity (18.18) steady-state creep rate (8.12) true strain (6.7) viscosity (12.10) overvoltage (17.4) Bragg diffraction angle (3.16) D Debye temperature (19.2) wavelength of electromagnetic radiation (3.16) magnetic permeability (20.2) B Bohr magneton (20.2) r relative magnetic permeability (20.2) e electron mobility (18.7) h hole mobility (18.10) Poisson’s ratio (6.5) frequency of electromagnetic radiation (21.2) density (3.5) r #s T n n List of Symbols • xxiii electrical resistivity (18.2) t radius of curvature at the tip of a crack (8.5) engineering stress, tensile or compressive (6.2) electrical conductivity (18.3) * longitudinal strength (composite) (16.5) c critical stress for crack propagation (8.5) fs flexural strength (12.9) m maximum stress (8.5) m mean stress (8.7)
m stress in matrix at composite failure (16.5) T true stress (6.7)
w safe or working stress (6.12) y yield strength (6.6) shear stress (6.2) c fiber–matrix bond strength/matrix shear yield strength (16.4) crss critical resolved shear stress (7.5) magnetic susceptibility (20.2) SUBSCRIPTS c composite cd discontinuous fibrous composite cl longitudinal direction (aligned fibrous composite) ct transverse direction (aligned fibrous composite) f final f at fracture f fiber i instantaneous m matrix m, max maximum min minimum 0 original 0 at equilibrium 0 in a vacuum xm Index A Abrasive ceramics, 503, 507, 527 Abrasives, G0 Absorption coefficient, 851, 868 Absorption of light: in metals, 845–846 in nonmetals, 846–847 Absorptivity, 844 ABS polymer, 596 A mBnXp crystal structures, 459 Acceptors, 739, G0 Acetic acid, 536 Acetylene, 534 Acid rain, as corrosion environment, 701 Acids (organic), 536 Acid slags, 507 Acrylics, see Poly(methyl methacrylate) Acrylonitrile, see Polyacrylonitrile (PAN) Acrylonitrile-butadiene rubber, 600 Acrylonitrile-butadiene-styrene (ABS), 596 Activation energy, G0 for creep, 268, 274 for diffusion, 133, 143, 348 free, 347, 351, 383, 384 for viscous flow, 531 Activation polarization, 684–685, 712, G0 Actuator, 11–12, 509 Addition polymerization, 607–608, 681, G0 Additives, polymer, 610–611, 618 Adhesives, 602, 618, G0 Adhesive tape, 18 Adipic acid (structure), 610 Adsorption, 105 Advanced ceramics, 503, 509–512, 527 Advanced materials, 11–12 Advanced polymers, 603–607, 618 Age hardening, see Precipitation hardening Air, as quenching medium, 430 AISI/SAE steel designation scheme, 395–396 Akermanite, 466 Alcohols, 536 Aldehydes, 536 Alkali metals, 26, 38 Alkaline earth metals, 26 Allotropic transformation (tin), 53 Allotropy, 52, G0 Alloys, 5, 393, G0. See also Solid solutions; specific alloys atomic weight equations, 97 cast, 406 composition specification, 95–96 compositions for various, A29–A30 costs, A31–A33 defined, 94 density equations, 97 density values, A3–A5 ductility values, A11–A13 electrical resistivity values, A26–A28 fracture toughness values, A16 heat treatable, 408 high-temperature, 269–270 linear coefficient of thermal expansion values, 785, A17–A18 low expansion, 788 modulus of elasticity values, 157, A6–A8 Poisson’s ratio values, 157, A10 specific heat values, 785, A24–A25 strengthening, see Strengthening of metals tensile strength values, 168, A11–A13 thermal conductivity values, 785, A21–A22 wrought, 406 yield strength values, 168, A11–A13 Alloy steels, 364, 383, G0. See also Steels Alnico, 823, 824 Iron, see Ferrite () Alternating copolymers, 551, 552, G0 Alumina, 7. See also Aluminum oxide Aluminosilicates, 518 Aluminum: atomic radius and crystal structure, 47 bonding energy and melting temperature, 31 elastic and shear moduli, 157 electrical conductivity, 728 electrical wires, 731–732 for integrated circuit interconnects, 140–141 Poisson’s ratio, 157 recrystallization temperature, 222 slip systems, 203 superconducting critical temperature, 831 thermal properties, 785 yield and tensile strengths, ductility, 168 Aluminum alloys, 408–410 fatigue behavior, 277 plane strain fracture toughness, 246 precipitation hardening, 439–440 properties and applications, 409 Aluminum-copper alloys, phase diagram, 439 Aluminum-lithium alloys, 409, 410 Aluminum oxide: electrical conductivity, 755 flexural strength, 486 hardness, 491 index of refraction, 848 modulus of elasticity, 486 I0 • Page numbers preceded by a “A” or a “G” refer to the appendices and the glossary, respectively.plane strain fracture toughness, 246 Poisson’s ratio, A10 sintered microstructure, 525 stress-strain behavior, 487 thermal properties, 785 translucency, 4, 855 as whiskers and fibers, 646 Aluminum oxide-chromium oxide phase diagram, 477 Ammonia, bonding energy and melting temperature, 31 Amorphous materials, 46, 79, G0 Anelasticity, 159, G0 Angle computation between two crystallographic directions, 207 Anions, 453, G0 Anisotropy, 73–74, 81, G0 of elastic modulus, 74, 161, 189 magnetic, 74, 818–819 Annealing, 368, 422–424, 443, G0 ferrous alloys, 423–424, 443 glass, 516 Annealing point, glass, 514, 527, G0 Annealing twins, 106 Anodes, 675, 711, G0 area effect, galvanic corrosion, 694 sacrificial, 702, G11 Antiferromagnetism, 809, 832, G0 temperature dependence, 813 Aramid: cost, as a fiber, A35 fiber-reinforced polymer-matrix composites, 649 melting and glass transition temperatures, A40 properties as fiber, 646 repeat unit structure, 649, A38 Argon, bonding energy and melting temperature, 31 Aromatic hydrocarbons (chain groups), 536, 595 Arrhenius equation, 353 Artificial aging, 442, G0 Asphaltic concrete, 632 ASTM standards, 152 Atactic configuration, 548, G0 Athermal transformation, 364, G0 Atomic bonding, see Bonding Atomic mass, 20 Atomic mass unit (amu), 20, G0 Atomic models: Bohr, 21, 22, G1 wave-mechanical, 22, G14 Atomic number, 20, G0 Atomic packing factor, 48, G0 Atomic point defects, 92, 472–474 Atomic radii, of selected metals, 47 Atomic structure, 19–27 Atomic vibrations, 106–107, 783–784, G0 Atomic weight, 20, G0 metal alloys, equations for, 97 Atom percent, 96, G1 Austenite, 319, 332, G1 shape-memory phase transformations, 379–380 transformations, 356–370, 382 summary, 378 Austenitic stainless steels, 397–398 Austenitizing, 424, G1 Automobiles, rusted and stainless steel, 673 Automobile transmission, 122 Auxetic materials, 160 Average value, 180–181 Avogadro’s number, 20 Avrami equation, 355, 382, 591 AX crystal structures, 457–458 A mXp crystal structures, 458–459 B Bainite, 360–361, 368, 373, 378, 382, G1 mechanical properties, 373 Bakelite, see Phenol-formaldehyde (Bakelite) Ball bearings, ceramic, 511 Band gap, 724–725 Band gap energy, G1 determination, 776 selected semiconductors, 734 Bands, see Energy bands Barcol hardness, 581 Barium ferrite (as magnetic storage medium), 828 Barium titanate: crystal structure, 459, 460, 766 as dielectric, 765 as ferroelectric, 766 as piezoelectric, 512, 767 Base (transistor), 750–751 Basic refractories, 507 Basic slags, 507 Beachmarks (fatigue), 259–260 Bend strength, 485. See also flexural strength Beryllia, 507 Beryllium-copper alloys, 408 Beverage containers, 1, 197, 391, 872, 885 corrosion of, 872 diffusion rate of CO2 through, plastic, 560–561 stages of production, 391 Bifunctional repeat units, 540, 562, G1 Billiard balls, 569, 598–599 Bimetallic strips, 781, 788 Binary eutectic alloys, 298–311, 332 tensile strength, 338 Binary isomorphous alloys, 287–298, 331 mechanical properties, 297–298 microstructure development, equilibrium cooling, 294–295 microstructure development, nonequilibrium cooling, 295–297 Biodegradable beverage can, 872 Biodegradable polymers/plastics, 872, 881–883 Biomass, 882 Biomaterials, 11 Biorenewable polymers/plastics, 881–883 Block copolymers, 551–552, G1 Blowing, of glass, 515 Blow molding, plastics, 613–614 Body-centered cubic structure, 48–49, G1 Burgers vector for, 204 slip systems, 203 twinning in, 211 Bohr atomic model, 21, 22, G1 Bohr magneton, 805, G1 Boltzmann’s constant, 92, G1 Bonding: carbon-carbon, 537–538 cementitious, 508 covalent, 32–33, 453, G2 hybrid sp, 25, 26 hydrogen, 35, 36, 37, G6 ionic, 30–31, 453, G6 metallic, 33–34, G7 van der Waals, see van der Waals bonding Bonding energy, 29, G1 and melting temperature for selected materials, 31 Bonding forces, 28–29 Bond rupture, in polymers, 709–710 Bone: as composite, 628 Boron carbide: hardness, 491 Boron: boron-doped silicon semiconductors, 738 fiber-reinforced composites, 654 properties as a fiber, 646 Borosilicate glass: composition, 503 electrical conductivity, 755 viscosity, 514 Index • I1Borsic fiber-reinforced composites, 654 Bottom-up science, 12 Bragg’s law, 75–76, G1 Branched polymers, 546, G1 Brass, 406, 407, G1 annealing behavior, 221 elastic and shear moduli, 157 electrical conductivity, 728, 775 fatigue behavior, 277 phase diagram, 311, 312 Poisson’s ratio, 157 recrystallization temperature, 222 stress-strain behavior, 165 thermal properties, 785 yield and tensile strengths, ductility, 168 Brazing, 421, G1 Breakdown, dielectric, 749, 750, 765 Bridge, suspension, 150 Brinell hardness tests, 175, 177, 179 Brittle fracture, 166–167, 234, 239–241, 271, G1 ceramics, 480–485 Brittle materials, thermal shock, 793–794, 795 Bronze, 407, G1 Bronze age, 2, 480 Buckminsterfullerene, 470 Burgers vector, 99, 100, 101, 204 for FCC, BCC, and HCP, 204 magnitude computation, 230 Butadiene: degradation resistance, 708 melting and glass transition temperatures, A40 repeat unit structure, 553, A37 Butane, 534–535 C Cadmium sulfide: color, 853 electrical characteristics, 733, 734 Calcination, 508, G1 Calendering, 615, 658, 659 Capacitance, 757–759, G1 Capacitors, 757–762 Carbon: vs. graphite, 646, 648 polymorphism, 52, 468–471 Carbon black, as reinforcement in rubbers, 599, 631, 632 Carbon-carbon composites, 656–657, G1 Carbon diffusion, in steels, 324, 376 Carbon dioxide emissions, 874 Carbon dioxide (pressure-temperature phase diagram), 342 Carbon fiber-reinforced polymermatrix composites, 648–649, 650 Carbon fibers, 648 properties as fiber, 646 Carbon nanotubes, 13, 471 Carburizing, 130, G1 Case-hardened gear, 122 Case hardening, 122, 263–264, G1 Cast alloys, 406 Casting techniques: metals, 419–420 plastics, 614 slip, 510, 520, 521 tape, 525–526 Cast irons, 322, 332, 393, 399–406, G1 annealing, 425 compositions, mechanical properties, and applications, 403 graphite formation in, 399 heat treatment effect on microstructure, 404 phase diagram, 400, 404 stress-strain behavior (gray), 190 Catalysts, 105 Catalytic converters (automobiles), 90, 105 Cathodes, 676, G1 Cathodic protection, 694, 702, 713, G1 Cations, 453, G1 Cemented carbide, 630–631 Cementite, 320, G1 decomposition, 399, 404 proeutectoid, 327–328 in white iron, 401, 402 Cementitious bond, 508–509 Cements, 503, 508–509, G1 Ceramic ball bearings, 511 Ceramic-matrix composites, 655–656, G1 Ceramics, 6–7, 452, G1. See also Glass advanced, 503, 509–512, 527 application-classification scheme, 503 brittle fracture, 480–485 coefficient of thermal expansion values, 785, A19 color, 853–854 corrosion, 706–707 costs, A33–A34 crystal structures, 453–462 summary, 460 defects, 472–476 defined, 6–7 density computation, 462–463 density values, A5 elastic modulus values, 486, A8 electrical conductivity values for selected, 755 electrical resistivity values, A28 fabrication techniques classification, 513 flexural strength values, 486, A14 fractography of, 482–485 fracture toughness values, 246, A16–A17 impurities in, 475 indices of refraction, 848 as electrical insulators, 754–756, 765 magnetic, 809–813 mechanical properties of, 480–489 in MEMS, 510 phase diagrams, 316, 476–480 piezoelectric, 12, 512, 767 plastic deformation, 487–489 Poisson’s ratio values, A10 porosity, 489–490, 523–525 porosity, influence on properties, 489–490 silicates, 464–468 specific heat values, 785, A25 as superconductors, 830–831 thermal conductivity values, 785, A22 thermal properties, 785, 787, 790–791, 793–794 traditional, 7 traditional vs. new, 452–453 translucency and opacity, 855 Cercor (glass ceramic), 505 Cermets, 630, G1 Cesium chloride structure, 458, 460 Chain-folded model, 556–557, G1 Chain-reaction polymerization, see Addition polymerization Chain stiffening/stiffness, 545, 594–595 Charge carriers: majority vs. minority, 737 temperature dependence, 740–741 Charpy impact test, 251, 252, G2 Chevron markings, 239 Chips, semiconductor, 719, 753 Chlorine, bonding energy and melting temperature, 31 Chloroprene, repeat unit structure, 553, A37 Chloroprene rubber: characteristics and applications, 600 melting and glass transition temperatures, A40 cis, 549, G2 