|
|
| كتاب Dimensioning and Tolerancing Handbook | |
| |
كاتب الموضوع | رسالة |
---|
Admin مدير المنتدى
عدد المساهمات : 19004 التقييم : 35512 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Dimensioning and Tolerancing Handbook الثلاثاء 03 أبريل 2012, 12:13 am | |
|
تذكير بمساهمة فاتح الموضوع : أخوانى فى الله أحضرت لكم كتاب Dimensioning and Tolerancing Handbook Paul J. Drake, Jr.
و المحتوى كما يلي :
Foreword . xxi About the Editor . xxii Contributors xxiii Preface xxv Acknowledgments xxix Part 1 History/Lessons Learned Chapter 1: Quality Thrust . Ron Randall 1.1 Meaning of Quality 1-1 1.2 The Evolution of Quality . 1-2 1.3 Some Quality Gurus and their Contributions 1-2 1.3.1 W. Edwards Deming 1-2 1.3.2 Joseph Juran . 1-3 1.3.3 Philip B. Crosby . 1-4 1.3.4 Genichi Taguchi . 1-5 1.4 The Six Sigma Approach to Quality 1-6 1.4.1 The History of Six Sigma 1-6 1.4.2 Six Sigma Success Stories . 1-7 1.4.3 Six Sigma Basics . 1-7 1.5 The Malcolm Baldrige National Quality Award (MBNQA) 1-9 1.6 References . 1-10 Chapter 2: Dimensional Management Robert H. Nickolaisen, P.E. 2.1 Traditional Approaches to Dimensioning and Tolerancing . 2-1 2.1.1 Engineering Driven Design 2-2 2.1.2 Process Driven Design 2-2 2.1.3 Inspection Driven Design 2-2 2.2 A Need for Change 2-3 2.2.1 Dimensional Management 2-3 2.2.2 Dimensional Management Systems . 2-3 2.2.2.1 Simultaneous Engineering Teams 2-4 2.2.2.2 Written Goals and Objectives . 2-4 2.2.2.3 Design for Manufacturability (DFM) and Design for Assembly (DFA) 2-5 2.2.2.4 Geometric Dimensioning and Tolerancing (GD&T) . 2-6 2.2.2.5 Key Characteristics 2-6 2.2.2.6 Statistical Process Control (SPC) 2-6 2.2.2.7 Variation Measurement and Reduction 2-7 2.2.2.8 Variation Simulation Tolerance Analysis 2-7 2.3 The Dimensional Management Process 2-8 2.4 References . 2-10 2.5 Glossary 2-10 Contentsvi Contents Chapter 3:Tolerancing Optimization Strategies Gregory A. Hetland, Ph.D. 3.1 Tolerancing Methodologies 3-1 3.2 Tolerancing Progression (Example # 1) 3-1 3.2.1 Strategy # 1 (Linear) . 3-2 3.2.2 Strategy # 2 (Combination of Linear and Geometric) 3-5 3.2.3 Strategy # 3 (Fully Geometric) 3-6 3.3 Tolerancing Progression (Example # 2) 3-6 3.3.1 Strategy # 1 (Linear) . 3-8 3.3.2 Strategy # 2 Geometric Tolerancing ( ) Regardless of Feature Size 3-11 3.3.3 Strategy # 3 (Geometric Tolerancing Progression At Maximum Material Condition) . 3-12 3.3.4 Strategy # 4 (Tolerancing Progression “Optimized”) 3-13 3.4 Summary 3-15 3.5 References . 3-15 Part 2 Standards Chapter 4: Drawing Interpretation Patrick J. McCuistion, Ph.D 4.1 Introduction 4-1 4.2 Drawing History . 4-2 4.3 Standards . 4-2 4.3.1 ANSI 4-2 4.3.2 ISO 4-3 4.4 Drawing Types . 4-3 4.4.1 Note 4-3 4.4.2 Detail 4-3 4.4.2.1 Cast or Forged Part 4-4 4.4.2.2 Machined Part 4-4 4.4.2.3 Sheet Stock Part 4-4 4.4.3 Assembly . 4-4 4.5 Border . 4-4 4.5.1 Zones and Center Marks 4-4 4.5.2 Size Conventions 4-13 4.6 Title Blocks . 4-13 4.6.1 Company Name and Address . 4-13 4.6.2 Drawing Title 4-13 4.6.3 Size 4-13 4.6.4 FSCM/CAGE . 4-13 4.6.5 Drawing Number . 4-14 4.6.6 Scale 4-14 4.6.7 Release Date 4-14 4.6.8 Sheet Number 4-14 4.6.9 Contract Number . 4-14 4.6.10 Drawn and Date 4-14 4.6.11 Check, Design, and Dates 4-14 4.6.12 Design Activity and Date 4-15 4.6.13 Customer and Date . 4-15 4.6.14 Tolerances 4-15 4.6.15 Treatment . 4-15 4.6.16 Finish . 4-15 4.6.17 Similar To 4-15 4.6.18 Act Wt and Calc Wt 4-15 4.6.19 Other Title Block Items 4-15 4.7 Revision Blocks . 4-16 4.8 Parts Lists 4-16 4.9 View Projection . 4-16Contents vii 4.9.1 First-Angle Projection 4-16 4.9.2 Third-Angle Projection . 4-16 4.9.3 Auxiliary Views 4-16 4.10 Section Views 4-16 4.10.1 Full Sections . 4-19 4.10.2 Half Sections 4-19 4.10.3 Offset Sections 4-19 4.10.4 Broken-Out Section 4-19 4.10.5 Revolved and Removed Sections 4-22 4.10.6 Conventional Breaks 4-22 4.11 Partial Views 4-23 4.12 Conventional Practices 4-23 4.12.1 Feature Rotation 4-23 4.12.2 Line Precedence . 4-23 4.13 Isometric Views 4-24 4.14 Dimensions 4-25 4.14.1 Feature Types 4-25 4.14.2 Taylor Principle / Envelope Principle . 4-25 4.14.3 General Dimensions . 4-26 4.14.4 Technique . 4-27 4.14.5 Placement . 4-27 4.14.6 Choice . 4-28 4.14.7 Tolerance Representation . 4-28 4.15 Surface Texture . 4-28 4.15.1 Roughness . 4-29 4.15.2 Waviness 4-29 4.15.3 Lay 4-29 4.15.4 Flaws . 4-29 4.16 Notes . 4-29 4.17 Drawing Status 4-30 4.17.1 Sketch . 4-30 4.17.2 Configuration Layout 4-30 4.17.3 Experimental 4-30 4.17.4 Active . 4-30 4.17.5 Obsolete . 4-30 4.18 Conclusion . 4-30 4.19 References . 4-31 Chapter 5: Geometric Dimensioning and Tolerancing . Walter M. Stites .Paul Drake, P.E. 5.1 Introducing Geometric Dimensioning and Tolerancing (GD&T) . 5-1 5.1.1 What is GD&T? . 5-2 5.1.2 Where Does GD&T Come From?—References . 5-2 5.1.3 Why Do We Use GD&T? . 5-4 5.1.4 When Do We Use GD&T? 5-8 5.1.5 How Does GD&T Work?—Overview . 5-9 5.2 Part Features . 5-9 5.2.1 Nonsize Features 5-10 5.2.2 Features of Size 5-10 5.2.2.1 Screw Threads .5-11 5.2.2.2 Gears and Splines 5-11 5.2.3 Bounded Features .5-11 5.3 Symbols .5-11 5.3.1 Form and Proportions of Symbols 5-12 5.3.2 Feature Control Frame . 5-14 5.3.2.1 Feature Control Frame Placement 5-14 5.3.2.2 Reading a Feature Control Frame 5-16 5.3.3 Basic Dimensions . 5-17viii Contents 5.3.4 Reference Dimensions and Data 5-18 5.3.5 “Square” Symbol 5-18 5.3.6 Tabulated Tolerances . 5-18 5.3.7 “Statistical Tolerance” Symbol . 5-18 5.4 Fundamental Rules . 5-18 5.5 Nonrigid Parts 5-19 5.5.1 Specifying Restraint . 