rambomenaa كبير مهندسين
عدد المساهمات : 2041 التقييم : 3379 تاريخ التسجيل : 21/01/2012 العمر : 47 الدولة : مصر العمل : مدير الصيانة بشركة تصنيع ورق الجامعة : حلوان
| موضوع: كتاب Geometry of Single-point Turning Tools and Drills الأحد 05 أغسطس 2012, 10:46 am | |
|
أخواني في الله أحضرت لكم كتاب Geometry of Single-point Turning Tools and Drills Fundamentals and Practical Applications Viktor P. Astakhov
و المحتوى كما يلي :
Contents 1 What Does It Mean “Metal Cutting”? .1 1.1 Introduction .1 1.2 Known Results and Comparison with Other Forming Processes 2 1.2.1 Single-shear Plane Model of Metal Cutting .2 1.2.2 Metal Cutting vs. Other Closely Related Manufacturing Operations .5 1.3 What Went Wrong in the Representation of Metal Cutting? .22 1.3.1 Force Diagram 23 1.3.2 Resistance of the Work Material in Cutting .25 1.3.3 Comparison of the Known Solutions for the Single-shear Plane Model with Experimental Results .27 1.4 What is Metal Cutting? 28 1.4.1 Importance to Know the Right Answer 28 1.4.2 Definition .28 1.4.3 Relevance to the Cutting Tool Geometry .29 1.5 Fundamental Laws of Metal Cutting .32 1.5.1 Optimal Cutting Temperature – Makarow’s Law 32 1.5.2 Deformation Law .35 References 50 2 Basic Definitions and Cutting Tool Geometry, Single Point Cutting Tools 55 2.1 Basic Terms and Definitions .55 2.1.1 Workpiece Surfaces .57 2.1.2 Tool Surfaces and Elements 57 2.1.3 Tool and Workpiece Motions .57 2.1.4 Types of Cutting 58 2.2 Cutting Tool Geometry Standards .60 2.3 Systems of Consideration of Tool Geometry 61 2.4. Tool-in-hand System (T-hand-S) 64xviii Contents 2.4.1 Tool-in-hand Coordinate System .64 2.4.2 References Planes 66 2.4.3 Tool Angles 68 2.4.4 Geometry of Cutting Tools with Indexable Inserts 74 2.5 Tool-in-machine System (T-mach-S) 84 2.5.1 Angles 84 2.5.2 Example 2.3 .88 2.6 Tool-in-use System (T-use-S) .90 2.6.1 Reference Planes 91 2.6.2 The Concept .92 2.6.3 Modification of the T-hand-S Cool Geometry .92 2.6.4 Kinematic Angles .98 2.6.5 Example 2.4 .100 2.7 Avalanched Representation of the Cutting Tool Geometry in T-hand-S 102 2.7.1 Basic Tool Geometry .102 2.7.2 Determination of Cutting Tool Angles Relation for a Wiper Cutting Insert 108 2.7.3 Determination of Cutting Tool Angles for a Single-point Tool .110 2.7.4 Flank Angles of a Dovetail Forming Tool .117 2.7.5 Summation of Several Motions 119 References 125 3 Fundamentals of the Selection of Cutting Tool Geometry Parameters .127 3.1 Introduction .127 3.2 General Considerations in the Selection of Parameters of Cutting Tool Geometry .129 3.2.1 Known Results .129 3.2.2 Ideal Tool Geometry and Constrains 130 3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry .132 3.3 Tool Cutting Edge Angles .132 3.3.1 General Consideration 132 3.3.2 Uncut ChipT in Non-free Cutting 134 3.3.3 Influence on the Surface Finish 142 3.3.4 Tools with κr > 90° .144 3.3.5 Tool Minor Cutting Edge Angle 147 3.4. Edge Preparation .161 3.4.1 General .161 3.4.2 Shape and Extent 163 3.4.3 Limitations .163 3.4.4 What Edge Preparation Actually Does .169 3.5 Rake Angle 171 3.5.1 Introduction 171 3.5.2 Influence on Plastic Deformation and Generazliations 175Contents xix 3.5.3 Effective Rake Angle .183 3.5.4 Conditions for Using High Rake Angles 189 3.6 Flank Angle .191 3.7 Inclination Angle .193 3.7.1 Turning with Rotary Tools .195 3.7.2 Helical Treading Taps and Broaches 197 3.7.3 Milling Tools 198 References 201 4 Straight Flute and Twist Drills .205 4.1 Introduction .205 4.2 Classification .206 4.3 Basic Terms .208 4.4 System Approach 211 4.4.1 System Objective .212 4.4.2 Understanding the Drilling System 212 4.4.3. Understanding the Tool 212 4.5. Force System Constrains on the Drill Penetration Rate 213 4.5.1 Force-balance Problem in Conventional Drills 213 4.5.2 Constrains on the Drill Penetration Rate 218 4.5.3 Drilling Torque 219 4.5.4 Axial Force .220 4.5.5 Axial Force (Thrust)-torque Coupling .221 4.6 Drill Point 223 4.6.1 Basic Classifications 223 4.6.2 Tool Geometry Measures to Increase the Allowable Penetration Rate 224 4.7 Common Design and Manufacturing Flaws 259 4.7.1 Web Eccentricity/ Lip Index Error .260 4.7.2 Poor Surface Finish and Improper Tool Material/Hardness .261 4.7.3 Coolant Hole Location and Size .263 4.8 Tool Geometry 267 4.8.1 Straight-flute and Twist Drills Particularities 269 4.8.2 Geometry of the Typical Drill Point 270 4.8.3 Rake Angle .272 4.8.4 Inclination Angle .280 4.8.5 Flank Angle 281 4.8.6 Geometry of a Cutting Edge Located at an Angle to the y0-plane 292 4.8.7 Chisel Edge 295 4.8.8 Drill Flank is Formed by Two Planes: Generalization .306 4.8.9 Drill Flank Angle Formed by Three Planes .310 4.8.10 Flank Formed by Quadratic Surfaces .313 4.9 Load Over the Drill Cutting Edge .324xx Contents 4.9.1 Uncut Chip Thickness in Drilling 325 4.9.2 Load Distribution Over the Cutting Edge 327 4.10 Drills with Curved and Segmented Cutting Edges 328 4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 4.10.2 Rake Angle .332 References 337 5 Deep-hole Tools 341 5.1 Introduction .341 5.2 Generic Classification of Deep-hole Machining Operations .343 5.3 What Does ‘Self-piloting Tool’ Mean? .345 5.3.1 Force Balance in Self-piloting Tools 345 5.4 Three Basic Kinematic Schemes of Drilling .350 5.4.1 Gundrill Rotates and the Workpiece is Stationary .351 5.4.2 Workpiece Rotates and the Gundrill is Stationary .352 5.4.3 Counterrotation 352 5.5 System Approach 353 5.5.1 Handling Tool Failure 353 5.5.2 System Considerations .354 5.6 Gundrills 362 5.6.1 Basic Geometry 362 5.6.2 Rake Surface 365 5.6.3 Geometry of Major Flanks .370 5.6.4 System Considerations in Gundrill Design 390 5.6.5 Examplification of Significance of the High MWF Pressure in the Bottom Clearance Space 423 5.6.6 Example of Experimental Study 425 5.6.7 Optimization of Tool Geometry .439 References 440 Appendix A Basic Kinematics of Turning and Drilling .443 A.1 Introduction .443 A.2 Turning and Boring .444 A.2.1 Basic Motions in Turning .444 A.2.2 Cutting Speed in Turning and Boring 448 A.2.3 Feed and Feed Rate 448 A.2.4 Depth of Cut .449 A.2.5 Material Removal Rate 449 A.2.6 Resultant Motion 450 A.3 Drilling and Reaming 450 A.3.1 Basic Motions in Drilling .450 A.3.2 Machining Regime .451 A.4 Cutting Force and Power .453Contents xxi A.4.1 Force System in Metal Cutting .453 A.4.2 Cutting Power 454 A.4.3 Practical Assessment of the Cutting Force .455 References 461 Appendix B ANSI and ISO Turning Indexable Inserts and Holders .463 B.1 Indexable Inserts .463 B.1.1 ANSI Code .464 B.1.2 ISO Code 471 B.2 Tool Holders for Indexable Inserts (Single Point Tools) 491 B.2.1 Symbol for the Method of Holding Horizontally Mounted Insert – Reference Position (1) 492 B.2.2 Symbol for Insert Shape – Reference Position (2) .493 B.2.3 Symbol for Tool Style – Reference Position (3) 493 B.2.4 Letter Symbol Identifying Insert Normal Clearance – Reference Position (4) 494 B.2.5 Symbol for Tool Hand – Reference position (5) 494 B.2.6 Symbol for Tool Height (Shank Height of Tool Holders and Height