I2 • IndexClay, characteristics, 518–519 Clay products, 503, 505 drying and firing, 505, 521–523 fabrication, 518–523 particles, 501 Cleavage (brittle fracture), 240 Clinker, 508 Close-packed ceramic structures, 460–461 Close-packed metal crystal structures, 69–71 Coarse pearlite, 358, 359, 368, G2 Coatings (polymer), 601–602 Cobalt: atomic radius and crystal structure, 47 Curie temperature, 813 as ferromagnetic material, 807 magnetization curves (single crystal), 819 Coercivity (coercive force), 516, G2 Cold work, percent, 215 Cold working, see Strain hardening Collector, 750–751 Color, G2 metals, 846 nonmetals, 853–854 Colorants, 611, G2 Compacted graphite iron, 401, 405–406, G2 Compliance, creep, 578 Component, 283, 317, G2 Composites: aramid fiber-reinforced polymer, 649 carbon-carbon, 656–657 carbon fiber-reinforced polymer, 648–649 ceramic-matrix, 655–656 classification scheme, 628, 629 costs, A35 definition, 10–11, 628 dispersion-strengthened, 629, 634 elastic behavior: longitudinal, 638–639 transverse, 640–641 fiber-reinforced, see Fiberreinforced composites glass fiber-reinforced polymer, 647–648 hybrid, 657, G6 laminar, 629, 644, 660–661 large-particle, 629, 630–634 metal-matrix, 653–655 particle-reinforced, 629–634 production processes, 657–660 properties, glass-, carbon-, aramidfiber reinforced, 650 rule of mixtures expressions, 341, 630, 638, 641, 642, 643, 652 strength: longitudinal, 642 transverse, 642 stress-strain behavior, 636–637 structural, 629, 660–662 Composition, G2 conversion equations, 96–97, 119, 120 specification of, 95–96 Compression molding, plastics, 612 Compression tests, 154–155 Compressive deformation, 153, 173 Computers, semiconductors in, 752–753 magnetic drives in, 800, 825 Concentration, 95, G2. See also Composition Concentration cells, 694 Concentration gradient, 126, G2 Concentration polarization, 686–687, G2 Concentration profile, 126, G2 Concrete, 632–634, G2 electrical conductivity, 755 plane strain fracture toughness, 246 Condensation polymerization, 609–610, G2 Conducting polymers, 756–757 Conduction: electronic, 722–725 ionic, 722, 755–756 Conduction band, 725, G2 Conductivity, see Electrical conductivity; Thermal conductivity Configuration, molecular, 547–550 Conformation, molecular, 544 Congruent phase transformations, 315, G2 Constitutional diagrams, see Phase diagrams Continuous casting, 420 Continuous cooling transformation diagrams, 367–370, G2 4340 steel, 365 1.13 wt% C steel, 388 0.76 wt% C steel, 368 for glass-ceramic, 504 Continuous fibers, 636 Conventional hard magnetic materials, 823–824 Conversion factors, magnetic units, 804 Cooling rate, of cylindrical rounds, 431 Coordinates, point, 55–57 Coordination numbers, 48, 50, 454–456, G2 Copolymers, 540, 551–552, G2 styrenic block, 606 Copper: atomic radius and crystal structure, 47 diffraction pattern, 89 elastic and shear moduli, 157 electrical conductivity, 728 OFHC, 731 Poisson’s ratio, 157 recrystallization, 221, 355 slip systems, 203 thermal properties, 785 yield and tensile strengths, ductility, 168 Copper alloys, 406–408 properties and applications of, 407 Copper-aluminum phase diagram, 439 Copper-beryllium alloys, 407, 408 phase diagram, 450 Copper-nickel alloys: ductility vs. composition, 214, 298 electrical conductivity, 729–730 phase diagram, 287–288 tensile strength vs. composition, 214, 298 yield strength vs. composition, 214 Copper-silver phase diagram, 298–299 Coring, 297 CorningWare (glass ceramic), 505 Corrosion, G2 of beverage cans, 872 ceramic materials, 706–707 electrochemistry of, 675–681 environmental effects, 692 environments, 700–701 forms of, 692–700 galvanic series, 681–682 overview of, 674 passivity, 690–692 rates, 682–683 prediction of, 683–690 Corrosion fatigue, 264–265, G2 Corrosion inhibitors, 701 Corrosion penetration rate, 683, G2 Corrosion prevention, 701–703 Corundum, 507. See also Aluminum oxide crystal structure, 496 Cost of various materials, A31–A36 Coulombic force, 30, G2 Covalency, degree of, 33 Covalent bonding, 32–33, 453, 534, G2 Index • I3Crack configurations, in ceramics, 483 Crack critical velocity, 482–483 Crack formation, 236 in ceramics, 482–483 fatigue and, 259–261 glass, 517 Crack propagation, 236. See also Fracture mechanics in brittle fracture, 239–242 in ceramics, 480–485 in ductile fracture, 236–237 fatigue and, 259–260 Cracks: stable vs. unstable, 236 Crack surface displacement modes, 245 Crazing, 579 Creep, 265–270, G2 ceramics, 491 influence of temperature and stress on, 266–268 mechanisms, 268 in polymers, 578 stages of, 265–266 steady-state rate, 266 viscoelastic, 578 Creep compliance, 578 Creep modulus, 578 Creep rupture tests, 266 data extrapolation, 268–269 Crevice corrosion, 694–695, G2 Cristobalite, 464, 479, 480 Critical cooling rate, ferrous alloys, 369–370 glass-ceramics, 503–504 Critical fiber length, 635 Critical resolved shear stress, 205, G2 as related to dislocation density, 232 Critical stress (fracture), 243 Critical temperature, superconductivity, 829, 831 Critical velocity (crack), 482–483 Crosslinking, 546, G2 elastomers, 588–590 influence on viscoelastic behavior, 577 thermosetting polymers, 551 Crystalline materials, 46, 72, G2 defects, 91–107 single crystals, 72, G11 Crystallinity, polymers, 552–556, G2 influence on mechanical properties, 585 Crystallites, 556, G2 Crystallization, polymers, 590–591 Crystallographic directions, 57–63 easy and hard magnetization, 819 families, 59 hexagonal crystals, 60–63 Crystallographic planes, 63–68 atomic arrangements, 66–67 close-packed, ceramics, 460–462 close-packed, metals, 69–71 diffraction by, 74–76 families, 67 Crystallographic point coordinates, 55–56 Crystal structures, 46–55, G2. See also Body-centered cubic structure; Close-packed crystal structures; Face-centered cubic structure; Hexagonal closepacked structure ceramics, 453–462 close-packed, ceramics, 460–461 close-packed, metals, 69–71 determination by x-ray diffraction, 74–78 selected metals, 47 types, ceramics, 453–462 types, metals, 47–51, 69–71 Crystallization (ceramics), 504, 518, G2 Crystal systems, 52–55, G2 Cubic crystal system, 52, 54 Cubic ferrites, 809–813 Cunife, 823, 824 Cup-and-cone fracture, 237 Curie temperature, 813, G3 ferroelectric, 766 ferromagnetic, 784 Curing, plastics, 612 Current density, 722 Cyclic stresses, 255–256 D Damping capacity, steel vs. cast iron, 404 Data scatter, 181–182 Debye temperature, 784 Decarburization, 146 Defects, see also Dislocations atomic vibrations and, 106–107 dependence of properties on, 91 in ceramics, 472–476 interfacial, 102–106 point, 92–99, 472–474, G9 in polymers, 558–559 surface, 105 volume, 106 Defect structure, 472, G3 Deformation: elastic, see Elastic deformation elastomers, 588–589 plastic, see Plastic deformation Deformation mechanism maps (creep), 268 Deformation mechanisms (semicrystalline polymers), elastic deformation, 582, 583 plastic deformation, 528, 584 Degradation of polymers, 707–711, G3 Degree of polymerization, 542, G3 Degrees of freedom, 316–318 Delayed fracture, 481 Density: computation for ceramics, 462–463 computation for metal alloys, 97 computation for metals, 51–52 computation for polymers, 555–556 of dislocations, 200 linear atomic, 68 planar atomic, 69 polymers (values for), 572 ranges for material types (bar chart), 6 relation to percent crystallinity for polymers, 554 values for various materials, A3–A6 Design, component, 874 Design examples: cold work and recrystallization, 223 conductivity of a p-type semiconductor, 745–746 cubic mixed-ferrite magnet, 812–813 creep rupture lifetime for an S-590 steel, 269 nonsteady-state diffusion, 136–137 spherical pressure vessel, failure of, 247–250 steel shaft, alloy/heat treatment of, 434–435 tensile-testing apparatus, 183–184 tubular composite shaft, 651–653 Design factor, 182 Design stress, 182, G3 Dezincification, of brass, 697–698 Diamagnetism, 805, G3 Diamond, 468–469 as abrasive, 507 bonding energy and melting temperature, 31 cost, A34 films, 468–469 hardness, 491 thermal conductivity value, A22 Diamond cubic structure, 468 I4 • IndexDie casting, 419 Dielectric breakdown, 750, 765 Dielectric constant, 759, G3 frequency dependence, 764–765 relationship to refractive index, 847 selected ceramics and polymers, 758 Dielectric displacement, 759, G3 Dielectric loss, 764–765 Dielectric materials, 757, 765, G3 Dielectric strength, 765, G3 selected ceramics and polymers, 758 Diffraction (x-ray), 44, 74–75, G3 Diffraction angle, 78 Diffractometers, 77 Diffusion, 123–125, G3 grain growth and, 224 in ionic materials, 476 in integrated circuit interconnects, 140–141 in Si of Cu, Au, Ag, and Al, 141 interstitial, 126, G6 mechanisms, 125–126 and microstructure development, 294–297, 307–308 nonsteady-state, 128–132, G8 in polymers, 559–561 in semiconductors, 137–140 short-circuit, 142 steady-state, 126–128, G12 vacancy, 125–126, 476, G14 Diffusion coefficient, 127, G3 relation to ionic mobility, 755 temperature dependence, 132–136 values for various metal systems, 132 Diffusion couples, 123 Diffusion flux, 126, G3 for polymers, 559 Digitization of information/signals, 826, 863 Dimethyl ether, 536 Dimethylsiloxane, 553, 599, 600, A37. See also Silicones; Silicone rubber melting and glass transition temperatures, A40 Diode, 748, G3 Dipole moment, 759 Dipoles: electric, 35, G3 induced, 35 magnetic, 801–802 permanent, 36 Directional solidification, 270 Directions, see Crystallographic directions Discontinuous fibers, 636 Dislocation density, 200, 229, 232, G3 Dislocation line, 99, 100, 101, G3 Dislocation motion, 199–200 caterpillar locomotion analogy, 201 in ceramics, 487–488 at grain boundaries, 212–213 influence on strength, 211–212 recovery and, 219 Dislocations, 99–102, G3 in ceramics, 102, 201 characteristics of, 201–202 interactions, 202 multiplication, 202 at phase boundaries, 372, 375 pile-ups, 212 plastic deformation and, 162, 199–208, 211 in polymers, 102, 558 strain fields, 201, 202 Dispersed phase, 628, G3 definition, 628 geometry, 629 Dispersion (optical), 846 Dispersion-strengthened composites, 634, G3 Disposal of materials, 875–876 Domain growth, 815–816 Domains, 807, 814–818, G3 Domain walls, 814 Donors, 736, G3 Doping, 739, 742, 743, G3 Double bonds, 534 Drain casting, 520 Drawing: glass, 515, 516 influence on polymer properties, 585–586 metals, 417–419, G3 polymer fibers, 615, G3 Drift velocity, electron, 727 Drive-in diffusion, 138 Driving force, 127, G3 electrochemical reactions, 678 grain growth, 224 recrystallization, 219 sintering, 525 steady-state diffusion, 127 Dry corrosion, 703 Dry ice, 342 Drying, clay products, 521 Ductile fracture, 167, 236–237, G3 Ductile iron, 400, 402, G3 compositions, mechanical properties, and applications, 403 Ductile-to-brittle transition, 251–255, G3 polymers, 578 and temper embrittlement, 377 Ductility, 166–168, G3 fine and coarse pearlite, 372 precipitation hardened aluminum alloy (2014), 441 selected materials, A11–A15 selected metals, 168 spheroidite, 372 tempered martensite, 376 Durometer hardness, 178, 581 E Economics, materials selection: considerations in materials engineering, 873–874 tubular composite shaft, 652–653 Eddy currents, 820 Edge dislocations, 99, 199–200, G3. See also Dislocations interactions, 202 in polymers, 559 E-glass, 646 Elastic deformation, 156–162, G3 Elastic modulus, see Modulus of elasticity Elastic (strain) recovery, 173, G4 Elastomers, 571, 588–590, 599–601, 614, G4 in composites, 631 deformation, 588–589 thermoplastic, 605–607 trade names, properties, and applications, 600 Electrical conduction: in insulators and semiconductors, 726–727 in metals, 725–726 Electrical conductivity, 721, 727–728, G4 ranges for material types (bar chart), 8 selected ceramics and polymers, 755 selected metals, 728 selected semiconductors, 734 temperature variation (Ge), 777 values for electrical wires, 732 Electrical resistivity, 721, G10. See also Electrical conductivity metals: influence of impurities, 729–730 influence of plastic deformation, 729, 730 influence of temperature, 729 values for various materials, A26–A29 Index • I5Electrical wires, aluminum and copper, 731–732 Electric dipole moment, 759 Electric dipoles, see Dipoles Electric field, 722, 727, G4 Electrochemical cells, 677–678 Electrochemical reactions, 675–682 Electrodeposition, 677 Electrode potentials, 677–678 values of, 679 Electroluminescence, 856, G4 Electrolytes, 678, G4 Electromagnetic radiation, 841–843 interactions with atoms/electrons, 843–844 