5-20 5.5.2 Singling Out a Free State Tolerance 5-20 5.6 Features of Size—The Four Fundamental Levels of Control . 5-20 5.6.1 Level 1—Size Limit Boundaries . 5-20 5.6.2 Material Condition . 5-23 5.6.2.1 Modifier Symbols 5-24 5.6.3 Method for MMC or LMC . 5-25 5.6.3.1 Level 2—Overall Feature Form . 5-26 5.6.3.2 Level 3—Virtual Condition Boundary for Orientation . 5-33 5.6.3.3 Level 4—Virtual Condition Boundary for Location . 5-34 5.6.3.4 Level 3 or 4 Virtual Condition Equal to Size Limit (Zero Tolerance) 5-35 5.6.3.5 Resultant Condition Boundary 5-37 5.6.4 Method for RFS 5-38 5.6.4.1 Tolerance Zone Shape . 5-38 5.6.4.2 Derived Elements 5-38 5.6.5 Alternative “Center Method” for MMC or LMC 5-43 5.6.5.1 Level 3 and 4 Adjustment—Actual Mating/Minimum Material Sizes 5-43 5.6.5.2 Level 2 Adjustment—Actual Local Sizes 5-45 5.6.5.3 Disadvantages of Alternative “Center Method” . 5-46 5.6.6 Inner and Outer Boundaries . 5-46 5.6.7 When do we use a Material Condition Modifier? . 5-47 5.7 Size Limits (Level 1 Control) 5-48 5.7.1 Symbols for Limits and Fits 5-48 5.7.2 Limit Dimensioning 5-49 5.7.3 Plus and Minus Tolerancing 5-49 5.7.4 Inch Values . 5-49 5.7.5 Millimeter Values 5-49 5.8 Form (Only) Tolerances (Level 2 Control) 5-50 5.8.1 Straightness Tolerance for Line Elements 5-51 5.8.2 Straightness Tolerance for a Cylindrical Feature . 5-52 5.8.3 Flatness Tolerance for a Single Planar Feature 5-52 5.8.4 Flatness Tolerance for a Width-Type Feature 5-52 5.8.5 Circularity Tolerance 5-53 5.8.5.1 Circularity Tolerance Applied to a Spherical Feature . 5-55 5.8.6 Cylindricity Tolerance . 5-55 5.8.7 Circularity or Cylindricity Tolerance with Average Diameter . 5-56 5.8.8 Application Over a Limited Length or Area . 5-57 5.8.9 Application on a Unit Basis 5-57 5.8.10 Radius Tolerance . 5-58 5.8.10.1 Controlled Radius Tolerance 5-59 5.8.11 Spherical Radius Tolerance . 5-59 5.8.12 When Do We Use a Form Tolerance? 5-60 5.9 Datuming . 5-61 5.9.1 What is a Datum? . 5-61 5.9.2 Datum Feature . 5-61 5.9.2.1 Datum Feature Selection . 5-61 5.9.2.2 Functional Hierarchy . 5-63 5.9.2.3 Surrogate and Temporary Datum Features . 5-64 5.9.2.4 Identifying Datum Features . 5-65 5.9.3 True Geometric Counterpart (TGC)—Introduction . 5-67 5.9.4 Datum 5-69 5.9.5 Datum Reference Frame (DRF) and Three Mutually Perpendicular Planes 5-69Contents ix 5.9.6 Datum Precedence . 5-69 5.9.7 Degrees of Freedom 5-72 5.9.8 TGC Types 5-74 5.9.8.1 Restrained versus Unrestrained TGC 5-75 5.9.8.2 Nonsize TGC . 5-75 5.9.8.3 Adjustable-size TGC . 5-75 5.9.8.4 Fixed-size TGC . 5-77 5.9.9 Datum Reference Frame (DRF) Displacement . 5-80 5.9.9.1 Relative to a Boundary of Perfect Form TGC . 5-81 5.9.9.2 Relative to a Virtual Condition Boundary TGC . 5-83 5.9.9.3 Benefits of DRF Displacement 5-83 5.9.9.4 Effects of All Datums of the DRF . 5-83 5.9.9.5 Effects of Form, Location, and Orientation 5-83 5.9.9.6 Accommodating DRF Displacement 5-83 5.9.10 Simultaneous Requirements . 5-86 5.9.11 Datum Simulation 5-89 5.9.12 Unstable Datums, Rocking Datums, Candidate Datums 5-89 5.9.13 Datum Targets . 5-91 5.9.13.1 Datum Target Selection 5-91 5.9.13.2 Identifying Datum Targets . 5-92 5.9.13.3 Datum Target Dimensions . 5-94 5.9.13.4 Interdependency of Datum Target Locations 5-95 5.9.13.5 Applied to Features of Size . 5-95 5.9.13.6 Applied to Any Type of Feature 5-97 5.9.13.7 Target Set with Switchable Precedence 5-99 5.9.14 Multiple Features Referenced as a Single Datum Feature . 5-100 5.9.14.1 Feature Patterns . 5-100 5.9.14.2 Coaxial and Coplanar Features . 5-103 5.9.15 Multiple DRFs . 5-103 5.10 Orientation Tolerance (Level 3 Control) . 5-103 5.10.1 How to Apply It . 5-103 5.10.2 Datums for Orientation Control 5-104 5.10.3 Applied to a Planar Feature (Including Tangent Plane Application) . 5-104 5.10.4 Applied to a Cylindrical or Width-Type Feature . 5-106 5.10.4.1 Zero Orientation Tolerance at MMC or LMC 5-107 5.10.5 Applied to Line Elements 5-107 5.10.6 The 24 Cases . 5-109 5.10.7 Profile Tolerance for Orientation . 5-109 5.10.8 When Do We Use an Orientation Tolerance? . 5-109 5.11 Positional Tolerance (Level 4 Control) .5-113 5.11.1 How Does It Work? 5-113 5.11.2 How to Apply It 5-114 5.11.3 Datums for Positional Control .5-116 5.11.4 Angled Features .5-117 5.11.5 Projected Tolerance Zone 5-117 5.11.6 Special-Shaped Zones/Boundaries . 5-121 5.11.6.1 Tapered Zone/Boundary 5-121 5.11.6.2 Bidirectional Tolerancing . 5-122 5.11.6.3 Bounded Features 5-126 5.11.7 Patterns of Features 5-127 5.11.7.1 Single-Segment Feature Control Frame 5-127 5.11.7.2 Composite Feature Control Frame . 5-129 5.11.7.3 Rules for Composite Control . 5-131 5.11.7.4 Stacked Single-Segment Feature Control Frames 5-134 5.11.7.5 Rules for Stacked Single-Segment Feature Control Frames . 5-136 5.11.7.6 Coaxial and Coplanar Features . 5-136 5.11.8 Coaxiality and Coplanarity Control . 5-137x Contents 5.12 Runout Tolerance 5-138 5.12.1 Why Do We Use It? 5-138 5.12.2 How Does It Work? . 5-138 5.12.3 How to Apply It . 5-139 5.12.4 Datums for Runout Control . 5-140 5.12.5 Circular Runout Tolerance . 5-141 5.12.6 Total Runout Tolerance 5-143 5.12.7 Application Over a Limited Length 5-143 5.12.8 When Do We Use a Runout Tolerance? . 5-144 5.12.9 Worst Case Boundaries . 5-145 5.13 Profile Tolerance . 5-145 5.13.1 How Does It Work? . 5-145 5.13.2 How to Apply It . 5-145 5.13.3 The Basic Profile . 5-147 5.13.4 The Profile Tolerance Zone . 