of Cutting Edge) - Reference Position (6) .494 B.2.7 Number Symbol Identifying Tool Holder Shank Width – Reference Position (7) 495 B.2.8 Number Symbol Identifying Tool Length – Reference Position (8) 495 B.2.9 Letter Symbol Identifying Indexable Insert Size – Reference Position (9) 497 Appendix C Basics of Vector Analysis 499 C.1 Vectors and Scalars .499 C.2 Definition and Representation .500 C.2.1 Definitions 500 C.2.2 Basic Vector Operations 503 C.3 Application Conveniences .509 C.4 Rotation: Linear and Angular Velocities .511 C.4.1 Planar Linear and Angular Velocities 511 C.4.2 Rotation: The Angular Velocity Vector .515 References .518 Appendix D Hydraulic Losses: Basics and Gundrill Specifics 519 D.1 Hydraulic Pressure Losses – General 519 D.1.1 Major Losses: Friction Factor 520 D.1.2 Minor Losses (Losses Due to Form Resistance) 521xxii Contents D.2 Concept of the Critical MWF Velocity and Flow Rate .521 D.2.1 MWF Flow Rate Needed for Reliable Chip Transportation .522 D.2.3 Example D.1 .527 D.3 Inlet MWF pressure .528 D.4 Analysis of Hydraulic Resistances 532 D.4.1 Analysis of Hydraulic Resistances Over Which the Designer Has No or Little Control 532 D.4.2 Variable Resistances Over Which the Designer Has Control 535 D.5 Practical Implementation in the Drill Design 539 References 543 Appendix E Requirements and Examples of Cutting Tool Drawings 545 E.1 Introduction .545 E.2 Tool Drawings – the Existent Practice 546 E.3 Tool Drawing Requrements 548 E.4 Examples of Tool Drawing .553 References 559 Index…………………………………………………………………………….561 Index A Alignment 218, 351, 352, 355−359, 365, 411, 412 Angle of twist 217, 219, 359 Angular velocity 119−124, 288, 314, 327, 376, 513, 515−517 Approach angle 60, 68, 113, 142, 270, 275, 292, 370, 372, 372, 376, 378, 380, 382, 385, 387−389, 392, 393, 407, 428–430, 433, 435−436, 438, 440, 493, 509, 511 Axial force 6, 133, 198, 213, 214,217, 218, 220−225, 229,231, 238, 244, 245, 250, 253, 255, 256,258, 269, 299, 306, 222, 342, 345, 347, 384, 429, 453, 454 Axial force-torque coupling 221−223 B Backtaper 150, 152−158, 395 Definition 150 Significance 152–158 Basic kinematic scheme of drilling 350−353 Bending moments, gundrill 391−394 Boring 82, 87, 444−449 Bottom clearance space 264−267, 397−399, 415−417, 420−424, 430, 529, 531, 532, 538−540, 542, 543 Definition 397 MWF pressure management 413 Topology 399 Briks criterion 164, 455 Broaches 197−198 Built-up Edge (BUE) 4, 16, 33, 143, 153, 155, 178, 181, 242, 243, 262, 299, 300, 423 C Chibreakers 179, 250 Chip 3 Silver white 181 Chip compression ratio (CCR) 3, 4, 11, 22, 37−39, 41−46, 132, 146, 165, 169, 175, 176, 182, 183, 188, 249, 261, 427, 455, 456, 459, 460 Chip flow 59, 249, 434 Angle 136, 137, 180, 181, 199, 280 Direction 69, 92, 98, 136, 137, 178, 180, 193−195, 197, 300, 339, 249, 280562 Index Chip structure 12, 13, 27, 29 Chip thickness 3, 11, 22, 38, 39, 45, 56, 92, 185, 188, 427, 542 Chip velocity 3, 4, 29, 44, 280 Chisel edge 209−213, 220−249, 257, 260, 270, 280, 295−300 Combined point grind 365 Conical point grind 315−321 Coolant holes 260 Location and size 263, 264, 345,536, 549, 551, 553 Cutting 2−49 Free 3, 59 Feed 66, 84, 85, 100, 129, 134, 139, 141−144, 148, 149, 159, 160, 167−169, 185, 218, 219, 229, 287, 325, 326, 375, 376, 380, 427, 428, 434−438, 443, 448, 451, 509 Force 1−9, 9, 23–28, 133−135, 145−147, 164−169, 174, 175, 177, 178, 186, 190, 191, 213−225, 345−350, 453−459 Non-free 55, 59, 60 Orthogonal 25, 42, 57, 58 Oblique 58, 59 Speed 3, 4, 13, 