Electromagnetic spectrum, 841–842 Electron band structure, see Energy bands Electron cloud, 22, 33 Electron configurations, 24–26, G4 elements, 25 periodic table and, 26 stable, 25 Electronegativity, 26–27, 33, G4 influence on solid solubility, 95 values for the elements, 27 Electroneutrality, 472, G4 Electron gas, 725 Electronic conduction, 722, 755 Electronic polarization, 512, 762–763, 844, 849, G9 Electron microscopy, 109–111 Electron mobility, 727 influence of dopant content on, 742, 743 influence of temperature on, 742, 743 selected semiconductors, 734 Electron orbitals, 21 Electron probability distribution, 22 Electrons, 19–20 conduction process, 735, 748–749 role, diffusion in ionic materials, 476 energy bands, see Energy bands energy levels, 21–24 free, see Free electrons scattering, 727, 783 in semiconductors, 734–739 temperature variation of concentration, 740–741 spin, 23, 805 valence, 25 Electron states, G4 Electron transitions, 844–845 metals, 845–846 nonmetals, 849–852 Electron volt, 31, G4 Electropositivity, 26, G4 Electrorheological fluids, 12 Elongation, percent, 166 selected materials, A11–A15 selected metals, 168 selected polymers, 572 Embrittlement: hydrogen, 699–700 temper, 377 Embryo, phase particle, 346 Emf series, 678–680 Emitter, 750–751 Endurance limit, 257. See also Fatigue limit Energy: activation, see Activation energy bonding, 29, 31, G1 current concerns about, 13–14, 876 free, 285, 345–349, G5 grain boundary, 103 photon, 843 surface, 102 vacancy formation, 92 Energy band gap, see Band gap Energy bands, 722–725 structures for metals, insulators, and semiconductors, 724 Energy levels (states), 21–24, 723–724 Energy and materials, 877 Energy product, magnetic, 822–823 Engineering stress/strain, 154, G12 Entropy, 285, 345, 588 Environmental considerations and materials, 875–883 Epoxies: degradation resistance, 708 polymer-matrix composites, 650 repeat unit structure, A36 trade names, characteristics, applications, 598 Equilibrium: definition of, 285 phase, 285, G4 Equilibrium diagrams, see Phase diagrams Erosion-corrosion, 698, G4 Error bars, 181 Error function, Gaussian, 129 Etching, 108, 109 Ethane, 535 Ethers, 536 Ethylene, 534 polymerization, 537 Ethylene glycol (structure), 609 Euro coins, alloys used for, 416 Eutectic isotherm, 299 Eutectic phase, 308, G4 Eutectic reactions, 299, 307, G4 iron-iron carbide system, 321 Eutectic structure, 307, G4 Eutectic systems: binary, 298–311 microstructure development, 305–311 Eutectoid, shift of position, 330 Eutectoid ferrite, 325 Eutectoid reactions, 314, G4 iron-iron carbide system, 321 kinetics, 357–358 Eutectoid steel, microstructure changes/development, 322–324 Exchange current density, 685 Excited states, 844, G4 Exhaustion, in extrinsic semiconductors, 741 Expansion, thermal, see Thermal expansion Extrinsic semiconductors, 736–739, G4 electron concentration vs. temperature, 741 exhaustion, 741 saturation, 741 Extrusion, G4 clay products, 519 metals, 418–419 polymers, 613–614 F Fabrication: ceramics, 513 clay products, 518–523 fiber-reinforced composites, 657–660 metals, 417–422 Face-centered cubic structure, 47–48, G4 anion stacking (ceramics), 460–461 Burgers vector for, 204 close packed planes (metals), 69–71 slip systems, 203 Factor of safety, 183, 248 Failure, mechanical, see Creep; Fatigue; Fracture Faraday constant, 680 Fatigue, 255–265, G4 corrosion, 264 crack initiation and propagation, 259–261 cyclic stresses, 255–256 environmental effects, 264–265 low- and high-cycle, 259 polymers, 580, 581 probability curves, 258–259 thermal, 264 I6 • IndexFatigue life, 258, G4 factors that affect, 262–264 Fatigue limit, 257, 258, G5 Fatigue strength, 257, 258, G4 Fatigue testing, 257 S-N curves, 257–259, 277, 580 Feldspar, 501, 519 Fermi energy, 724, 737, 738, 784, G4 Ferrimagnetism, 809–811, G4 temperature dependence, 813–814 Ferrite (), 319–320, G4 eutectoid/proeutectoid, 325, G10 from decomposition of cementite, 399 Ferrites (magnetic ceramics), 809–811, G4 Curie temperature, 813, 814 as magnetic storage, 828 Ferritic stainless steels, 398, 399 Ferroelectricity, 766, G4 Ferroelectric materials, 766 Ferromagnetic domain walls, 106 Ferromagnetism, 807–808, G4 temperature dependence, 813–814 Ferrous alloys, G4. See also Cast irons; Iron; Steels annealing, 423–424 classification, 321–322, 393 continuous cooling transformation diagrams, 367–370 costs, A31–A32 hypereutectoid, 327–329, G6 hypoeutectoid, 324–326, G6 isothermal transformation diagrams, 356–367 microstructures, 322–329 mechanical properties of, 370–374, A11–A12 Fiber efficiency parameter, 644 Fiberglass, 503 Fiberglass-reinforced composites, 647–648 Fiber-reinforced composites, 634–660, G4 continuous and aligned, 636–642 discontinuous and aligned, 643 discontinuous and randomly oriented, 643–644 fiber length effect, 634–636 fiber orientation/concentration effect, 636–642 fiber phase, 645–646 longitudinal loading, 636–637, 642 matrix phase, 646–647 processing, 657–660 reinforcement efficiency, 644 transverse loading, 640–641, 642 Fibers, 601, G4 coefficient of thermal expansion values, A20 in composites, 628 continuous vs. discontinuous, 636 fiber phase, 645–646 length effect, 634–636 orientation and concentration, 636–645 costs, A35 density values, A6 elastic modulus values, 646, A9 electrical resistivity values, A29 optical, 511, 863–865 polymer, 601 properties of selected, 646 specific heat values, A26 spinning of, 614–615 tensile strength values, 646, A15 thermal conductivity values, A23 Fick’s first law, 128, 789, G5 for polymers, 559 Fick’s second law, 128, 139, 798, G5 Fictive temperature, 514 Filament winding, 659–660 Fillers, 610, G5 Films: diamond, 468–469 polymer, 603 shrink-wrap (polymer), 587 Fine pearlite, 359, 368, 372, G5 Fireclay refractories, 506 Firing, 505, 522–523, G5 Flame retardants, 611, G5 Flash memory, 719, 753 Flexural strength, 485–486, G5 influence of porosity on, ceramics, 489–490 values for selected ceramics, 486, A14 Float process (sheet glass), 516 Fluorescence, 855, G5 Fluorite structure, 459 Fluorocarbons, 538 trade names, characteristics, applications, 597 Flux (clay products), 519 Foams, 603, G5 Forces: bonding, 28–30 coulombic, 30, G2 Forging, 418, G5 Formaldehyde, 536, 599 Forming operations (metals), 417–419 Forsterite, 466 Forward bias, 748, 749, G5 Fractographic investigations: ceramics, 482–485 metals, 238 Fractographs: cup-and-cone fracture surfaces, 238 fatigue striations, 260 glass rod, 484 intergranular fracture, 241 transgranular fracture, 240 Fracture, see also Brittle fracture; Ductile fracture; Impact fracture testing delayed, 481 fundamentals of, 236 polymers, 578–580 types, 166–167, 236–241 Fracture mechanics, 242–250, G6 applied to ceramics, 481 polymers, 580 use in design, 247–250 Fracture profiles, 237 Fracture strength, 165. See also Flexural strength ceramics, 485 distribution of, 481–482 influence of porosity, 489–490 influence of specimen size, 481–482, 645 Fracture surface, ceramics, 483–484 Fracture toughness, 169, 244–246, G5 ceramic-matrix composites, 655–656 ranges for material types (bar chart), 7 testing, 250–254 values for selected materials, 246, 656, A16–A17 Free electrons, 725–726, G5 contributions to heat capacity, 784 role in heat conduction, 789 Free energy, 285, 345–349, G5 activation, 346, 351 volume, 345 Freeze-out region, 741 Frenkel defects, 472, 473, G5 equilibrium number, 474 Full annealing, 368, 424, G5 Fullerenes, 470 Functionality (polymers), 540, G4 Furnace heating elements, 731 Fused silica, 464 characteristics, 503, 514 dielectric properties, 758 electrical conductivity, 755 flexural strength, 486 index of refraction, 848 modulus of elasticity, 486 thermal properties, 785 Index • I7G Gadolinium, 807 Gallium arsenide: cost, A33 electrical characteristics, 734, 736 for lasers, 860 for light-emitting diodes, 856 Gallium phosphide: electrical characteristics, 734 for light-emitting diodes, 871 Galvanic corrosion, 693–694, G5 Galvanic couples, 678 Galvanic series, 681–682, G5 Galvanized steel, 415, 702, 703 Garnets, 811 Garnet single crystal, 72 Gas constant, 92, G5 Gating system, 419 Gauge length, 153 Gaussian error function, 129 Gecko lizard, 18 Geometrical isomerism, 549, 550 Germanium: crystal structure, 468 electrical characteristics, 734, 740, 777 Gibbs phase rule, 316–318, G5 Gilding metal, 406 Glass: as amorphous material, 79 annealing, 424, 516, G0 blowing, 513, 515 classification, 503 color, 854 commercial; compositions and characteristics, 503 corrosion resistance, 707 cost, A34 dielectric properties, 758 electrical conductivity, 755 flexural strength, 486 forming techniques, 515–516 fracture surface (photomicrograph), 484 hardness, 491 heat treatment, 516–517 melting point, 514 modulus of elasticity, 486 optical flint, 503 plane strain fracture toughness, 246 refractive index, 848 sheet forming (float process), 516 soda-lime, composition, 503 softening point, 514 strain point, 514 stress-strain behavior, 487 structure, 465 surface crack propagation, 481 tempering, 517, 531 thermal properties, 785 viscous properties, 514 working point, 514, G14 Glass-ceramics, 503–505, G5 composition (PyroCeram), 503 continuous cooling transformation diagram, 504 fabrication and heat treating, 518 flexural strength, 486 modulus of elasticity, 486 optical transparency, conditions for, 854 properties and applications, 504 Glass fibers, 513 fiberglass-reinforced composites, 647–648, 650 forming, 516 properties as fiber, 646 Glass transition, polymers, 592 Glass transition temperature, 514, 592, G5 factors that affect, polymers, 594–595 values for selected polymers, 593, A40 Gold, 415 atomic radius and crystal structure, 47 electrical conductivity, 728 slip systems, 203 thermal properties, 785 Graft copolymers, 551, 552, G5 Grain boundaries, 73, 103–104, G5 Grain boundary energy, 103 Grain growth, 224–225, G5 Grains, G5 definition, 72 distortion during plastic deformation, 197, 209–210 Grain size, G5 dependence on time, 225 determination of, 113 mechanical properties and, 212–213, 225 reduction, and strengthening of metals, 212–213 refinement of by annealing, 424 Grain size number (ASTM), 113 Graphite, 469–470 in cast irons, 399 compared to carbon, 646, 648 cost, A34 from decomposition of cementite, 399 electrical conductivity, 755 properties/applications, 470 properties as whisker, 646 as a refractory, 507 structure of, 469 Gray cast iron, 400, 401, 402, G5 compositions, mechanical properties, and applications, 403 Green ceramic bodies, 521, G5 Green design, 877 Ground state, 24, 845, G5 Growth, phase particle, 344, 352–354, G5 rate, 353 temperature dependence of rate, 353 Gutta percha, 549 H Hackle region, 483–485 Half-cells, standard, 678–679 Half-reactions, 676 Hall coefficient, 747 Hall effect, 746–748, G5 Hall-Petch equation, 213 Hall voltage, 747 Halogens, 26 Hard disk drives, 800, 826–827 Hardenability, 425–429, G5 Hardenability band, 430 Hardenability curves, 426–429 Hard magnetic materials, 822–825, G5 properties, 824 Hardness, G5 bainite, pearlite vs. transformation temperature, 373 ceramics, 490–491 comparison of scales, 178–179 conversion diagram, 178 correlation with tensile strength, 179 fine and coarse pearlite, spheroidite, 372 pearlite, martensite, tempered martensite, 374 polymers, 581 tempered martensite, 374, 376, 377 Hardness tests, 174–177 summary of tests, 175 Hard sphere model, 46–47 Head-to-head configuration, 546 Head-to-tail configuration, 547 Heat affected zone, 421 Heat capacity, 782–784, G5 temperature dependence, 784 vibrational contribution, 783 Heat flux, 789 Heat of fusion, latent, 347 Heat transfer: mechanism, 783, 789 nonsteady-state, 798 I8 • IndexHeat treatable, definition of, 406 Heat treatments, 123. See also Annealing; Phase transformations dislocation reduction, 201 glass, 516–517 hydrogen embrittlement, 700 intergranular corrosion and, 697 polymer morphology, 592 polymer properties, 586 for precipitation hardening, 437–438 recovery, recrystallization, and grain growth during, 218–225 steel, 425–436 Hertz, 843 Heterogeneous nucleation, 350–352 Hexagonal close-packed structure, 49–50, G5 anion stacking (ceramics), 460–461 Burgers vector for, 205 close-packed planes (metals), 69–71 slip systems, 203 twinning in, 211 Hexagonal crystal system, 52, 54 direction indices, 60–63 planar indices, 67–68 Hexagonal ferrites, 811 Hexane, 535 High carbon steels, 396, 397 High-cycle fatigue