5-147 5.13.5 The Profile Feature Control Frame 5-149 5.13.6 Datums for Profile Control 5-149 5.13.7 Profile of a Surface Tolerance 5-149 5.13.8 Profile of a Line Tolerance 5-149 5.13.9 Controlling the Extent of a Profile Tolerance . 5-150 5.13.10 Abutting Zones 5-153 5.13.11 Profile Tolerance for Combinations of Characteristics 5-153 5.13.11.1 With Positional Tolerancing for Bounded Features 5-153 5.13.12 Patterns of Profiled Features . 5-154 5.13.12.1 Single-Segment Feature Control Frame 5-154 5.13.12.2 Composite Feature Control Frame . 5-154 5.13.12.3 Stacked Single-Segment Feature Control Frames 5-155 5.13.12.4 Optional Level 2 Control 5-155 5.13.13 Composite Profile Tolerance for a Single Feature . 5-156 5.14 Symmetry Tolerance 5-156 5.14.1 How Does It Work? . 5-157 5.14.2 How to Apply It . 5-159 5.14.3 Datums for Symmetry Control . 5-159 5.14.4 Concentricity Tolerance . 5-160 5.14.4.1 Concentricity Tolerance for Multifold Symmetry about a Datum Axis . 5-160 5.14.4.2 Concentricity Tolerance about a Datum Point . 5-161 5.14.5 Symmetry Tolerance about a Datum Plane 5-161 5.14.6 Symmetry Tolerancing of Yore (Past Practice) . 5-161 5.14.7 When Do We Use a Symmetry Tolerance? . 5-162 5.15 Combining Feature Control Frames . 5-162 5.16 “Instant” GD&T 5-163 5.16.1 The “Dimension Origin” Symbol 5-163 5.16.2 General Note to Establish Basic Dimensions 5-163 5.16.3 General Note in Lieu of Feature Control Frames 5-164 5.17 The Future of GD&T 5-164 5.18 References . 5-166 Chapter 6: Differences Between US Standards and Other Standards . . Alex Krulikowski Scott DeRaad 6.1 Dimensioning Standards . 6-1 6.1.1 US Standards 6-2 6.1.2 International Standards . 6-2 6.1.2.1 ISO Geometrical Product Specification Masterplan . 6-4 6.2 Comparison of ASME and ISO Standards . 6-5 6.2.1 Organization and Logistics . 6-5 6.2.2 Number of Standards . 6-5 6.2.3 Interpretation and Application 6-5Contents xi 6.2.3.1 ASME 6-6 6.2.3.2 ISO 6-6 6.3 Other Standards 6-27 6.3.1 National Standards Based on ISO or ASME Standards . 6-27 6.3.2 US Government Standards 6-28 6.3.3 Corporate Standards 6-28 6.3.4 Multiple Dimensioning Standards . 6-29 6.4 Future of Dimensioning Standards . 6-30 6.5 Effects of Technology . 6-30 6.6 New Dimensioning Standards 6-30 6.7 References . 6-30 Chapter 7: Mathematical Definition of Dimensioning and Tolerancing Principles Mark A. Nasson 7.1 Introduction 7-1 7.2 Why Mathematical Tolerance Definitions? . 7-1 7.2.1 Metrology Crisis (The GIDEP Alert) . 7-2 7.2.2 Specification Crisis . 7-3 7.2.3 National Science Foundation Tolerancing Workshop . 7-3 7.2.4 A New National Standard 7-4 7.3 What are Mathematical Tolerance Definitions? . 7-4 7.3.1 Parallel, Equivalent, Unambiguous Expression . 7-4 7.3.2 Metrology Independent . 7-4 7.4 Detailed Descriptions of Mathematical Tolerance Definitions . 7-4 7.4.1 Introduction 7-4 7.4.2 Vectors 7-5 7.4.2.1 Vector Addition and Subtraction 7-5 7.4.2.2 Vector Dot Products . 7-6 7.4.2.3 Vector Cross Products 7-6 7.4.3 Actual Value / Measured Value . 7-7 7.4.4 Datums 7-8 7.4.4.1 Candidate Datums / Datum Reference Frames . 7-8 7.4.4.2 Degrees of Freedom 7-8 7.4.5 Form tolerances 7-9 7.4.5.1 Circularity . 7-9 7.4.5.2 Cylindricity 7-12 7.4.5.3 Flatness 7-13 7.5 Where Do We Go from Here? 7-14 7.5.1 ASME Standards Committees 7-14 7.5.2 International Standards Efforts 7-14 7.5.3 CAE Software Developers . 7-14 7.6 Acknowledgments . 7-15 7.7 References . 7-15 Chapter 8: Statistical Tolerancing Vijay Srinivasan, Ph.D 8.1 Introduction 8-1 8.2 Specification of Statistical Tolerancing . 8-2 8.2.1 Using Process Capability Indices 8-2 8.2.2 Using RMS Deviation Index 8-4 8.2.3 Using Percent Containment 8-5 8.3 Statistical Tolerance Zones . 8-5 8.3.1 Population Parameter Zones 8-6 8.3.2 Distribution Function Zones . 8-7 8.4 Additional Illustrations . 8-7 8.5 Summary and Concluding Remarks . 8-9 8.6 References . 8-10xii Contents Part 3 Design Chapter 9: Traditional Approaches to Analyzing Mechanical Tolerance Stacks . Paul Drake 9.1 Introduction 9-1 9.2 Analyzing Tolerance Stacks 9-1 9.2.1 Establishing Performance/Assembly Requirements 9-1 9.2.2 Loop Diagram . 9-3 9.2.3 Converting Dimensions to Equal Bilateral Tolerances 9-5 9.2.4 Calculating the Mean Value (Gap) for the Requirement 9-7 9.2.5 Determine the Method of Analysis . 9-8 9.2.6 Calculating the Variation for the Requirement 9-9 9.2.6.1 Worst Case Tolerancing Model 9-9 9.2.6.2 RSS Model . 9-12 9.2.6.3 Modified Root Sum of the Squares Tolerancing Model . 9-18 9.2.6.4 Comparison of Variation Models . 9-22 9.2.6.5 Estimated Mean Shift Model . 9-23 9.3 Analyzing Geometric Tolerances . 9-24 9.3.1 Form Controls . 9-25 9.3.2 Orientation Controls . 9-26 9.3.3 Position . 9-27 9.3.3.1 Position at RFS . 9-27 9.3.3.2 Position at MMC or LMC 9-27 9.3.3.3 Virtual and Resultant Conditions . 9-28 9.3.3.4 Equations 9-28 9.3.3.5 Composite Position 9-32 9.3.4 Runout . 9-33 9.3.5 Concentricity/Symmetry 9-33 9.3.6 Profile 9-34 9.3.6.1 Profile Tolerancing with an Equal Bilateral Tolerance Zone 9-34 9.3.6.2 Profile Tolerancing with a Unilateral Tolerance Zone 9-35 9.3.6.3 Profile Tolerancing with an Unequal Bilateral Tolerance Zone . 9-35 9.3.6.4 Composite Profile . 9-36 9.3.7 Size Datums . 9-36 9.4 Abbreviations 9-37 9.5 Terminology . 9-39 9.6 References . 9-39 Chapter 10: Statistical Background and Concepts Ron Randall 10.1 Introduction 10-1 10.2 Shape, Locations, and Spread 10-2 10.3 Some Important Distributions 10-2 10.3.1 The Normal Distribution . 10-2 10.3.2 Lognormal Distribution . 10-6 10.3.3 Poisson Distribution . 