35, 44, 57, 58, 66, 67, 91, 98, 112, 119, 125, 273, 283, 287, 329, 366−369, 371, 379, 448−459 Cutting edge 3, 11, 12, 23, 24, 56−77, 108−117 Major 56, 57, 60, 66, 69, 77, 85, 86, 103, 105−111 Minor Major 56, 57, 60, 66, 69, 77, 85, 86, 103, 105−108 Cutting edge inclination angle 35, 58, 59, 69, 81, 87, 88, 96, 99, 103,107,109, 11, 193−195, 197–201, 249, 280, 281 Cutting edge radius 35, 163−171, 429 Cutting tool selection 74−77 Cutting tool surface and elements 3, 56 Flank face 3, 57 Rake face 3, 57 Shank 57, 359 D Deep-hole machining operations 343 Gundrill type 343 BTA type 344 Ejector type 344, 345 Deformation mode 2−5 Deformation zone 24, 29, 30, 168 State of stress 30, 183, 454 Depth of cut 56, 60, 129, 135−139, 145, 146, 445, 449−451 Dovetail forming tool 117−119 Drill 206 Basic terms 208−211 Classification 206−208 DIN Classification 223, 224 Point 223 Point angle 63, 150, 209, 270, 278, 288−292, 315 Point geometry 229, 230, 234, 238, 235, 303 With partitioned cutting edge 347−350 With single cutting edge 345−347 Drill-to-diameter ratio (L/D) 341, 342 Drilling force system 213 Drilling system 353−362 Drilling torque, 213−217 E Edge preparation 160−172 hone radius 163 finish 169 methods 172 Elastic recovery (see also springback) 83, 151−158, 164, Energy partition 166, 455−461 F Feed motion 12, 56−58, 65, 66, 84, 90, 92, 95−97, 102, 186, 314, 444−453 Feed rate 58, 95, 218, 434, 448−451Index 563 Flank angle 3, 68−108, 112−125, 191−193, 278, 281−292, 315−324, 370−390, 407−409, 464, 465 Back 68, 104−107, 370−390 Normal 68, 104−108, 269, 369, 428−429 Optimal 82, 192, 193 Orthogonal 68, 88, 104−108, 117−119, 370−390, 437, 438 Side 68, 104−108, 370−390 Flank face 3, 16, 57, 92−96, 104−107, 160, 167, 191, 264, 270−324, 416, 417 Flute 206−21 Modification 247−254 Profile 208, 245−254 Width ratio 245,246 Fracture 9−18, 22−49 Frequency of chip formation 457−461 Friction force at the tool-workpiece interface 166 Fundamental laws First Metal-Cutting Law (Makarow’s law) 32 Second law of metal cutting (the deformation law) 35, 36 G Gundrilling system 354–362 Common issues 356−363 Gundrill geometry 362−439 H Helix angle 207−210, 222, 227, 275−277 Helical flank face 239, 246, 321−324 Helical point 321−324, 364 Helical rake face 275−279 I Indexable cutting inserts 74−84 ANSI code 464−471 Geometry parameters 77−84 ISO code 471−491 Inner angle 363, 392 Interference 70, 94−96, 100, 158, 159, 290−292, 398−400, 405 Condition of free penetration 290−292, 398−405 Model 290−292 K Kinematic angles 92−101 Flank angle 92−101 Inclination angle 99 Rake angle 96, 99 M Machining regime 448, 449 Mean shear stress at the tool chip interface 177 Metal cutting, definition 28, 29 Metal working fluid (MWF) 154, 155, 157, 186, 190, 205, 218, 263−267, 342−345, 357−359, 397−399, 413−425, 519−544 Critical velocity 523−526 Critical flow rate 521−526 Flow rate 523, 526−529 Inlet pressure 529−533, 541 Optimal velocity 524−526 Pressure 413−425 Milling tools 198−201 Model of chip formation 3, 4 N Nose radius 56, 60, 78, 108, 137−146, 457, 468, 470 O Optimization of tool geometry 439−441 Original coordinate system 271, 272, 292, 365, 366, 370, 375, 385, 386 Outer angle 363, 392 P Penetration rate 212, 213−223 Constrains 218 Measures to increase 224−259564 Index Plastic deformation 3−11, 15−22, 35−44, 164−177, 458−460 Point grinds, gundrill 414−418 Poletica criterion 175−176 Power spent on plastic deformation 455, 458−460 Primary motion 57, 58, 66, 68, 90, 97, 443−452 R Rake angle 3, 56, 68, 