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Materials Science and Engineering - An Introduction رابط مباشر لتنزيل كتاب Materials Science and Engineering - An Introduction
|
| | |
كاتب الموضوع | رسالة |
---|
rambomenaa كبير مهندسين
عدد المساهمات : 2041 تاريخ التسجيل : 21/01/2012
| موضوع: كتاب Materials Science and Engineering - An Introduction الثلاثاء 27 نوفمبر 2012, 9:50 am | |
|
أخوانى فى الله أحضرت لكم كتاب Materials Science and Engineering - An Introduction Eighth Edition William D. Callister, Jr. Department of Metallurgical Engineering The University of Utah David G. Rethwisch Department of Chemical and Biochemical Engineering The University of Iowa
و المحتوى كما يلي :
LIST OF SYMBOLS xxi 1. Introduction Learning Objectives 2 1.1 Historical Perspective 2 1.2 Materials Science and Engineering 3 1.3 Why Study Materials Science and Engineering? 5 1.4 Classification of Materials 5 Materials of Importance—Carbonated Beverage Containers 10 1.5 Advanced Materials 11 1.6 Modern Materials’ Needs 13 1.7 Processing/Structure/Properties/Performance Correlations 14 Summary 16 References 17 Question 17 2. Atomic Structure and Interatomic Bonding 18 Learning Objectives 19 2.1 Introduction 19 ATOMIC STRUCTURE 19 2.2 Fundamental Concepts 19 2.3 Electrons in Atoms 20 2.4 The Periodic Table 26 ATOMIC BONDING IN SOLIDS 28 2.5 Bonding Forces and Energies 28 2.6 Primary Interatomic Bonds 30 2.7 Secondary Bonding or van der Waals Bonding 34 Materials of Importance—Water (Its Volume Expansion Upon Freezing) 37 2.8 Molecules 38 Summary 38 Equation Summary 39 Processing/Structure/Properties/Performance Summary 40 Important Terms and Concepts 40 References 40 Questions and Problems 41 Contents • xiii3. The Structure of Crystalline Solids 44 Learning Objectives 45 3.1 Introduction 45 CRYSTAL STRUCTURES 46 3.2 Fundamental Concepts 46 3.3 Unit Cells 47 3.4 Metallic Crystal Structures 47 3.5 Density Computations 51 3.6 Polymorphism and Allotropy 52 3.7 Crystal Systems 52 Materials of Importance—Tin (Its Allotropic Transformation) 53 CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND PLANES 55 3.8 Point Coordinates 55 3.9 Crystallographic Directions 57 3.10 Crystallographic Planes 64 3.11 Linear and Planar Densities 68 3.12 Close-Packed Crystal Structures 70 CRYSTALLINE AND NONCRYSTALLINE MATERIALS 72 3.13 Single Crystals 72 3.14 Polycrystalline Materials 72 3.15 Anisotropy 73 3.16 X-Ray Diffraction: Determination of Crystal Structures 74 3.17 Noncrystalline Solids 79 Summary 80 Equation Summary 82 Processing/Structure/Properties/Performance Summary 83 Important Terms and Concepts 83 References 83 Questions and Problems 84 4. Imperfections in Solids 90 Learning Objectives 91 4.1 Introduction 91 POINT DEFECTS 92 4.2 Vacancies and Self-Interstitials 92 4.3 Impurities in Solids 93 4.4 Specification of Composition 95 MISCELLANEOUS IMPERFECTIONS 99 4.5 Dislocations–Linear Defects 99 4.6 Interfacial Defects 102 Materials of Importance—Catalysts (and Surface Defects) 105 xiv • Contents 4.7 Bulk or Volume Defects 106 4.8 Atomic Vibrations 106 MICROSCOPIC EXAMINATION 107 4.9 Basic Concepts of Microscopy 107 4.10 Microscopic Techniques 108 4.11 Grain Size Determination 113 Summary 114 Equation Summary 116 Processing/Structure/Properties/Performance Summary 117 Important Terms and Concepts 118 References 118 Questions and Problems 118 Design Problems 121 5. Diffusion 122 Learning Objectives 123 5.1 Introduction 123 5.2 Diffusion Mechanisms 125 5.3 Steady-State Diffusion 126 5.4 Nonsteady-State Diffusion 128 5.5 Factors That Influence Diffusion 132 5.6 Diffusion in Semiconducting Materials 137 Materials of Importance—Aluminum for Integrated Circuit Interconnects 140 5.7 Other Diffusion Paths 142 Summary 142 Equation Summary 143 Processing/Structure/Properties/Performance Summary 144 Important Terms and Concepts 144 References 144 Questions and Problems 145 Design Problems 148 6. Mechanical Properties of Metals 150 Learning Objectives 151 6.1 Introduction 151 6.2 Concepts of Stress and Strain 152 ELASTIC DEFORMATION 156 6.3 Stress–Strain Behavior 156 6.4 Anelasticity 159 6.5 Elastic Properties of Materials 160 PLASTIC DEFORMATION 162 6.6 Tensile Properties 162 6.7 True Stress and Strain 1706.8 Elastic Recovery After Plastic Deformation 173 6.9 Compressive, Shear, and Torsional Deformations 173 6.10 Hardness 174 PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS 180 6.11 Variability of Material Properties 180 6.12 Design/Safety Factors 182 Summary 184 Equation Summary 186 Processing/Structure/Properties/Performance Summary 187 Important Terms and Concepts 188 References 188 Questions and Problems 188 Design Problems 195 7. Dislocations and Strengthening Mechanisms 197 Learning Objectives 198 7.1 Introduction 198 DISLOCATIONS AND PLASTIC DEFORMATION 199 7.2 Basic Concepts 199 7.3 Characteristics of Dislocations 201 7.4 Slip Systems 202 7.5 Slip in Single Crystals 204 7.6 Plastic Deformation of Polycrystalline Materials 208 7.7 Deformation by Twinning 210 MECHANISMS OF STRENGTHENING IN METALS 211 7.8 Strengthening by Grain Size Reduction 212 7.9 Solid-Solution Strengthening 213 7.10 Strain Hardening 215 RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH 218 7.11 Recovery 219 7.12 Recrystallization 219 7.13 Grain Growth 224 Summary 225 Equation Summary 228 Processing/Structure/Properties/Performance Summary 228 Important Terms and Concepts 229 References 229 Questions and Problems 229 Design Problems 233 Contents • xv 8. Failure 234 Learning Objectives 235 8.1 Introduction 235 FRACTURE 236 8.2 Fundamentals of Fracture 236 8.3 Ductile Fracture 236 8.4 Brittle Fracture 239 8.5 Principles of Fracture Mechanics 242 8.6 Fracture Toughness Testing 250 FATIGUE 255 8.7 Cyclic Stresses 255 8.8 The S–N Curve 257 8.9 Crack Initiation and Propagation 259 8.10 Factors That Affect Fatigue Life 262 8.11 Environmental Effects 264 CREEP 265 8.12 Generalized Creep Behavior 265 8.13 Stress and Temperature Effects 266 8.14 Data Extrapolation Methods 268 8.15 Alloys for High-Temperature Use 269 Summary 270 Equation Summary 273 Important Terms and Concepts 274 References 275 Questions and Problems 275 Design Problems 279 9. Phase Diagrams 281 Learning Objectives 282 9.1 Introduction 282 DEFINITIONS AND BASIC CONCEPTS 283 9.2 Solubility Limit 283 9.3 Phases 284 9.4 Microstructure 284 9.5 Phase Equilibria 285 9.6 One-Component (or Unary) Phase Diagrams 286 BINARY PHASE DIAGRAMS 287 9.7 Binary Isomorphous Systems 287 9.8 Interpretation of Phase Diagrams 289 9.9 Development of Microstructure in Isomorphous Alloys 294 9.10 Mechanical Properties of Isomorphous Alloys 297 9.11 Binary Eutectic Systems 298 Materials of Importance—Lead-Free Solders 3049.12 Development of Microstructure in Eutectic Alloys 305 9.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 311 9.14 Eutectoid and Peritectic Reactions 313 9.15 Congruent Phase Transformations 315 9.16 Ceramic and Ternary Phase Diagrams 316 9.17 The Gibbs Phase Rule 316 THE IRON–CARBON SYSTEM 319 9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 319 9.19 Development of Microstructure in Iron–Carbon Alloys 322 9.20 The Influence of Other Alloying Elements 330 Summary 331 Equation Summary 333 Processing/Structure/Properties/Performance Summary 334 Important Terms and Concepts 335 References 335 Questions and Problems 335 10. Phase Transformations: Development of Microstructure and Alteration of Mechanical Properties 342 Learning Objectives 343 10.1 Introduction 343 PHASE TRANSFORMATIONS 344 10.2 Basic Concepts 344 10.3 The Kinetics of Phase Transformations 344 10.4 Metastable Versus Equilibrium States 355 MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON–CARBON ALLOYS 356 10.5 Isothermal Transformation Diagrams 356 10.6 Continuous Cooling Transformation Diagrams 367 10.7 Mechanical Behavior of Iron–Carbon Alloys 370 10.8 Tempered Martensite 375 10.9 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 378 xvi • Contents Materials of Importance—Shape-Memory Alloys 379 Summary 381 Equation Summary 383 Processing/Structure/Properties/Performance Summary 384 Important Terms and Concepts 385 References 385 Questions and Problems 385 Design Problems 390 11. Applications and Processing of Metal Alloys 391 Learning Objectives 392 11.1 Introduction 392 TYPES OF METAL ALLOYS 393 11.2 Ferrous Alloys 393 11.3 Nonferrous Alloys 406 Materials of Importance—Metal Alloys Used for Euro Coins 416 FABRICATION OF METALS 417 11.4 Forming Operations 417 11.5 Casting 419 11.6 Miscellaneous Techniques 420 THERMAL PROCESSING OF METALS 422 11.7 Annealing Processes 422 11.8 Heat Treatment of Steels 425 11.9 Precipitation Hardening 436 Summary 442 Processing/Structure/Properties/Performance Summary 444 Important Terms and Concepts 444 References 447 Questions and Problems 447 Design Problems 449 12. Structures and Properties of Ceramics 451 Learning Objectives 452 12.1 Introduction 452 CERAMIC STRUCTURES 453 12.2 Crystal Structures 453 12.3 Silicate Ceramics 464 12.4 Carbon 468 Materials of Importance—Carbon Nanotubes 471 12.5 Imperfections in Ceramics 472 12.6 Diffusion in Ionic Materials 476 12.7 Ceramic Phase Diagrams 476MECHANICAL PROPERTIES 480 12.8 Brittle Fracture of Ceramics 480 12.9 Stress–Strain Behavior 485 12.10 Mechanisms of Plastic Deformation 487 12.11 Miscellaneous Mechanical Considerations 489 Summary 491 Equation Summary 494 Processing/Structure/Properties/Performance Summary 494 Important Terms and Concepts 495 References 495 Questions and Problems 495 Design Problems 500 13. Applications and Processing of Ceramics 501 Learning Objectives 502 13.1 Introduction 502 TYPES AND APPLICATIONS OF CERAMICS 503 13.2 Glasses 503 13.3 Glass-Ceramics 503 13.4 Clay Products 505 13.5 Refractories 505 13.6 Abrasives 507 13.7 Cements 508 13.8 Advanced Ceramics 509 Materials of Importance—Piezoelectric Ceramics 512 FABRICATION AND PROCESSING OF CERAMICS 512 13.9 Fabrication and Processing of Glasses and Glass-Ceramics 513 13.10 Fabrication and Processing of Clay Products 518 13.11 Powder Pressing 523 13.12 Tape Casting 525 Summary 526 Processing/Structure/Properties/Performance Summary 528 Important Terms and Concepts 529 References 530 Questions and Problems 530 Design Problem 531 14. Polymer Structures 532 Learning Objectives 533 14.1 Introduction 533 14.2 Hydrocarbon Molecules 534 Contents • xvii 14.3 Polymer Molecules 535 14.4 The Chemistry of Polymer Molecules 537 14.5 Molecular Weight 541 14.6 Molecular Shape 544 14.7 Molecular Structure 545 14.8 Molecular Configurations 547 14.9 Thermoplastic and Thermosetting Polymers 550 14.10 Copolymers 551 14.11 Polymer Crystallinity 552 14.12 Polymer Crystals 556 14.13 Defects in Polymers 558 14.14 Diffusion in Polymeric Materials 559 Summary 561 Equation Summary 563 Processing/Structure/Properties/Performance Summary 564 Important Terms and Concepts 565 References 565 Questions and Problems 565 15. Characteristics, Applications, and Processing of Polymers 569 Learning Objectives 570 15.1 Introduction 570 MECHANICAL BEHAVIOR OF POLYMERS 570 15.2 Stress–Strain Behavior 570 15.3 Macroscopic Deformation 573 15.4 Viscoelastic Deformation 574 15.5 Fracture of Polymers 578 15.6 Miscellaneous Mechanical Characteristics 580 MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 581 15.7 Deformation of Semicrystalline Polymers 581 15.8 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 582 Materials of Importance—Shrink-Wrap Polymer Films 587 15.9 Deformation of Elastomers 588 CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS 590 15.10 Crystallization 590 15.11 Melting 592 15.12 The Glass Transition 592 15.13 Melting and Glass Transition Temperatures 59215.14 Factors That Influence Melting and Glass Transition Temperatures 594 POLYMER TYPES 596 15.15 Plastics 596 Materials of Importance—Phenolic Billiard Balls 598 15.16 Elastomers 599 15.17 Fibers 601 15.18 Miscellaneous Applications 601 15.19 Advanced Polymeric Materials 603 POLYMER SYNTHESIS AND PROCESSING 607 15.20 Polymerization 607 15.21 Polymer Additives 610 15.22 Forming Techniques for Plastics 611 15.23 Fabrication of Elastomers 614 15.24 Fabrication of Fibers and Films 614 Summary 616 Equation Summary 619 Processing/Structure/Properties/Performance Summary 619 Important Terms and Concepts 620 References 620 Questions and Problems 621 Design Questions 625 16. Composites 626 Learning Objectives 627 16.1 Introduction 627 PARTICLE-REINFORCED COMPOSITES 629 16.2 Large-Particle Composites 630 16.3 Dispersion-Strengthened Composites 634 FIBER-REINFORCED COMPOSITES 634 16.4 