10-8 10.4 Measures of Quality and Capability . 10-10 10.4.1 Process Capability Index . 10-10 10.4.2 Process Capability Index Relative to Process Centering (Cpk) 10-12 10.5 Summary 10-14 10.6 References . 10-14 10.7 Appendix . 10-15Contents xiii Chapter 11: Predicting Assembly Quality (Six Sigma Methodologies to Optimize Tolerances) Dale Van Wyk 11.1 Introduction .11-1 11.2 What is Tolerance Allocation? .11-1 11.3 Process Standard Deviations 11-2 11.4 Worst Case Allocation .11-5 11.4.1 Assign Component Dimensions 11-6 11.4.2 Determine Assembly Performance, P .11-7 11.4.3 Assign the process with the largest si to each component 11-8 11.4.4 Calculate the Worst Case Assembly, twc6 11-8 11.4.5 Is P³t wc6? .11-9 11.4.6 Estimating Defect Rates 11-10 11.4.7 Verification 11-12 11.4.8 Adjustments to Meet Quality Goals 11-13 11.4.9 Worst Case Allocation Summary 11-13 11.5 Statistical Allocation 11-13 11.5.1 Calculating Assembly Variation and Defect Rate .11-15 11.5.2 First Steps in Statistical Allocation .11-15 11.5.3 Calculate Expected Assembly Performance, P6 .11-15 11.5.4 Is P³P 6? 11-16 11.5.5 Allocating Tolerances 11-17 11.5.6 Statistical Allocation Summary 11-20 11.6 Dynamic RSS Allocation .11-20 11.7 Static RSS analysis .11-23 11.8 Comparison of the Techniques 11-24 11.9 Communication of Requirements 11-25 11.10 Summary .11-26 11.11 Abbreviations .11-26 11.12 References 11-27 Chapter 12: Multi-Dimensional Tolerance Analysis (Manual Method) Dale Van Wyk 12.1 Introduction 12-1 12.2 Determining Sensitivity . 12-2 12.3 A Technique for Developing Gap Equations . 12-4 12.4 Utilizing Sensitivity Information to Optimize Tolerances 12-12 12.5 Summary 12-13 Chapter 13: Multi-Dimensional Tolerance Analysis (Automated Method) Kenneth W. Chase, Ph.D. 13.1 Introduction 13-1 13.2 Three Sources of Variation in Assemblies . 13-2 13.3 Example 2D Assembly – Stacked Blocks 13-3 13.4 Steps in Creating an Assembly Tolerance Model 13-4 13.5 Steps in Analyzing an Assembly Tolerance Model 13-12 13.5.5.1 Percent rejects 13-21 13.5.5.2 Percent Contribution Charts 13-22 13.5.5.3 Sensitivity Analysis 13-24 13.5.5.4 Modifying Geometry . 13-24 13.6 Summary 13-26 13.7 References . 13-27xiv Contents Chapter 14: Minimum-Cost Tolerance Allocation Kenneth W. Chase, Ph.D. 14.1 Tolerance Allocation Using Least Cost Optimization . 14-1 14.2 1-D Tolerance Allocation 14-1 14.3 1-D Example: Shaft and Housing Assembly . 14-3 14.4 Advantages / Disadvantages of the Lagrange Multiplier Method . 14-7 14.6 2-D and 3-D Tolerance Allocation 14-8 14.5 True Cost and Optimum Acceptance Fraction 14-8 14.7 2-D Example: One-way Clutch Assembly . 14-9 14.7.1 Vector Loop Model and Assembly Function for the Clutch . 14-10 14.8 Allocation by Scaling, Weight Factors . 14-10 14.8.1 Proportional Scaling by Worst Case .14-11 14.8.2 Proportional Scaling by Root-Sum-Squares .14-11 14.8.3 Allocation by Weight Factors .14-11 14.9 Allocation by Cost Minimization . 14-12 14.9.1 Minimum Cost Tolerances by Worst Case 14-13 14.9.2 Minimum Cost Tolerances by RSS 14-14 14.10 Tolerance Allocation with Process Selection 14-15 14.11 Summary 14-16 14.12 References . 14-17 14.13 Appendix: Cost-Tolerance Functions for Metal Removal Processes . 14-18 Chapter 15: Automating the Tolerancing Process . Charles Glancy James Stoddard . Marvin Law 15.1 Background Information 15-2 15.1.1 Benefits of Automation 15-2 15.1.2 Overview of the Tolerancing Process 15-2 15.2 Automating the Creation of the Tolerance Model 15-3 15.2.1 Characterizing Critical Design Measurements . 15-3 15.2.2 Characterizing the Model Function . 15-4 15.2.2.1 Model Definition 15-4 15.2.2.2 Model Form 15-5 15.2.2.3 Model Scope 15-5 15.2.3 Characterizing Input Variables . 15-6 15.3 Automating Tolerance Analysis . 15-6 15.3.1 Method of System Moments 15-6 15.3.3 Distribution Fitting 15-8 15.3.2 Monte Carlo Simulation . 15-8 15.4 Automating Tolerance Optimization 15-9 15.5 Automating Communication Between Design and Manufacturing . 15-9 15.5.1 Manufacturing Process Capabilities . 15-10 15.5.1.1 Manufacturing Process Capability Database . 15-10 15.5.1.2 Database Administration 15-11 15.5.2 Design Requirements and Assumptions .15-11 15.6 CAT Automation Tools . 15-12 15.6.1 Tool Capability 15-12 15.6.2 Ease of Use . 15-12 15.6.3 Training . 15-13 15.6.4 Technical Support . 15-13 15.6.5 Data Management and CAD Integration 15-13 15.6.6 Reports and Records . 15-13 15.6.7 Tool Enhancement and Development . 15-14 15.6.8 Deployment 15-14 15.7 Summary 15-14 15.8 References . 15-14Contents xv Chapter 16: Working in an Electronic Environment .Paul Matthews 16.1 Introduction 16-1 16.2 Paperless/Electronic Environment 16-2 16.2.1 Definition . 16-2 16.3 Development Information Tools 16-3 16.3.1 Product Development Automation Strategy 16-3 16.3.2 Master Model Theory . 16-4 16.3.3 Template Design . 16-7 16.3.3.1 Template Part and Assembly Databases . 16-7 16.3.3.2 Template Features 16-8 16.3.3.3 Templates for Analyses 16-9 16.3.3.4 Templates for Documentation 16-9 16.3.4 Component Libraries . 16-9 16.3.5 Information Verification . 16-10 16.4 Product Information Management .16-11 16.4.1 Configuration Management Techniques .16-11 16.4.2 Data Management Components 16-12 16.4.2.1 Workspace . 16-12 16.4.2.2 Product Vault 16-12 16.4.2.3 Company Vault . 16-12 16.4.3 Document Administrator . 16-13 16.4.4 File Cabinet Control 16-13 16.4.5 Software Automation . 16-13 16.5 Information Storage and Transfer . 16-13 16.5.1 Internet . 