70−74, 77, 78, 88, 89, 92−99, 104, 112, 167, 167−169, 172−191, 225−230, 272−279, 332−337 Back 68, 103−108 Effective 183−191 Extremely high 173, 188−190 Neutral 79, 92, 173−178 Negative 79, 173−175 Normal 68, 104−109 Orthogonal 69, 89, 104−109 Side 68, 104−109 Origin of the term 173 Positive 79, 173 References planes 66, 67 Assumed working 66 Cutting edge normal 67 Main reference 66 Orthogonal 67 Tool back 66, 67 Tool cutting edge 66 Relative Tool Sharpness (RTS) 164−167 Resultant cutting motion 58, 91 Rotary tools, turning 195−196 Self-propelled 196 Spinning 195−196 Rule No. 1 in drill design 392 Rule No. 2 in drill design 393 Rule No. 3 in drill design 398, 423−424 Rule No. 4 in drill design 399 S Self-centering 218, 254−259 Self-piloting drill (SPD) 345–350 Self-piloting tool 345–350 Shear angle 3,4, 20 Shear plane 3,4 Shear strain 11−13, 39, 40 Shoulder dub-off 364, 413−422 Length 417−419 Side passage 413, 414−422 Outlet cross-sectional area 414−422 Auxiliary 423, 424 Single point cutting tool, 56 Single-shear plane model 3, 22−28 Split-point geometry 234−238 Springback (see elastic recovery) Stagnation zone 417, 418 Static equilibrium 213−216 Straight-flute drill 269−275 Stress-strain diagram 152 String 367−369 Deflector 369 System approach 211−213, 353−362 System consideration 354−362 System objective 212 Systems of consideration of the tool geometry 61 tool-in-hand (T-hand-S) 61, 64−68, 74 tool-in-machine (T-mach-S) 61, 64, 65, 90 tool-in-use (T-use-S) 61, 90–101 Summation of motions 119−125 Supporting pads 346 T Tensile test 183–187 elongation 185 neck down 185 frusto-conical section 185 Tool–chip contact length (length of the tool–chip interface) 175−177, 178−183 elastic part 181, 182 natural 178 plastic part 181, 182 restricted 178−183Index 565 Tool cutting edge angle 66, 73−78, 81−89, 132−150, 270, 276, 298, 315, 216, 330, 334, 335, 465 Tool drawing 545 Critical information 544 Examples 553−558 Existent practice 546−548 Requirements 548−553 Tool failure 351 Tool geometry selection 129 ideal 130−132 experimental evaluation 132 Influence in edge preparation 167−169 Tool holder 75−83 Geometry parameters 77–83 ISO code 491–487 Tool life 8, 12, 30, 171, 186, 187, 192, 221, 324, 327−330, 191, 427−435 Correlation equation, gundrill 425 Criterion 423 Test 427−435 Tool life, overall 394 Tool minor (end) cutting edge angle 66, 85. 106−108, 146−160 Treading taps 197 Tool wear patterns 395−397 Turning 444−446 U Ultimate tensile strength 177 Uncut chip cross-sectional area 8, 134, 135 Uncut (undeformed) chip thickness 3, 8,11, 38, 56, 133−141, 146, 159, 167, 168, 175, 325−327 Uncut chip width 56, 136−141, 166 V Vector 102−125, 499 Definition 500 Analysis 500 Magnitude 500 Unit 502 Resolution into components 502 Vectors 503 Addition 503 Angle between vectors 504 Angle between line and plane 504 Cross-product 506−509 Scalar (dot) product 502 Scalar triple product 509 W Waterfall edge preparation 163 Wear curves 431 Wear pattern 11, 12 Web 211 Conventional 244 Eccentricity/lip index error 260, 261 Thickness 211, 222, 247 Thickness ratio 246 Thinning 231−233 Wide 244 Wedge angle 68 Back 68 Normal 68 Orthogonal 68 Side 68 Wiper insert 108−110 Work material Brittle 14 Constitutive model (flow curve) 26, 36, 43 Ductile 14 Properties in cutting and in FEA 25 Workpiece surfaces 56
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Geometry of Single-point Turning Tools and Drills رابط مباشر لتنزيل كتاب Geometry of Single-point Turning Tools and Drills
|
|