Influence of Fiber Length 634 16.5 Influence of Fiber Orientation and Concentration 636 16.6 The Fiber Phase 645 16.7 The Matrix Phase 646 16.8 Polymer-Matrix Composites 647 16.9 Metal-Matrix Composites 653 16.10 Ceramic-Matrix Composites 655 16.11 Carbon–Carbon Composites 656 16.12 Hybrid Composites 657 16.13 Processing of Fiber-Reinforced Composites 657 STRUCTURAL COMPOSITES 660 16.14 Laminar Composites 660 16.15 Sandwich Panels 661 Materials of Importance—Nanocomposites in Tennis Balls 662 xviii • Contents Summary 663 Equation Summary 666 Important Terms and Concepts 667 References 667 Questions and Problems 668 Design Problems 671 17. Corrosion and Degradation of Materials 673 Learning Objectives 674 17.1 Introduction 674 CORROSION OF METALS 675 17.2 Electrochemical Considerations 675 17.3 Corrosion Rates 682 17.4 Prediction of Corrosion Rates 683 17.5 Passivity 690 17.6 Environmental Effects 692 17.7 Forms of Corrosion 692 17.8 Corrosion Environments 700 17.9 Corrosion Prevention 701 17.10 Oxidation 703 CORROSION OF CERAMIC MATERIALS 706 DEGRADATION OF POLYMERS 707 17.11 Swelling and Dissolution 707 17.12 Bond Rupture 709 17.13 Weathering 710 Summary 711 Equation Summary 713 Important Terms and Concepts 714 References 715 Questions and Problems 715 Design Problems 718 18. Electrical Properties 719 Learning Objectives 720 18.1 Introduction 720 ELECTRICAL CONDUCTION 721 18.2 Ohm’s Law 721 18.3 Electrical Conductivity 721 18.4 Electronic and Ionic Conduction 722 18.5 Energy Band Structures in Solids 722 18.6 Conduction in Terms of Band and Atomic Bonding Models 725 18.7 Electron Mobility 727 18.8 Electrical Resistivity of Metals 728 18.9 Electrical Characteristics of Commercial Alloys 731 Materials of Importance—Aluminum Electrical Wires 731SEMICONDUCTIVITY 733 18.10 Intrinsic Semiconduction 733 18.11 Extrinsic Semiconduction 736 18.12 The Temperature Dependence of Carrier Concentration 740 18.13 Factors That Affect Carrier Mobility 742 18.14 The Hall Effect 746 18.15 Semiconductor Devices 748 ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS 754 18.16 Conduction in Ionic Materials 755 18.17 Electrical Properties of Polymers 756 DIELECTRIC BEHAVIOR 757 18.18 Capacitance 757 18.19 Field Vectors and Polarization 759 18.20 Types of Polarization 762 18.21 Frequency Dependence of the Dielectric Constant 764 18.22 Dielectric Strength 765 18.23 Dielectric Materials 765 OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 765 18.24 Ferroelectricity 766 18.25 Piezoelectricity 767 Summary 767 Equation Summary 770 Processing/Structure/Properties/Performance Summary 772 Important Terms and Concepts 773 References 774 Questions and Problems 774 Design Problems 779 19. Thermal Properties 781 Learning Objectives 782 19.1 Introduction 782 19.2 Heat Capacity 782 19.3 Thermal Expansion 785 Materials of Importance—Invar and Other Low-Expansion Alloys 788 19.4 Thermal Conductivity 789 19.5 Thermal Stresses 792 Summary 794 Equation Summary 795 Important Terms and Concepts 796 References 796 Questions and Problems 796 Design Problems 798 Contents • xix 20. Magnetic Properties 800 Learning Objectives 801 20.1 Introduction 801 20.2 Basic Concepts 801 20.3 Diamagnetism and Paramagnetism 805 20.4 Ferromagnetism 807 20.5 Antiferromagnetism and Ferrimagnetism 809 20.6 The Influence of Temperature on Magnetic Behavior 813 20.7 Domains and Hysteresis 814 20.8 Magnetic Anisotropy 818 20.9 Soft Magnetic Materials 819 Materials of Importance—An Iron–Silicon Alloy That Is Used in Transformer Cores 821 20.10 Hard Magnetic Materials 822 20.11 Magnetic Storage 825 20.12 Superconductivity 828 Summary 832 Equation Summary 834 Important Terms and Concepts 835 References 835 Questions and Problems 835 Design Problems 839 21. Optical Properties 840 Learning Objectives 841 21.1 Introduction 841 BASIC CONCEPTS 841 21.2 Electromagnetic Radiation 841 21.3 Light Interactions with Solids 843 21.4 Atomic and Electronic Interactions 844 OPTICAL PROPERTIES OF METALS 845 OPTICAL PROPERTIES OF NONMETALS 846 21.5 Refraction 846 21.6 Reflection 848 21.7 Absorption 849 21.8 Transmission 852 21.9 Color 853 21.10 Opacity and Translucency in Insulators 854 APPLICATIONS OF OPTICAL PHENOMENA 855 21.11 Luminescence 855 Materials of Importance—Light-Emitting Diodes 856 21.12 Photoconductivity 858 21.13 Lasers 85821.14 Optical Fibers in Communications 863 Summary 865 Equation Summary 868 Important Terms and Concepts 869 References 869 Questions and Problems 869 Design Problem 871 22. Economic, Environmental, and Societal Issues in Materials Science and Engineering 872 Learning Objectives 873 22.1 Introduction 873 ECONOMIC CONSIDERATIONS 873 22.2 Component Design 874 22.3 Materials 874 22.4 Manufacturing Techniques 875 ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS 875 22.5 Recycling Issues in Materials Science and Engineering 878 Materials of Importance—Biodegradable and Biorenewable Polymers/ Plastics 881 Summary 884 References 884 Design Questions 885 Appendix A The International System of Units (SI) A1 xx • Contents Appendix B Properties of Selected Engineering Materials A3 B.1 Density A3 B.2 Modulus of Elasticity A6 B.3 Poisson’s Ratio A10 B.4 Strength and Ductility A11 B.5 Plane Strain Fracture Toughness A16 B.6 Linear Coefficient of Thermal Expansion A17 B.7 Thermal Conductivity A21 B.8 Specific Heat A24 B.9 Electrical Resistivity A26 B.10 Metal Alloy Compositions A29 Appendix C Costs and Relative Costs for Selected Engineering Materials A31 Appendix D Repeat Unit Structures for Common Polymers A36 Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials A40 Mechanical Engineering Online Support Module Biomaterials Online Support Module Glossary G1 Answers to Selected Problems S0 Index I1The number of the section in which a symbol is introduced or explained is given in parentheses. List of Symbols A area Å angstrom unit Ai atomic weight of element i (2.2) APF atomic packing factor (3.4) a lattice parameter: unit cell x-axial length (3.4) a crack length of a surface crack (8.5) at% atom percent (4.4) B magnetic flux density (induction) (20.2) B r magnetic remanence (20.7) BCC body-centered cubic crystal structure (3.4) b lattice parameter: unit cell y-axial length (3.7) b Burgers vector (4.5) C capacitance (18.18) Ci concentration (composition) of component i in wt% (4.4) concentration (composition) of component i in at% (4.4) , Cp heat capacity at constant volume, pressure (19.2) CPR corrosion penetration rate (17.3) CVN Charpy V-notch (8.6) %CW percent cold work (7.10) c lattice parameter: unit cell z-axial length (3.7) c velocity of electromagnetic radiation in a vacuum (21.2) D diffusion coefficient (5.3) C y Ci¿ D dielectric displacement (18.19) DP degree of polymerization (14.5) d diameter d average grain diameter (7.8) dhkl interplanar spacing for planes of Miller indices h, k, and l (3.16) E energy (2.5) E modulus of elasticity or Young’s modulus (6.3) e electric field intensity (18.3) Ef Fermi energy (18.5) Eg band gap energy (18.6) E r(t) relaxation modulus (15.4) %EL ductility, in percent elongation (6.6) e electric charge per electron (18.7) electron (17.2) erf Gaussian error function (5.4) exp e, the base for natural logarithms F force, interatomic or mechanical (2.5, 6.3) f Faraday constant (17.2) FCC face-centered cubic crystal structure (3.4) G shear modulus (6.3) H magnetic field strength (20.2) Hc magnetic coercivity (20.7) HB Brinell hardness (6.10) HCP hexagonal close-packed crystal structure (3.4) eHK Knoop hardness (6.10) HRB, HRF Rockwell hardness: B and F scales (6.10) HR15N, HR45Wsuperficial Rockwell hardness: 15N and 45W scales (6.10) HV Vickers hardness (6.10) h Planck’s constant (21.2) (hkl) Miller indices for a crystallographic plane (3.10) I electric current (18.2) I intensity of electromagnetic radiation (21.3) i current density (17.3) iC corrosion current density (17.4) J diffusion flux (5.3) J electric current density (18.3) Kc fracture toughness (8.5) KIc plane strain fracture toughness for mode I crack surface displacement (8.5) k Boltzmann’s constant (4.2) k thermal conductivity (19.4) l length l c critical fiber length (16.4) ln natural logarithm log logarithm taken to base 10 M magnetization (20.2) polymer number-average molecular weight (14.5) polymer weight-average molecular weight (14.5) mol% mole percent N number of fatigue cycles (8.8) NA Avogadro’s number (3.5) Nf fatigue life (8.8) n principal quantum number (2.3) n number of atoms per unit cell (3.5) n strain-hardening exponent (6.7) n number of electrons in an electrochemical reaction (17.2) n number of conducting electrons per cubic meter (18.7) n index of refraction (21.5) M w Mn xxii • List of Symbols n for ceramics, the number of formula units per unit cell (12.2) ni intrinsic carrier (electron and hole) concentration (18.10) P dielectric polarization (18.19) P–B ratio Pilling–Bedworth ratio (17.10) p number of holes per cubic meter (18.10) Q activation energy Q magnitude of charge stored (18.18) R atomic radius (3.4) R gas constant %RA ductility, in percent reduction in area (6.6) r interatomic distance (2.5) r reaction rate (17.3) rA, rC anion and cation ionic radii (12.2) S fatigue stress amplitude (8.8) SEM scanning electron microscopy or microscope T temperature Tc Curie temperature (20.6) TC superconducting critical temperature (20.12) Tg glass transition temperature (13.9, 15.12) Tm melting temperature TEM transmission electron microscopy or microscope TS tensile strength (6.6) t time t r rupture lifetime (8.12) Ur modulus of resilience (6.6) [u w] indices for a crystallographic direction (3.9) V electrical potential difference (voltage) (17.2, 18.2) VC unit cell volume (3.4) VC corrosion potential (17.4) VH Hall voltage (18.14) Vi volume fraction of phase i (9.8) velocity vol% volume percent y yWi mass fraction of phase i (9.8) wt% weight percent (4.4) x length x space coordinate Y dimensionless parameter or function in fracture toughness expression(8.5) y space coordinate z space coordinate lattice parameter: unit cell y–z interaxial angle (3.7) , , phase designations l linear coefficient of thermal expansion (19.3) lattice parameter: unit cell x–z interaxial angle (3.7) lattice parameter: unit cell x–y interaxial angle (3.7) shear strain (6.2) precedes the symbol of a parameter to denote finite change engineering strain (6.2) dielectric permittivity (18.18) dielectric constant or relative permittivity (18.18) steady-state creep rate (8.12) true strain (6.7) viscosity (12.10) overvoltage (17.4) Bragg diffraction angle (3.16) D Debye temperature (19.2) wavelength of electromagnetic radiation (3.16) magnetic permeability (20.2) B Bohr magneton (20.2) r relative magnetic permeability (20.2) e electron mobility (18.7) h hole mobility (18.10) Poisson’s ratio (6.5) frequency of electromagnetic radiation (21.2) density (3.5) r #s T n n List of Symbols • xxiii electrical resistivity (18.2) t radius of curvature at the tip of a crack (8.5) engineering stress, tensile or compressive (6.2) electrical conductivity (18.3) * longitudinal strength (composite) (16.5) c critical stress for crack propagation (8.5) fs flexural strength (12.9) m maximum stress (8.5) m mean stress (8.7)
m stress in matrix at composite failure (16.5) T true stress (6.7)