16-13 16.5.2 Electronic Mail 16-14 16.5.3 File Transfer Protocol . 16-14 16.5.4 Media Transfer 16-15 16.6 Manufacturing Guidelines . 16-15 16.6.1 Manufacturing Trust . 16-15 16.6.2 Dimensionless Prints 16-15 16.6.2.1 Sheetmetal . 16-16 16.6.2.2 Injection Molded Plastic . 16-17 16.6.2.3 Hog Out Parts . 16-17 16.6.2.4 Castings 16-18 16.6.2.5 Rapid Prototypes . 16-18 16.7 Database Format Standards 16-19 16.7.1 Native Database . 16-19 16.7.2 2-D Formats 16-19 16.7.2.1 Data eXchange Format (DXF) . 16-19 16.7.2.2 Hewlett-Packard Graphics Language (HPGL) 16-20 16.8 3-D Formats 16-20 16.8.1 Initial Graphics Exchange Specification (IGES) . 16-20 16.8.2 STandard for the Exchange of Product (STEP) 16-20 16.8.3 Virtual Reality Modeling Language (VRML) 16-20 16.8.4 STereoLithography (STL) 16-21 16.9 General Information Formats . 16-21 16.9.1 Hypertext Markup Language (HTML) 16-21 16.9.2 Portable Document Format (PDF) . 16-22 16.10 Graphics Formats . 16-22 16.10.1 Encapsulated PostScript (EPS) . 16-22 16.10.2 Joint Photographic Experts Group (JPEG) 16-22 16.10.3 Tagged Image File Format (TIFF) 16-22 16.11 Conclusion . 16-23 16.12 Appendix A IGES Entities 16-23xvi Contents Part 4 Manufacturing Chapter 17: Collecting and Developing Manufacturing Process Capability Models . Michael D. King 17.1 Why Collect and Develop Process Capability Models? . 17-1 17.2 Developing Process Capability Models 17-2 17.3 Quality Prediction Models - Variable versus Attribute Information 17-3 17.3.1 Collecting and Modeling Variable Process Capability Models . 17-3 17.3.2 Collecting and Modeling Attribute Process Capability Models . 17-7 17.3.3 Feature Factoring Method . 17-7 17.3.4 Defect Weighting Methodology 17-7 17.4 Cost and Cycle Time Prediction Modeling Variations . 17-8 17.5 Validating and Checking the Results of Your Predictive Models 17-9 17.6 Summary .17-11 17.7 References 17-11 Part 5 Gaging Chapter 18: Paper Gage Techniques .Martin P. Wright 18.1 What is Paper Gaging? . 18-1 18.2 Advantages and Disadvantages to Paper Gaging . 18-2 18.3 Discrimination Provided By a Paper Gage 18-3 18.4 Paper Gage Accuracy . 18-3 18.5 Plotting Paper Gage Data Points . 18-4 18.6 Paper Gage Applications . 18-4 18.6.1 Locational Verification 18-5 18.6.1.1 Simple Hole Pattern Verification 18-5 18.6.1.2 Three-Dimensional Hole Pattern Verification 18-8 18.6.1.3 Composite Positional Tolerance Verification 18-10 18.6.2 Capturing Tolerance From Datum Features Subject to Size Variation . 18-12 18.6.2.1 Datum Feature Applied on an RFS Basis . 18-12 18.6.2.2 Datum Feature Applied on an MMC Basis 18-12 18.6.2.3 Capturing Rotational Shift Tolerance from a Datum Feature Applied on an MMC Basis 18-16 18.6.2.4 Determining the Datum from a Pattern of Features 18-19 18.6.3 Paper Gage Used as a Process Analysis Tool . 18-21 18.7 Summary 18-23 18.8 References . 18-23 Chapter 19: Receiver Gages — Go Gages and Functional Gages James D. Meadows 19.1 Introduction 19-1 19.2 Gaging Fundamentals 19-2 19.3 Gage Tolerancing Policies . 19-3 19.4 Examples of Gages . 19-4 19.4.1 Position Using Partial and Planar Datum Features . 19-4 19.4.2 Position Using Datum Features of Size at MMC 19-6 19.4.3 Position and Profile Using a Simultaneous Gaging Requirement . 19-9 19.4.4 Position Using Centerplane Datums . 19-12 19.4.5 Multiple Datum Structures 19-14 19.4.6 Secondary and Tertiary Datum Features of Size . 19-17Contents xvii 19.5 Push Pin vs. Fixed Pin Gaging . 19-20 19.6 Conclusion . 19-20 19.7 References . 19-20 Part 6 Precision Metrology Chapter 20: Measurement Systems Analysis Gregory A. Hetland, Ph.D. 20.1 Introduction 20-1 20.2 Measurement Methods Analysis 20-2 20.2.1 Measurement System Definition (Phase 1) . 20-2 20.2.1.1 Identification of Variables 20-2 20.2.1.2 Specifications of Conformance 20-3 20.2.1.3 Measurement System Capability Requirements . 20-3 20.2.2 Identification of Sources of Uncertainty (Phase 2) . 20-3 20.2.2.1 Machine Sources of Uncertainty 20-4 20.2.2.2 Software Sources of Uncertainty . 20-4 20.2.2.3 Environmental Sources of Uncertainty . 20-5 20.2.2.4 Part Sources of Uncertainty 20-5 20.2.2.5 Fixturing Sources of Uncertainty . 20-5 20.2.2.6 Operator Sources of Uncertainty . 20-6 20.2.3 Measurement System Qualification (Phase 3) 20-6 20.2.3.1 Plan the Capabilities Studies 20-6 20.2.3.2 Production Systems . 20-7 20.2.3.3 Calibrate the System 20-7 20.2.3.4 Conduct Studies and Define Capabilities . 20-8 20.2.4 Quantify the Error Budget (Phase 4) 20-8 20.2.4.1 Plan Testing (Isolate Error Sources) . 20-8 20.2.4.2 Analyze Uncertainty 20-9 20.2.5 Optimize Measurement System (Phase 5) 20-9 20.2.5.1 Identify Opportunities 20-9 20.2.5.2 Attempt Improvements and Revisit Testing . 20-9 20.2.5.3 Revisit Qualification 20-10 20.2.6 Implement and Control Measurement System (Phase 6) 20-10 20.2.6.1 Plan Performance Criteria . 20-10 20.2.6.2 Plan Calibration and Maintenance Requirements .20-11 20.2.6.3 Implement System and Initiate Control 20-11 20.2.6.4 CMM Operator Competencies 20-11 20.2.6.5 Business Issue . 20-12 20.3 CMM Performance Test Overview 20-17 20.3.1 Environmental Tests (Section 1) 20-17 20.3.1.1 Temperature Parameters . 20-17 20.3.1.2 Other Environmental Parameters 20-20 20.3.2 Machine Tests (Section 2) . 20-21 20.3.2.1 Probe Settling Time 20-21 20.3.2.2 Probe Deflection 20-24 20.3.2.3 Other Machine Parameters . 20-27 20.3.2.4 Multiple Probes . 20-27 20.3.3 Feature Based Measurement Tests (Section 3) . 20-28 20.3.3.1 Number of Points Per Feature 20-30 20.3.3.2 Other Geometric Features 20-34 20.3.3.3 Contact Scanning 20-34 20.3.3.4 Surface Roughness 20-35 20.4 CMM Capability Matrix 20-35 20.5 References . 20-38xviii Contents Part 7 Applications Chapter 21: Predicting Piecepart Quality . Dan A. Watson, Ph.D. 21.1 Introduction 21-1 21.2 The Problem 21-2 21.3 Statistical Framework 21-3 21.3.1 Assumptions . 21-3 21.3.2 Internal Feature at MMC 21-5 21.3.3 Internal Feature at LMC . 21-7 21.3.4 External Features 21-8 21.3.5 Alternate Distribution Assumptions . 21-8 21.4 Non-Size Feature Applications . 21-9 21.5 Example . 21-9 21.6 Summary 21-10 21.7 References 21-11 Chapter 22: Floating and Fixed Fasteners .Paul Zimmermann 22.1 Introduction 22-1 22.2 Floating and Fixed Fasteners 22-1 22.2.1 What is a Floating Fastener? . 22-4 22.2.2 What is a Fixed Fastener? . 22-4 22.2.3 What is a Double-Fixed Fastener? . 22-4 22.3 Geometric Dimensioning and Tolerancing (Cylindrical Tolerance Zone Versus +/- Tolerancing) 22-5 22.4 Calculations for Fixed, Floating and Double-fixed Fasteners . 22-8 22.5 Geometric Dimensioning and Tolerancing Rules/Formulas for Floating Fastener 22-8 22.5.1 How to Calculate Clearance Hole Diameter for a Floating Fastener Application 22-8 22.5.2 How to Calculate Counterbore Diameter for a Floating Fastener Application 22-9 22.5.3 Why Floating Fasteners are Not Recommended 22-10 22.6 Geometric Dimensioning and Tolerancing Rules/Formulas for Fixed Fasteners 22-10 22.6.1 How to Calculate Fixed Fastener Applications 22-10 22.6.2 How to Calculate Counterbore Diameter for a Fixed Fastener Application . 22-10 22.6.3 Why Fixed Fasteners are Recommended .22-11 22.7 Geometric Dimensioning and Tolerancing Rules/Formulas for Double-fixed Fastener .22-11 22.7.1 How to Calculate a Clearance Hole .22-11 22.7.2 How to Calculate the Countersink Diameter, Head Height Above and Head Height Below the Surface .22-11 22.7.3 What Are the Problems Associated with Double-fixed Fasteners? . 22-13 22.8 Nut Plates: Floating and Nonfloating (see Fig. 22-14) 22-14 22.9 Projected Tolerance Zone . 22-15 22.9.1 Comparison of Positional Tolerancing With and Without a Projected Tolerance Zone . 22-16 22.9.2 Percent of Actual Orientation Versus Lost Functional Tolerance . 22-18 22.10 Hardware Pages 22-18 22.10.1 Floating Fastener Hardware Pages . 22-20 22.10.2 Fixed Fastener Hardware Pages 22-21 22.10.3 Double-fixed Fastener Hardware Pages . 22-23 22.10.4 Counterbore Depths - Pan Head and Socket Head Cap Screws 22-25 22.10.5 Flat Head Screw Head Height - Above and Below the Surface . 22-26 22.11 References . 22-26Contents xix Chapter 23: Fixed and Floating Fastener Variation .Chris Cuba 23.1 Introduction 23-1 23.2 Hole Variation . 23-2 23.3 Assembly Variation 23-4 23.4 Fixed and Floating Fasteners 23-4 23.4.1 Fixed Fastener Assembly Shift 23-5 23.4.2 Fixed Fastener Assembly Shift Using One Equation and Dimension Loop . 23-6 23.4.3 Fixed Fastener Equation 23-7 23.4.4 Fixed Fastener Gap Analysis Steps . 23-7 23.4.5 Floating Fastener Gap Analysis Steps 23-8 23.5 Summary 23-9 23.6 References . 23-10 Chapter 24: Pinned Interfaces . Stephen Harry Werst 24.1 List of Symbols (Definitions and Terminology) 24-1 24.2 Introduction 24-2 24.3 Performance Considerations . 24-2 24.4 Variation Components of Pinned Interfaces . 24-3 24.4.1 Type I Error . 24-3 24.4.2 Type II Error 24-3 24.5 Types of Alignment Pins . 24-4 24.6 Tolerance Allocation Methods - Worst Case vs. Statistical 24-6 24.7 Processes and Capabilities 24-6 24.8 Design Methodology 24-7 24.9 Proper Use of Material Modifiers 24-10 24.10 Temperature Considerations 24-11 24.11 Two Round Pins with Two Holes .24-11 24.11.1 Fit 24-12 24.11.2 Rotation Errors 24-12 24.11.3 Translation Errors . 24-13 24.11.4 Performance Constants 24-13 24.11.5 Dimensioning Methodology 24-14 24.12 Round Pins with a Hole and a Slot 24-14 24.12.1 Fit 24-14 24.12.2 Rotation Errors 24-16 24.12.3 Translation Errors . 24-17 24.12.4 Performance Constants 24-17 24.12.5 Dimensioning Methodology 24-17 24.13 Round Pins with One Hole and Edge Contact 24-18 24.13.1 Fit 24-19 24.13.2 Rotation Errors 24-20 24.13.3 Translation errors . 24-20 24.13.4 Performance Constants 24-20 24.13.5 Dimensioning Methodology 24-20 24.14 One Diamond Pin and One Round Pin with Two Holes . 24-23 24.14.1 Fit 24-23 24.14.2 Rotation and Translation Errors . 24-24 24.14.3 Performance Constants 24-24 24.14.4 Dimensioning Methodology 24-24 24.15 One Parallel-Flats Pin and One Round Pin with Two Holes . 24-26 24.15.1 Fit 24-26 24.15.2 Rotation and Translation Errors . 24-27 24.15.3 Performance Constants 24-27 24.15.4 Dimensioning Methodology 24-28 24.16 References . 24-29xx Contents Chapter 25: Gage Repeatability and Reproducibility (GR&R) Calculations . . Gregory A. Hetland, Ph.D. 25.1 Introduction 25-1 25.2 Standard GR&R Procedure 25-1 25.3 Summary 25-7 25.4 References . 25-7 Part 8 The Future Chapter 26: The Future . Several contributors Figures . F-1 Tables . T-1 Index I-1
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Dimensioning and Tolerancing Handbook رابط مباشر لتنزيل كتاب Dimensioning and Tolerancing Handbook
عدل سابقا من قبل Admin في السبت 02 نوفمبر 2019, 7:02 pm عدل 3 مرات |
| | |
كاتب الموضوع | رسالة |
---|
Admin مدير المنتدى
عدد المساهمات : 19004 تاريخ التسجيل : 01/07/2009
| موضوع: كتاب Dimensioning and Tolerancing Handbook الثلاثاء 03 أبريل 2012, 12:13 am | |
|
أخوانى فى الله أحضرت لكم كتاب Dimensioning and Tolerancing Handbook Paul J. Drake, Jr.