w safe or working stress (6.12) y yield strength (6.6) shear stress (6.2) c fiber–matrix bond strength/matrix shear yield strength (16.4) crss critical resolved shear stress (7.5) magnetic susceptibility (20.2) SUBSCRIPTS c composite cd discontinuous fibrous composite cl longitudinal direction (aligned fibrous composite) ct transverse direction (aligned fibrous composite) f final f at fracture f fiber i instantaneous m matrix m, max maximum min minimum 0 original 0 at equilibrium 0 in a vacuum xm Index A Abrasive ceramics, 503, 507, 527 Abrasives, G0 Absorption coefficient, 851, 868 Absorption of light: in metals, 845–846 in nonmetals, 846–847 Absorptivity, 844 ABS polymer, 596 A mBnXp crystal structures, 459 Acceptors, 739, G0 Acetic acid, 536 Acetylene, 534 Acid rain, as corrosion environment, 701 Acids (organic), 536 Acid slags, 507 Acrylics, see Poly(methyl methacrylate) Acrylonitrile, see Polyacrylonitrile (PAN) Acrylonitrile-butadiene rubber, 600 Acrylonitrile-butadiene-styrene (ABS), 596 Activation energy, G0 for creep, 268, 274 for diffusion, 133, 143, 348 free, 347, 351, 383, 384 for viscous flow, 531 Activation polarization, 684–685, 712, G0 Actuator, 11–12, 509 Addition polymerization, 607–608, 681, G0 Additives, polymer, 610–611, 618 Adhesives, 602, 618, G0 Adhesive tape, 18 Adipic acid (structure), 610 Adsorption, 105 Advanced ceramics, 503, 509–512, 527 Advanced materials, 11–12 Advanced polymers, 603–607, 618 Age hardening, see Precipitation hardening Air, as quenching medium, 430 AISI/SAE steel designation scheme, 395–396 Akermanite, 466 Alcohols, 536 Aldehydes, 536 Alkali metals, 26, 38 Alkaline earth metals, 26 Allotropic transformation (tin), 53 Allotropy, 52, G0 Alloys, 5, 393, G0. See also Solid solutions; specific alloys atomic weight equations, 97 cast, 406 composition specification, 95–96 compositions for various, A29–A30 costs, A31–A33 defined, 94 density equations, 97 density values, A3–A5 ductility values, A11–A13 electrical resistivity values, A26–A28 fracture toughness values, A16 heat treatable, 408 high-temperature, 269–270 linear coefficient of thermal expansion values, 785, A17–A18 low expansion, 788 modulus of elasticity values, 157, A6–A8 Poisson’s ratio values, 157, A10 specific heat values, 785, A24–A25 strengthening, see Strengthening of metals tensile strength values, 168, A11–A13 thermal conductivity values, 785, A21–A22 wrought, 406 yield strength values, 168, A11–A13 Alloy steels, 364, 383, G0. See also Steels Alnico, 823, 824 Iron, see Ferrite () Alternating copolymers, 551, 552, G0 Alumina, 7. See also Aluminum oxide Aluminosilicates, 518 Aluminum: atomic radius and crystal structure, 47 bonding energy and melting temperature, 31 elastic and shear moduli, 157 electrical conductivity, 728 electrical wires, 731–732 for integrated circuit interconnects, 140–141 Poisson’s ratio, 157 recrystallization temperature, 222 slip systems, 203 superconducting critical temperature, 831 thermal properties, 785 yield and tensile strengths, ductility, 168 Aluminum alloys, 408–410 fatigue behavior, 277 plane strain fracture toughness, 246 precipitation hardening, 439–440 properties and applications, 409 Aluminum-copper alloys, phase diagram, 439 Aluminum-lithium alloys, 409, 410 Aluminum oxide: electrical conductivity, 755 flexural strength, 486 hardness, 491 index of refraction, 848 modulus of elasticity, 486 I0 • Page numbers preceded by a “A” or a “G” refer to the appendices and the glossary, respectively.plane strain fracture toughness, 246 Poisson’s ratio, A10 sintered microstructure, 525 stress-strain behavior, 487 thermal properties, 785 translucency, 4, 855 as whiskers and fibers, 646 Aluminum oxide-chromium oxide phase diagram, 477 Ammonia, bonding energy and melting temperature, 31 Amorphous materials, 46, 79, G0 Anelasticity, 159, G0 Angle computation between two crystallographic directions, 207 Anions, 453, G0 Anisotropy, 73–74, 81, G0 of elastic modulus, 74, 161, 189 magnetic, 74, 818–819 Annealing, 368, 422–424, 443, G0 ferrous alloys, 423–424, 443 glass, 516 Annealing point, glass, 514, 527, G0 Annealing twins, 106 Anodes, 675, 711, G0 area effect, galvanic corrosion, 694 sacrificial, 702, G11 Antiferromagnetism, 809, 832, G0 temperature dependence, 813 Aramid: cost, as a fiber, A35 fiber-reinforced polymer-matrix composites, 649 melting and glass transition temperatures, A40 properties as fiber, 646 repeat unit structure, 649, A38 Argon, bonding energy and melting temperature, 31 Aromatic hydrocarbons (chain groups), 536, 595 Arrhenius equation, 353 Artificial aging, 442, G0 Asphaltic concrete, 632 ASTM standards, 152 Atactic configuration, 548, G0 Athermal transformation, 364, G0 Atomic bonding, see Bonding Atomic mass, 20 Atomic mass unit (amu), 20, G0 Atomic models: Bohr, 21, 22, G1 wave-mechanical, 22, G14 Atomic number, 20, G0 Atomic packing factor, 48, G0 Atomic point defects, 92, 472–474 Atomic radii, of selected metals, 47 Atomic structure, 19–27 Atomic vibrations, 106–107, 783–784, G0 Atomic weight, 20, G0 metal alloys, equations for, 97 Atom percent, 96, G1 Austenite, 319, 332, G1 shape-memory phase transformations, 379–380 transformations, 356–370, 382 summary, 378 Austenitic stainless steels, 397–398 Austenitizing, 424, G1 Automobiles, rusted and stainless steel, 673 Automobile transmission, 122 Auxetic materials, 160 Average value, 180–181 Avogadro’s number, 20 Avrami equation, 355, 382, 591 AX crystal structures, 457–458 A mXp crystal structures, 458–459 B Bainite, 360–361, 368, 373, 378, 382, G1 mechanical properties, 373 Bakelite, see Phenol-formaldehyde (Bakelite) Ball bearings, ceramic, 511 Band gap, 724–725 Band gap energy, G1 determination, 776 selected semiconductors, 734 Bands, see Energy bands Barcol hardness, 581 Barium ferrite (as magnetic storage medium), 828 Barium titanate: crystal structure, 459, 460, 766 as dielectric, 765 as ferroelectric, 766 as piezoelectric, 512, 767 Base (transistor), 750–751 Basic refractories, 507 Basic slags, 507 Beachmarks (fatigue), 259–260 Bend strength, 485. See also flexural strength Beryllia, 507 Beryllium-copper alloys, 408 Beverage containers, 1, 197, 391, 872, 885 corrosion of, 872 diffusion rate of CO2 through, plastic, 560–561 stages of production, 391 Bifunctional repeat units, 540, 562, G1 Billiard balls, 569, 598–599 Bimetallic strips, 781, 788 Binary eutectic alloys, 298–311, 332 tensile strength, 338 Binary isomorphous alloys, 287–298, 331 mechanical properties, 297–298 microstructure development, equilibrium cooling, 294–295 microstructure development, nonequilibrium cooling, 295–297 Biodegradable beverage can, 872 Biodegradable polymers/plastics, 872, 881–883 Biomass, 882 Biomaterials, 11 Biorenewable polymers/plastics, 881–883 Block copolymers, 551–552, G1 Blowing, of glass, 515 Blow molding, plastics, 613–614 Body-centered cubic structure, 48–49, G1 Burgers vector for, 204 slip systems, 203 twinning in, 211 Bohr atomic model, 21, 22, G1 Bohr magneton, 805, G1 Boltzmann’s constant, 92, G1 Bonding: carbon-carbon, 537–538 cementitious, 508 covalent, 32–33, 453, G2 hybrid sp, 25, 26 hydrogen, 35, 36, 37, G6 ionic, 30–31, 453, G6 metallic, 33–34, G7 van der Waals, see van der Waals bonding Bonding energy, 29, G1 and melting temperature for selected materials, 31 Bonding forces, 28–29 Bond rupture, in polymers, 709–710 Bone: as composite, 628 Boron carbide: hardness, 491 Boron: boron-doped silicon semiconductors, 738 fiber-reinforced composites, 654 properties as a fiber, 646 Borosilicate glass: composition, 503 electrical conductivity, 755 viscosity, 514 Index • I1Borsic fiber-reinforced composites, 654 Bottom-up science, 12 Bragg’s law, 75–76, G1 Branched polymers, 546, G1 Brass, 406, 407, G1 annealing behavior, 221 elastic and shear moduli, 157 electrical conductivity, 728, 775 fatigue behavior, 277 phase diagram, 311, 312 Poisson’s ratio, 157 recrystallization temperature, 222 stress-strain behavior, 165 thermal properties, 785 yield and tensile strengths, ductility, 168 Brazing, 421, G1 Breakdown, dielectric, 749, 750, 765 Bridge, suspension, 150 Brinell hardness tests, 175, 177, 179 Brittle fracture, 166–167, 234, 239–241, 271, G1 ceramics, 480–485 Brittle materials, thermal shock, 793–794, 795 Bronze, 407, G1 Bronze age, 2, 480 Buckminsterfullerene, 470 Burgers vector, 99, 100, 101, 204 for FCC, BCC, and HCP, 204 magnitude computation, 230 Butadiene: degradation resistance, 708 melting and glass transition temperatures, A40 repeat unit structure, 553, A37 Butane, 534–535 C Cadmium sulfide: color, 853 electrical characteristics, 733, 734 Calcination, 508, G1 Calendering, 615, 658, 659 Capacitance, 757–759, G1 Capacitors, 757–762 Carbon: vs. graphite, 646, 648 polymorphism, 52, 468–471 Carbon black, as reinforcement in rubbers, 599, 631, 632 Carbon-carbon composites, 656–657, G1 Carbon diffusion, in steels, 324, 376 Carbon dioxide emissions, 874 Carbon dioxide (pressure-temperature phase diagram), 342 Carbon fiber-reinforced polymermatrix composites, 648–649, 650 Carbon fibers, 648 properties as fiber, 646 Carbon nanotubes, 13, 471 Carburizing, 130, G1 Case-hardened gear, 122 Case hardening, 122, 263–264, G1 Cast alloys, 406 Casting techniques: metals, 419–420 plastics, 614 slip, 510, 520, 521 tape, 525–526 Cast irons, 322, 332, 393, 399–406, G1 annealing, 425 compositions, mechanical properties, and applications, 403 graphite formation in, 399 heat treatment effect on microstructure, 404 phase diagram, 400, 404 stress-strain behavior (gray), 190 Catalysts, 105 Catalytic converters (automobiles), 90, 105 Cathodes, 676, G1 Cathodic protection, 694, 702, 713, G1 Cations, 453, G1 Cemented carbide, 630–631 Cementite, 320, G1 decomposition, 399, 404 proeutectoid, 327–328 in white iron, 401, 402 Cementitious bond, 508–509 Cements, 503, 508–509, G1 Ceramic ball bearings, 511 Ceramic-matrix composites, 655–656, G1 Ceramics, 6–7, 452, G1. See also Glass advanced, 503, 509–512, 527 application-classification scheme, 503 brittle fracture, 480–485 coefficient of thermal expansion values, 785, A19 color, 853–854 corrosion, 706–707 costs, A33–A34 crystal structures, 453–462 summary, 460 defects, 472–476 defined, 6–7 density computation, 462–463 density values, A5 elastic modulus values, 486, A8 electrical conductivity values for selected, 755 electrical resistivity values, A28 fabrication techniques classification, 513 flexural strength values, 486, A14 fractography of, 482–485 fracture toughness values, 246, A16–A17 impurities in, 475 indices of refraction, 848 as electrical insulators, 754–756, 765 magnetic, 809–813 mechanical properties of, 480–489 in MEMS, 510 phase diagrams, 316, 476–480 piezoelectric, 12, 512, 767 plastic deformation, 487–489 Poisson’s ratio values, A10 porosity, 489–490, 523–525 porosity, influence on properties, 489–490 silicates, 464–468 specific heat values, 785, A25 as superconductors, 830–831 thermal conductivity values, 785, A22 thermal properties, 785, 787, 790–791, 793–794 traditional, 7 traditional vs. new, 452–453 translucency and opacity, 855 Cercor (glass ceramic), 505 Cermets, 630, G1 Cesium chloride structure, 458, 460 Chain-folded model, 556–557, G1 Chain-reaction polymerization, see Addition polymerization Chain stiffening/stiffness, 545, 594–595 Charge carriers: majority vs. minority, 737 temperature dependence, 740–741 Charpy impact test, 251, 252, G2 Chevron markings, 239 Chips, semiconductor, 719, 753 Chlorine, bonding energy and melting temperature, 31 Chloroprene, repeat unit structure, 553, A37 Chloroprene rubber: characteristics and applications, 600 melting and glass transition temperatures, A40 cis, 549, G2 I2 • IndexClay, characteristics, 518–519 Clay products, 503, 505 drying and firing, 505, 521–523 fabrication, 518–523 particles, 501 Cleavage (brittle fracture), 240 Clinker, 508 Close-packed ceramic structures, 460–461 Close-packed metal crystal structures, 69–71 Coarse pearlite, 358, 359, 368, G2 Coatings (polymer), 601–602 Cobalt: atomic radius and crystal structure, 47 Curie temperature, 813 as ferromagnetic material, 807 magnetization curves (single crystal), 819 Coercivity (coercive force), 516, G2 Cold work, percent, 215 Cold working, see Strain hardening Collector, 750–751 Color, G2 metals, 846 nonmetals, 853–854 Colorants, 611, G2 Compacted graphite iron, 401, 405–406, G2 Compliance, creep, 578 Component, 283, 317, G2 Composites: aramid fiber-reinforced polymer, 649 carbon-carbon, 656–657 carbon fiber-reinforced polymer, 648–649 ceramic-matrix, 655–656 classification scheme, 628, 629 costs, A35 definition, 10–11, 628 dispersion-strengthened, 629, 634 elastic behavior: longitudinal, 638–639 transverse, 640–641 fiber-reinforced, see Fiberreinforced composites glass fiber-reinforced polymer, 647–648 hybrid, 657, G6 laminar, 629, 644, 660–661 large-particle, 629, 630–634 metal-matrix, 653–655 particle-reinforced, 629–634 production processes, 657–660 properties, glass-, carbon-, aramidfiber reinforced, 650 rule of mixtures expressions, 341, 630, 638, 641, 642, 643, 652 strength: longitudinal, 642 transverse, 642 stress-strain behavior, 636–637 structural, 629, 660–662 Composition, G2 conversion equations, 96–97, 119, 120 specification of, 95–96 Compression molding, plastics, 612 Compression tests, 154–155 Compressive deformation, 153, 173 Computers, semiconductors in, 752–753 magnetic drives in, 800, 825 Concentration, 95, G2. See also Composition Concentration cells, 694 Concentration gradient, 126, G2 Concentration polarization, 686–687, G2 Concentration profile, 126, G2 Concrete, 632–634, G2 electrical conductivity, 755 plane strain fracture toughness, 246 Condensation polymerization, 609–610, G2 Conducting polymers, 756–757 Conduction: electronic, 722–725 ionic, 722, 755–756 Conduction band, 725, G2 Conductivity, see Electrical conductivity; Thermal conductivity Configuration, molecular, 547–550 Conformation, molecular, 544 Congruent phase transformations, 315, G2 Constitutional diagrams, see Phase diagrams Continuous casting, 420 Continuous cooling transformation diagrams, 367–370, G2 4340 steel, 365 1.13 wt% C steel, 388 0.76 wt% C steel, 368 for glass-ceramic, 504 Continuous fibers, 636 Conventional hard magnetic materials, 823–824 Conversion factors, magnetic units, 804 Cooling rate, of cylindrical rounds, 431 Coordinates, point, 55–57 Coordination numbers, 48, 50, 454–456, G2 Copolymers, 540, 551–552, G2 styrenic block, 606 Copper: atomic radius and crystal structure, 47 diffraction pattern, 89 elastic and shear moduli, 157 electrical conductivity, 728 OFHC, 731 Poisson’s ratio, 157 recrystallization, 221, 355 slip systems, 203 thermal properties, 785 yield and tensile strengths, ductility, 168 Copper alloys, 406–408 properties and applications of, 407 Copper-aluminum phase diagram, 439 Copper-beryllium alloys, 407, 408 phase diagram, 450 Copper-nickel alloys: ductility vs. composition, 214, 298 electrical conductivity, 729–730 phase diagram, 287–288 tensile strength vs. composition, 214, 298 yield strength vs. composition, 214 Copper-silver phase diagram, 298–299 Coring, 297 CorningWare (glass ceramic), 505 Corrosion, G2 of beverage cans, 872 ceramic materials, 706–707 electrochemistry of, 675–681 environmental effects, 692 environments, 700–701 forms of, 692–700 galvanic series, 681–682 overview of, 674 passivity, 690–692 rates, 682–683 prediction of, 683–690 Corrosion fatigue, 264–265, G2 Corrosion inhibitors, 701 Corrosion penetration rate, 683, G2 Corrosion prevention, 701–703 Corundum, 507. See also Aluminum oxide crystal structure, 496 Cost of various materials, A31–A36 Coulombic force, 30, G2 Covalency, degree of, 33 Covalent bonding, 32–33, 453, 534, G2 Index • I3Crack configurations, in ceramics, 483 Crack critical velocity, 482–483 Crack formation, 236 in ceramics, 482–483 fatigue and, 259–261 glass, 517 Crack propagation, 236. See also Fracture mechanics in brittle fracture, 239–242 in ceramics, 480–485 in ductile fracture, 236–237 fatigue and, 259–260 Cracks: stable vs. unstable, 236 Crack surface displacement modes, 245 Crazing, 579 Creep, 265–270, G2 ceramics, 491 influence of temperature and stress on, 266–268 mechanisms, 268 in polymers, 578 stages of, 265–266 steady-state rate, 266 viscoelastic, 578 Creep compliance, 578 Creep modulus, 578 Creep rupture tests, 266 data extrapolation, 268–269 Crevice corrosion, 694–695, G2 Cristobalite, 464, 479, 480 Critical cooling rate, ferrous alloys, 369–370 glass-ceramics, 503–504 Critical fiber length, 635 Critical resolved shear stress, 205, G2 as related to dislocation density, 232 Critical stress (fracture), 243 Critical temperature, superconductivity, 829, 831 Critical velocity (crack), 482–483 Crosslinking, 546, G2 elastomers, 588–590 influence on viscoelastic behavior, 577 thermosetting polymers, 551 Crystalline materials, 46, 72, G2 defects, 91–107 single crystals, 72, G11 Crystallinity, polymers, 552–556, G2 influence on mechanical properties, 585 Crystallites, 556, G2 Crystallization, polymers, 590–591 Crystallographic directions, 57–63 easy and hard magnetization, 819 families, 59 hexagonal crystals, 60–63 Crystallographic planes, 63–68 atomic arrangements, 66–67 close-packed, ceramics, 460–462 close-packed, metals, 69–71 diffraction by, 74–76 families, 67 Crystallographic point coordinates, 55–56 Crystal structures, 46–55, G2. See also Body-centered cubic structure; Close-packed crystal structures; Face-centered cubic structure; Hexagonal closepacked structure ceramics, 453–462 close-packed, ceramics, 460–461 close-packed, metals, 69–71 determination by x-ray diffraction, 74–78 selected metals, 47 types, ceramics, 453–462 types, metals, 47–51, 69–71 Crystallization (ceramics), 504, 518, G2 Crystal systems, 52–55, G2 Cubic crystal system, 52, 54 Cubic ferrites, 809–813 Cunife, 823, 824 Cup-and-cone fracture, 237 Curie temperature, 813, G3 ferroelectric, 766 ferromagnetic, 784 Curing, plastics, 612 Current density, 722 Cyclic stresses, 255–256 D Damping capacity, steel vs. cast iron, 404 Data scatter, 181–182 Debye temperature, 784 Decarburization, 146 Defects, see also Dislocations atomic vibrations and, 106–107 dependence of properties on, 91 in ceramics, 472–476 interfacial, 102–106 point, 92–99, 472–474, G9 in polymers, 558–559 surface, 105 volume, 106 Defect structure, 472, G3 Deformation: elastic, see Elastic deformation elastomers, 588–589 plastic, see Plastic deformation Deformation mechanism maps (creep), 268 Deformation mechanisms (semicrystalline polymers), elastic deformation, 582, 583 plastic deformation, 528, 584 Degradation of polymers, 707–711, G3 Degree of polymerization, 542, G3 Degrees of freedom, 316–318 Delayed fracture, 481 Density: computation for ceramics, 462–463 computation for metal alloys, 97 computation for metals, 51–52 computation for polymers, 555–556 of dislocations, 200 linear atomic, 68 planar atomic, 69 polymers (values for), 572 ranges for material types (bar chart), 6 relation to percent crystallinity for polymers, 554 values for various materials, A3–A6 Design, component, 874 Design examples: cold work and recrystallization, 223 conductivity of a p-type semiconductor, 745–746 cubic mixed-ferrite magnet, 812–813 creep rupture lifetime for an S-590 steel, 269 nonsteady-state diffusion, 136–137 spherical pressure vessel, failure of, 247–250 steel shaft, alloy/heat treatment of, 434–435 tensile-testing apparatus, 183–184 tubular composite shaft, 651–653 Design factor, 182 Design stress, 182, G3 Dezincification, of brass, 697–698 Diamagnetism, 805, G3 Diamond, 468–469 as abrasive, 507 bonding energy and melting temperature, 31 cost, A34 films, 468–469 hardness, 491 thermal conductivity value, A22 Diamond cubic structure, 468 I4 • IndexDie casting, 419 Dielectric breakdown, 750, 765 Dielectric constant, 759, G3 frequency dependence, 764–765 relationship to refractive index, 847 selected ceramics and polymers, 758 Dielectric displacement, 759, G3 Dielectric loss, 764–765 Dielectric materials, 757, 765, G3 Dielectric strength, 765, G3 selected ceramics and polymers, 758 Diffraction (x-ray), 44, 74–75, G3 Diffraction angle, 78 Diffractometers, 77 Diffusion, 123–125, G3 grain growth and, 224 in ionic materials, 476 in integrated circuit interconnects, 140–141 in Si of Cu, Au, Ag, and Al, 141 interstitial, 126, G6 mechanisms, 125–126 and microstructure development, 294–297, 307–308 nonsteady-state, 128–132, G8 in polymers, 559–561 in semiconductors, 137–140 short-circuit, 142 steady-state, 126–128, G12 vacancy, 125–126, 476, G14 Diffusion coefficient, 127, G3 relation to ionic mobility, 755 temperature dependence, 132–136 values for various metal systems, 132 Diffusion couples, 123 Diffusion flux, 126, G3 for polymers, 559 Digitization of information/signals, 826, 863 Dimethyl ether, 536 Dimethylsiloxane, 553, 599, 600, A37. See also Silicones; Silicone rubber melting and glass transition temperatures, A40 Diode, 748, G3 Dipole moment, 759 Dipoles: electric, 35, G3 induced, 35 magnetic, 801–802 permanent, 36 Directional solidification, 270 Directions, see Crystallographic directions Discontinuous fibers, 636 Dislocation density, 200, 229, 232, G3 Dislocation line, 99, 100, 101, G3 Dislocation motion, 199–200 caterpillar locomotion analogy, 201 in ceramics, 487–488 at grain boundaries, 212–213 influence on strength, 211–212 recovery and, 219 Dislocations, 99–102, G3 in ceramics, 102, 201 characteristics of, 201–202 interactions, 202 multiplication, 202 at phase boundaries, 372, 375 pile-ups, 212 plastic deformation and, 162, 199–208, 211 in polymers, 102, 558 strain fields, 201, 202 Dispersed phase, 628, G3 definition, 628 geometry, 629 Dispersion (optical), 846 Dispersion-strengthened composites, 634, G3 Disposal of materials, 875–876 Domain growth, 815–816 Domains, 807, 814–818, G3 Domain walls, 814 Donors, 736, G3 Doping, 739, 742, 743, G3 Double bonds, 534 Drain casting, 520 Drawing: glass, 515, 516 influence on polymer properties, 585–586 metals, 417–419, G3 polymer fibers, 615, G3 Drift velocity, electron, 727 Drive-in diffusion, 138 Driving force, 127, G3 electrochemical reactions, 678 grain growth, 224 recrystallization, 219 sintering, 525 steady-state diffusion, 127 Dry corrosion, 703 Dry ice, 342 Drying, clay products, 521 Ductile fracture, 167, 236–237, G3 Ductile iron, 400, 402, G3 compositions, mechanical properties, and applications, 403 Ductile-to-brittle transition, 251–255, G3 polymers, 578 and temper embrittlement, 377 Ductility, 166–168, G3 fine and coarse pearlite, 372 precipitation hardened aluminum alloy (2014), 441 selected materials, A11–A15 selected metals, 168 spheroidite, 372 tempered martensite, 376 Durometer hardness, 178, 581 E Economics, materials selection: considerations in materials engineering, 873–874 tubular composite shaft, 652–653 Eddy currents, 820 Edge dislocations, 99, 199–200, G3. See also Dislocations interactions, 202 in polymers, 559 E-glass, 646 Elastic deformation, 156–162, G3 Elastic modulus, see Modulus of elasticity Elastic (strain) recovery, 173, G4 Elastomers, 571, 588–590, 599–601, 614, G4 in composites, 631 deformation, 588–589 thermoplastic, 605–607 trade names, properties, and applications, 600 Electrical conduction: in insulators and semiconductors, 726–727 in metals, 725–726 Electrical conductivity, 721, 727–728, G4 ranges for material types (bar chart), 8 selected ceramics and polymers, 755 selected metals, 728 selected semiconductors, 734 temperature variation (Ge), 777 values for electrical wires, 732 Electrical resistivity, 721, G10. See also Electrical conductivity metals: influence of impurities, 729–730 influence of plastic deformation, 729, 730 influence of temperature, 729 values for various materials, A26–A29 Index • I5Electrical wires, aluminum and copper, 731–732 Electric dipole moment, 759 Electric dipoles, see Dipoles Electric field, 722, 727, G4 Electrochemical cells, 677–678 Electrochemical reactions, 675–682 Electrodeposition, 677 Electrode potentials, 677–678 values of, 679 Electroluminescence, 856, G4 Electrolytes, 678, G4 Electromagnetic radiation, 841–843 interactions with atoms/electrons, 843–844 Electromagnetic spectrum, 841–842 Electron band structure, see Energy bands Electron cloud, 22, 33 Electron configurations, 24–26, G4 elements, 25 periodic table and, 26 stable, 25 Electronegativity, 26–27, 33, G4 influence on solid solubility, 95 values for the elements, 27 Electroneutrality, 472, G4 Electron gas, 725 Electronic conduction, 722, 755 Electronic polarization, 512, 762–763, 844, 849, G9 Electron microscopy, 109–111 Electron mobility, 727 influence of dopant content on, 742, 743 influence of temperature on, 742, 743 selected semiconductors, 734 Electron orbitals, 21 Electron probability distribution, 22 Electrons, 19–20 conduction process, 735, 748–749 role, diffusion in ionic materials, 476 energy bands, see Energy bands energy levels, 21–24 free, see Free electrons scattering, 727, 783 in semiconductors, 734–739 temperature variation of concentration, 740–741 spin, 23, 805 valence, 25 Electron states, G4 Electron transitions, 844–845 metals, 845–846 nonmetals, 849–852 Electron volt, 31, G4 Electropositivity, 26, G4 Electrorheological fluids, 12 Elongation, percent, 166 selected materials, A11–A15 selected metals, 168 selected polymers, 572 Embrittlement: hydrogen, 699–700 temper, 377 Embryo, phase particle, 346 Emf series, 678–680 Emitter, 750–751 Endurance limit, 257. See also Fatigue limit Energy: activation, see Activation energy bonding, 29, 31, G1 current concerns about, 13–14, 876 free, 285, 345–349, G5 grain boundary, 103 photon, 843 surface, 102 vacancy formation, 92 Energy band gap, see Band gap Energy bands, 722–725 structures for metals, insulators, and semiconductors, 724 Energy levels (states), 21–24, 723–724 Energy and materials, 877 Energy product, magnetic, 822–823 Engineering stress/strain, 154, G12 Entropy, 285, 345, 588 Environmental considerations and materials, 875–883 Epoxies: degradation resistance, 708 polymer-matrix composites, 650 repeat unit structure, A36 trade names, characteristics, applications, 598 Equilibrium: definition of, 285 phase, 285, G4 Equilibrium diagrams, see Phase diagrams