و المحتوى كما يلي :
Foreword . xxi About the Editor . xxii Contributors xxiii Preface xxv Acknowledgments xxix Part 1 History/Lessons Learned Chapter 1: Quality Thrust . Ron Randall 1.1 Meaning of Quality 1-1 1.2 The Evolution of Quality . 1-2 1.3 Some Quality Gurus and their Contributions 1-2 1.3.1 W. Edwards Deming 1-2 1.3.2 Joseph Juran . 1-3 1.3.3 Philip B. Crosby . 1-4 1.3.4 Genichi Taguchi . 1-5 1.4 The Six Sigma Approach to Quality 1-6 1.4.1 The History of Six Sigma 1-6 1.4.2 Six Sigma Success Stories . 1-7 1.4.3 Six Sigma Basics . 1-7 1.5 The Malcolm Baldrige National Quality Award (MBNQA) 1-9 1.6 References . 1-10 Chapter 2: Dimensional Management Robert H. Nickolaisen, P.E. 2.1 Traditional Approaches to Dimensioning and Tolerancing . 2-1 2.1.1 Engineering Driven Design 2-2 2.1.2 Process Driven Design 2-2 2.1.3 Inspection Driven Design 2-2 2.2 A Need for Change 2-3 2.2.1 Dimensional Management 2-3 2.2.2 Dimensional Management Systems . 2-3 2.2.2.1 Simultaneous Engineering Teams 2-4 2.2.2.2 Written Goals and Objectives . 2-4 2.2.2.3 Design for Manufacturability (DFM) and Design for Assembly (DFA) 2-5 2.2.2.4 Geometric Dimensioning and Tolerancing (GD&T) . 2-6 2.2.2.5 Key Characteristics 2-6 2.2.2.6 Statistical Process Control (SPC) 2-6 2.2.2.7 Variation Measurement and Reduction 2-7 2.2.2.8 Variation Simulation Tolerance Analysis 2-7 2.3 The Dimensional Management Process 2-8 2.4 References . 2-10 2.5 Glossary 2-10 Contentsvi Contents Chapter 3:Tolerancing Optimization Strategies Gregory A. Hetland, Ph.D. 3.1 Tolerancing Methodologies 3-1 3.2 Tolerancing Progression (Example # 1) 3-1 3.2.1 Strategy # 1 (Linear) . 3-2 3.2.2 Strategy # 2 (Combination of Linear and Geometric) 3-5 3.2.3 Strategy # 3 (Fully Geometric) 3-6 3.3 Tolerancing Progression (Example # 2) 3-6 3.3.1 Strategy # 1 (Linear) . 3-8 3.3.2 Strategy # 2 Geometric Tolerancing ( ) Regardless of Feature Size 3-11 3.3.3 Strategy # 3 (Geometric Tolerancing Progression At Maximum Material Condition) . 3-12 3.3.4 Strategy # 4 (Tolerancing Progression “Optimized”) 3-13 3.4 Summary 3-15 3.5 References . 3-15 Part 2 Standards Chapter 4: Drawing Interpretation Patrick J. McCuistion, Ph.D 4.1 Introduction 4-1 4.2 Drawing History . 4-2 4.3 Standards . 4-2 4.3.1 ANSI 4-2 4.3.2 ISO 4-3 4.4 Drawing Types . 4-3 4.4.1 Note 4-3 4.4.2 Detail 4-3 4.4.2.1 Cast or Forged Part 4-4 4.4.2.2 Machined Part 4-4 4.4.2.3 Sheet Stock Part 4-4 4.4.3 Assembly . 4-4 4.5 Border . 4-4 4.5.1 Zones and Center Marks 4-4 4.5.2 Size Conventions 4-13 4.6 Title Blocks . 4-13 4.6.1 Company Name and Address . 4-13 4.6.2 Drawing Title 4-13 4.6.3 Size 4-13 4.6.4 FSCM/CAGE . 4-13 4.6.5 Drawing Number . 4-14 4.6.6 Scale 4-14 4.6.7 Release Date 4-14 4.6.8 Sheet Number 4-14 4.6.9 Contract Number . 4-14 4.6.10 Drawn and Date 4-14 4.6.11 Check, Design, and Dates 4-14 4.6.12 Design Activity and Date 4-15 4.6.13 Customer and Date . 4-15 4.6.14 Tolerances 4-15 4.6.15 Treatment . 4-15 4.6.16 Finish . 4-15 4.6.17 Similar To 4-15 4.6.18 Act Wt and Calc Wt 4-15 4.6.19 Other Title Block Items 4-15 4.7 Revision Blocks . 4-16 4.8 Parts Lists 4-16 4.9 View Projection . 4-16Contents vii 4.9.1 First-Angle Projection 4-16 4.9.2 Third-Angle Projection . 4-16 4.9.3 Auxiliary Views 4-16 4.10 Section Views 4-16 4.10.1 Full Sections . 4-19 4.10.2 Half Sections 4-19 4.10.3 Offset Sections 4-19 4.10.4 Broken-Out Section 4-19 4.10.5 Revolved and Removed Sections 4-22 4.10.6 Conventional Breaks 4-22 4.11 Partial Views 4-23 4.12 Conventional Practices 4-23 4.12.1 Feature Rotation 4-23 4.12.2 Line Precedence . 4-23 4.13 Isometric Views 4-24 4.14 Dimensions 4-25 4.14.1 Feature Types 4-25 4.14.2 Taylor Principle / Envelope Principle . 4-25 4.14.3 General Dimensions . 4-26 4.14.4 Technique . 4-27 4.14.5 Placement . 4-27 4.14.6 Choice . 4-28 4.14.7 Tolerance Representation . 4-28 4.15 Surface Texture . 4-28 4.15.1 Roughness . 4-29 4.15.2 Waviness 4-29 4.15.3 Lay 4-29 4.15.4 Flaws . 4-29 4.16 Notes . 4-29 4.17 Drawing Status 4-30 4.17.1 Sketch . 4-30 4.17.2 Configuration Layout 4-30 4.17.3 Experimental 4-30 4.17.4 Active . 4-30 4.17.5 Obsolete . 4-30 4.18 Conclusion . 4-30 4.19 References . 4-31 Chapter 5: Geometric Dimensioning and Tolerancing . Walter M. Stites .Paul Drake, P.E. 5.1 Introducing Geometric Dimensioning and Tolerancing (GD&T) . 5-1 5.1.1 What is GD&T? . 5-2 5.1.2 Where Does GD&T Come From?—References . 5-2 5.1.3 Why Do We Use GD&T? . 5-4 5.1.4 When Do We Use GD&T? 5-8 5.1.5 How Does GD&T Work?—Overview . 5-9 5.2 Part Features . 5-9 5.2.1 Nonsize Features 5-10 5.2.2 Features of Size 5-10 5.2.2.1 Screw Threads .5-11 5.2.2.2 Gears and Splines 5-11 5.2.3 Bounded Features .5-11 5.3 Symbols .5-11 5.3.1 Form and Proportions of Symbols 5-12 5.3.2 Feature Control Frame . 5-14 5.3.2.1 Feature Control Frame Placement 5-14 5.3.2.2 Reading a Feature Control Frame 5-16 5.3.3 Basic Dimensions . 