Erosion-corrosion, 698, G4 Error bars, 181 Error function, Gaussian, 129 Etching, 108, 109 Ethane, 535 Ethers, 536 Ethylene, 534 polymerization, 537 Ethylene glycol (structure), 609 Euro coins, alloys used for, 416 Eutectic isotherm, 299 Eutectic phase, 308, G4 Eutectic reactions, 299, 307, G4 iron-iron carbide system, 321 Eutectic structure, 307, G4 Eutectic systems: binary, 298–311 microstructure development, 305–311 Eutectoid, shift of position, 330 Eutectoid ferrite, 325 Eutectoid reactions, 314, G4 iron-iron carbide system, 321 kinetics, 357–358 Eutectoid steel, microstructure changes/development, 322–324 Exchange current density, 685 Excited states, 844, G4 Exhaustion, in extrinsic semiconductors, 741 Expansion, thermal, see Thermal expansion Extrinsic semiconductors, 736–739, G4 electron concentration vs. temperature, 741 exhaustion, 741 saturation, 741 Extrusion, G4 clay products, 519 metals, 418–419 polymers, 613–614 F Fabrication: ceramics, 513 clay products, 518–523 fiber-reinforced composites, 657–660 metals, 417–422 Face-centered cubic structure, 47–48, G4 anion stacking (ceramics), 460–461 Burgers vector for, 204 close packed planes (metals), 69–71 slip systems, 203 Factor of safety, 183, 248 Failure, mechanical, see Creep; Fatigue; Fracture Faraday constant, 680 Fatigue, 255–265, G4 corrosion, 264 crack initiation and propagation, 259–261 cyclic stresses, 255–256 environmental effects, 264–265 low- and high-cycle, 259 polymers, 580, 581 probability curves, 258–259 thermal, 264 I6 • IndexFatigue life, 258, G4 factors that affect, 262–264 Fatigue limit, 257, 258, G5 Fatigue strength, 257, 258, G4 Fatigue testing, 257 S-N curves, 257–259, 277, 580 Feldspar, 501, 519 Fermi energy, 724, 737, 738, 784, G4 Ferrimagnetism, 809–811, G4 temperature dependence, 813–814 Ferrite (), 319–320, G4 eutectoid/proeutectoid, 325, G10 from decomposition of cementite, 399 Ferrites (magnetic ceramics), 809–811, G4 Curie temperature, 813, 814 as magnetic storage, 828 Ferritic stainless steels, 398, 399 Ferroelectricity, 766, G4 Ferroelectric materials, 766 Ferromagnetic domain walls, 106 Ferromagnetism, 807–808, G4 temperature dependence, 813–814 Ferrous alloys, G4. See also Cast irons; Iron; Steels annealing, 423–424 classification, 321–322, 393 continuous cooling transformation diagrams, 367–370 costs, A31–A32 hypereutectoid, 327–329, G6 hypoeutectoid, 324–326, G6 isothermal transformation diagrams, 356–367 microstructures, 322–329 mechanical properties of, 370–374, A11–A12 Fiber efficiency parameter, 644 Fiberglass, 503 Fiberglass-reinforced composites, 647–648 Fiber-reinforced composites, 634–660, G4 continuous and aligned, 636–642 discontinuous and aligned, 643 discontinuous and randomly oriented, 643–644 fiber length effect, 634–636 fiber orientation/concentration effect, 636–642 fiber phase, 645–646 longitudinal loading, 636–637, 642 matrix phase, 646–647 processing, 657–660 reinforcement efficiency, 644 transverse loading, 640–641, 642 Fibers, 601, G4 coefficient of thermal expansion values, A20 in composites, 628 continuous vs. discontinuous, 636 fiber phase, 645–646 length effect, 634–636 orientation and concentration, 636–645 costs, A35 density values, A6 elastic modulus values, 646, A9 electrical resistivity values, A29 optical, 511, 863–865 polymer, 601 properties of selected, 646 specific heat values, A26 spinning of, 614–615 tensile strength values, 646, A15 thermal conductivity values, A23 Fick’s first law, 128, 789, G5 for polymers, 559 Fick’s second law, 128, 139, 798, G5 Fictive temperature, 514 Filament winding, 659–660 Fillers, 610, G5 Films: diamond, 468–469 polymer, 603 shrink-wrap (polymer), 587 Fine pearlite, 359, 368, 372, G5 Fireclay refractories, 506 Firing, 505, 522–523, G5 Flame retardants, 611, G5 Flash memory, 719, 753 Flexural strength, 485–486, G5 influence of porosity on, ceramics, 489–490 values for selected ceramics, 486, A14 Float process (sheet glass), 516 Fluorescence, 855, G5 Fluorite structure, 459 Fluorocarbons, 538 trade names, characteristics, applications, 597 Flux (clay products), 519 Foams, 603, G5 Forces: bonding, 28–30 coulombic, 30, G2 Forging, 418, G5 Formaldehyde, 536, 599 Forming operations (metals), 417–419 Forsterite, 466 Forward bias, 748, 749, G5 Fractographic investigations: ceramics, 482–485 metals, 238 Fractographs: cup-and-cone fracture surfaces, 238 fatigue striations, 260 glass rod, 484 intergranular fracture, 241 transgranular fracture, 240 Fracture, see also Brittle fracture; Ductile fracture; Impact fracture testing delayed, 481 fundamentals of, 236 polymers, 578–580 types, 166–167, 236–241 Fracture mechanics, 242–250, G6 applied to ceramics, 481 polymers, 580 use in design, 247–250 Fracture profiles, 237 Fracture strength, 165. See also Flexural strength ceramics, 485 distribution of, 481–482 influence of porosity, 489–490 influence of specimen size, 481–482, 645 Fracture surface, ceramics, 483–484 Fracture toughness, 169, 244–246, G5 ceramic-matrix composites, 655–656 ranges for material types (bar chart), 7 testing, 250–254 values for selected materials, 246, 656, A16–A17 Free electrons, 725–726, G5 contributions to heat capacity, 784 role in heat conduction, 789 Free energy, 285, 345–349, G5 activation, 346, 351 volume, 345 Freeze-out region, 741 Frenkel defects, 472, 473, G5 equilibrium number, 474 Full annealing, 368, 424, G5 Fullerenes, 470 Functionality (polymers), 540, G4 Furnace heating elements, 731 Fused silica, 464 characteristics, 503, 514 dielectric properties, 758 electrical conductivity, 755 flexural strength, 486 index of refraction, 848 modulus of elasticity, 486 thermal properties, 785 Index • I7G Gadolinium, 807 Gallium arsenide: cost, A33 electrical characteristics, 734, 736 for lasers, 860 for light-emitting diodes, 856 Gallium phosphide: electrical characteristics, 734 for light-emitting diodes, 871 Galvanic corrosion, 693–694, G5 Galvanic couples, 678 Galvanic series, 681–682, G5 Galvanized steel, 415, 702, 703 Garnets, 811 Garnet single crystal, 72 Gas constant, 92, G5 Gating system, 419 Gauge length, 153 Gaussian error function, 129 Gecko lizard, 18 Geometrical isomerism, 549, 550 Germanium: crystal structure, 468 electrical characteristics, 734, 740, 777 Gibbs phase rule, 316–318, G5 Gilding metal, 406 Glass: as amorphous material, 79 annealing, 424, 516, G0 blowing, 513, 515 classification, 503 color, 854 commercial; compositions and characteristics, 503 corrosion resistance, 707 cost, A34 dielectric properties, 758 electrical conductivity, 755 flexural strength, 486 forming techniques, 515–516 fracture surface (photomicrograph), 484 hardness, 491 heat treatment, 516–517 melting point, 514 modulus of elasticity, 486 optical flint, 503 plane strain fracture toughness, 246 refractive index, 848 sheet forming (float process), 516 soda-lime, composition, 503 softening point, 514 strain point, 514 stress-strain behavior, 487 structure, 465 surface crack propagation, 481 tempering, 517, 531 thermal properties, 785 viscous properties, 514 working point, 514, G14 Glass-ceramics, 503–505, G5 composition (PyroCeram), 503 continuous cooling transformation diagram, 504 fabrication and heat treating, 518 flexural strength, 486 modulus of elasticity, 486 optical transparency, conditions for, 854 properties and applications, 504 Glass fibers, 513 fiberglass-reinforced composites, 647–648, 650 forming, 516 properties as fiber, 646 Glass transition, polymers, 592 Glass transition temperature, 514, 592, G5 factors that affect, polymers, 594–595 values for selected polymers, 593, A40 Gold, 415 atomic radius and crystal structure, 47 electrical conductivity, 728 slip systems, 203 thermal properties, 785 Graft copolymers, 551, 552, G5 Grain boundaries, 73, 103–104, G5 Grain boundary energy, 103 Grain growth, 224–225, G5 Grains, G5 definition, 72 distortion during plastic deformation, 197, 209–210 Grain size, G5 dependence on time, 225 determination of, 113 mechanical properties and, 212–213, 225 reduction, and strengthening of metals, 212–213 refinement of by annealing, 424 Grain size number (ASTM), 113 Graphite, 469–470 in cast irons, 399 compared to carbon, 646, 648 cost, A34 from decomposition of cementite, 399 electrical conductivity, 755 properties/applications, 470 properties as whisker, 646 as a refractory, 507 structure of, 469 Gray cast iron, 400, 401, 402, G5 compositions, mechanical properties, and applications, 403 Green ceramic bodies, 521, G5 Green design, 877 Ground state, 24, 845, G5 Growth, phase particle, 344, 352–354, G5 rate, 353 temperature dependence of rate, 353 Gutta percha, 549 H Hackle region, 483–485 Half-cells, standard, 678–679 Half-reactions, 676 Hall coefficient, 747 Hall effect, 746–748, G5 Hall-Petch equation, 213 Hall voltage, 747 Halogens, 26 Hard disk drives, 800, 826–827 Hardenability, 425–429, G5 Hardenability band, 430 Hardenability curves, 426–429 Hard magnetic materials, 822–825, G5 properties, 824 Hardness, G5 bainite, pearlite vs. transformation temperature, 373 ceramics, 490–491 comparison of scales, 178–179 conversion diagram, 178 correlation with tensile strength, 179 fine and coarse pearlite, spheroidite, 372 pearlite, martensite, tempered martensite, 374 polymers, 581 tempered martensite, 374, 376, 377 Hardness tests, 174–177 summary of tests, 175 Hard sphere model, 46–47 Head-to-head configuration, 546 Head-to-tail configuration, 547 Heat affected zone, 421 Heat capacity, 782–784, G5 temperature dependence, 784 vibrational contribution, 783 Heat flux, 789 Heat of fusion, latent, 347 Heat transfer: mechanism, 783, 789 nonsteady-state, 798 I8 • IndexHeat treatable, definition of, 406 Heat treatments, 123. See also Annealing; Phase transformations dislocation reduction, 201 glass, 516–517 hydrogen embrittlement, 700 intergranular corrosion and, 697 polymer morphology, 592 polymer properties, 586 for precipitation hardening, 437–438 recovery, recrystallization, and grain growth during, 218–225 steel, 425–436 Hertz, 843 Heterogeneous nucleation, 350–352 Hexagonal close-packed structure, 49–50, G5 anion stacking (ceramics), 460–461 Burgers vector for, 205 close-packed planes (metals), 69–71 slip systems, 203 twinning in, 211 Hexagonal crystal system, 52, 54 direction indices, 60–63 planar indices, 67–68 Hexagonal ferrites, 811 Hexane, 535 High carbon steels, 396, 397 High-cycle fatigue
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Materials Science and Engineering - An Introduction رابط مباشر لتنزيل كتاب Materials Science and Engineering - An Introduction
|
| | | Admin مدير المنتدى
عدد المساهمات : 18959 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الثلاثاء 27 نوفمبر 2012, 6:36 pm | |
|
جزاك الله خيراً وبارك الله فيك وجعله فى ميزان حسناتك |
| | | rambomenaa كبير مهندسين
عدد المساهمات : 2041 تاريخ التسجيل : 21/01/2012
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الأربعاء 28 نوفمبر 2012, 1:52 am | |
|
جزانا الله واياكم ونتمنى لكم الاستفادة |
| | | sherif elsaadany مهندس تحت الاختبار
عدد المساهمات : 2 تاريخ التسجيل : 13/07/2012
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الإثنين 08 سبتمبر 2014, 8:19 pm | |
|
الكتاب اتحذف من اللينك ده .. ممكن لينك تاني .. شكرا |
| | | Admin مدير المنتدى
عدد المساهمات : 18959 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الخميس 11 سبتمبر 2014, 11:51 pm | |
|
- sherif elsaadany كتب:
- الكتاب اتحذف من اللينك ده .. ممكن لينك تاني .. شكرا
تم تعديل الرابط وإذا وجدت أى رابط أخر لا يعمل نرجو ترك رد فى الموضوع وسيتم تعديله على الفور إن شاء الله |
| | | Abu Maria مهندس تحت الاختبار
عدد المساهمات : 1 التقييم : 1 تاريخ التسجيل : 02/10/2015 العمر : 28 الدولة : Egypt العمل : Student الجامعة : mansoura
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الجمعة 04 ديسمبر 2015, 11:23 pm | |
|
السلام عليكم اللينك لا يعمل فحبذا لو توفر لينك آخر جزيتم خيرا |
| | | احمد عواض مهندس تحت الاختبار
عدد المساهمات : 10 التقييم : 10 تاريخ التسجيل : 07/01/2013 العمر : 39 الدولة : السعودية العمل : مكانيكا انتاج الجامعة : عين شمس مصر
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الأحد 06 ديسمبر 2015, 9:40 am | |
| |
| | | semsem22 مهندس تحت الاختبار
عدد المساهمات : 1 التقييم : 1 تاريخ التسجيل : 10/06/2016 العمر : 30 الدولة : مصر العمل : مهندس الجامعة : القاهرة
| موضوع: رد: كتاب Materials Science and Engineering - An Introduction الجمعة 10 يونيو 2016, 4:41 pm | |
| |
| | | | كتاب Materials Science and Engineering - An Introduction | |
|
مواضيع مماثلة | |
|
| صلاحيات هذا المنتدى: | لاتستطيع الرد على المواضيع في هذا المنتدى
| |
| |
| |
|