5-17viii Contents 5.3.4 Reference Dimensions and Data 5-18 5.3.5 “Square” Symbol 5-18 5.3.6 Tabulated Tolerances . 5-18 5.3.7 “Statistical Tolerance” Symbol . 5-18 5.4 Fundamental Rules . 5-18 5.5 Nonrigid Parts 5-19 5.5.1 Specifying Restraint . 5-20 5.5.2 Singling Out a Free State Tolerance 5-20 5.6 Features of Size—The Four Fundamental Levels of Control . 5-20 5.6.1 Level 1—Size Limit Boundaries . 5-20 5.6.2 Material Condition . 5-23 5.6.2.1 Modifier Symbols 5-24 5.6.3 Method for MMC or LMC . 5-25 5.6.3.1 Level 2—Overall Feature Form . 5-26 5.6.3.2 Level 3—Virtual Condition Boundary for Orientation . 5-33 5.6.3.3 Level 4—Virtual Condition Boundary for Location . 5-34 5.6.3.4 Level 3 or 4 Virtual Condition Equal to Size Limit (Zero Tolerance) 5-35 5.6.3.5 Resultant Condition Boundary 5-37 5.6.4 Method for RFS 5-38 5.6.4.1 Tolerance Zone Shape . 5-38 5.6.4.2 Derived Elements 5-38 5.6.5 Alternative “Center Method” for MMC or LMC 5-43 5.6.5.1 Level 3 and 4 Adjustment—Actual Mating/Minimum Material Sizes 5-43 5.6.5.2 Level 2 Adjustment—Actual Local Sizes 5-45 5.6.5.3 Disadvantages of Alternative “Center Method” . 5-46 5.6.6 Inner and Outer Boundaries . 5-46 5.6.7 When do we use a Material Condition Modifier? . 5-47 5.7 Size Limits (Level 1 Control) 5-48 5.7.1 Symbols for Limits and Fits 5-48 5.7.2 Limit Dimensioning 5-49 5.7.3 Plus and Minus Tolerancing 5-49 5.7.4 Inch Values . 5-49 5.7.5 Millimeter Values 5-49 5.8 Form (Only) Tolerances (Level 2 Control) 5-50 5.8.1 Straightness Tolerance for Line Elements 5-51 5.8.2 Straightness Tolerance for a Cylindrical Feature . 5-52 5.8.3 Flatness Tolerance for a Single Planar Feature 5-52 5.8.4 Flatness Tolerance for a Width-Type Feature 5-52 5.8.5 Circularity Tolerance 5-53 5.8.5.1 Circularity Tolerance Applied to a Spherical Feature . 5-55 5.8.6 Cylindricity Tolerance . 5-55 5.8.7 Circularity or Cylindricity Tolerance with Average Diameter . 5-56 5.8.8 Application Over a Limited Length or Area . 5-57 5.8.9 Application on a Unit Basis 5-57 5.8.10 Radius Tolerance . 5-58 5.8.10.1 Controlled Radius Tolerance 5-59 5.8.11 Spherical Radius Tolerance . 5-59 5.8.12 When Do We Use a Form Tolerance? 5-60 5.9 Datuming . 5-61 5.9.1 What is a Datum? . 5-61 5.9.2 Datum Feature . 5-61 5.9.2.1 Datum Feature Selection . 5-61 5.9.2.2 Functional Hierarchy . 5-63 5.9.2.3 Surrogate and Temporary Datum Features . 5-64 5.9.2.4 Identifying Datum Features . 5-65 5.9.3 True Geometric Counterpart (TGC)—Introduction . 5-67 5.9.4 Datum 5-69 5.9.5 Datum Reference Frame (DRF) and Three Mutually Perpendicular Planes 5-69Contents ix 5.9.6 Datum Precedence . 5-69 5.9.7 Degrees of Freedom 5-72 5.9.8 TGC Types 5-74 5.9.8.1 Restrained versus Unrestrained TGC 5-75 5.9.8.2 Nonsize TGC . 5-75 5.9.8.3 Adjustable-size TGC . 5-75 5.9.8.4 Fixed-size TGC . 5-77 5.9.9 Datum Reference Frame (DRF) Displacement . 5-80 5.9.9.1 Relative to a Boundary of Perfect Form TGC . 5-81 5.9.9.2 Relative to a Virtual Condition Boundary TGC . 5-83 5.9.9.3 Benefits of DRF Displacement 5-83 5.9.9.4 Effects of All Datums of the DRF . 5-83 5.9.9.5 Effects of Form, Location, and Orientation 5-83 5.9.9.6 Accommodating DRF Displacement 5-83 5.9.10 Simultaneous Requirements . 5-86 5.9.11 Datum Simulation 5-89 5.9.12 Unstable Datums, Rocking Datums, Candidate Datums 5-89 5.9.13 Datum Targets . 5-91 5.9.13.1 Datum Target Selection 5-91 5.9.13.2 Identifying Datum Targets . 5-92 5.9.13.3 Datum Target Dimensions . 5-94 5.9.13.4 Interdependency of Datum Target Locations 5-95 5.9.13.5 Applied to Features of Size . 5-95 5.9.13.6 Applied to Any Type of Feature 5-97 5.9.13.7 Target Set with Switchable Precedence 5-99 5.9.14 Multiple Features Referenced as a Single Datum Feature . 5-100 5.9.14.1 Feature Patterns . 5-100 5.9.14.2 Coaxial and Coplanar Features . 5-103 5.9.15 Multiple DRFs . 5-103 5.10 Orientation Tolerance (Level 3 Control) . 5-103 5.10.1 How to Apply It . 5-103 5.10.2 Datums for Orientation Control 5-104 5.10.3 Applied to a Planar Feature (Including Tangent Plane Application) . 5-104 5.10.4 Applied to a Cylindrical or Width-Type Feature . 5-106 5.10.4.1 Zero Orientation Tolerance at MMC or LMC 5-107 5.10.5 Applied to Line Elements 5-107 5.10.6 The 24 Cases . 5-109 5.10.7 Profile Tolerance for Orientation . 5-109 5.10.8 When Do We Use an Orientation Tolerance? . 5-109 5.11 Positional Tolerance (Level 4 Control) .5-113 5.11.1 How Does It Work? 5-113 5.11.2 How to Apply It 5-114 5.11.3 Datums for Positional Control .5-116 5.11.4 Angled Features .5-117 5.11.5 Projected Tolerance Zone 5-117 5.11.6 Special-Shaped Zones/Boundaries . 5-121 5.11.6.1 Tapered Zone/Boundary 5-121 5.11.6.2 Bidirectional Tolerancing . 5-122 5.11.6.3 Bounded Features 5-126 5.11.7 Patterns of Features 5-127 5.11.7.1 Single-Segment Feature Control Frame 5-127 5.11.7.2 Composite Feature Control Frame . 5-129 5.11.7.3 Rules for Composite Control . 5-131 5.11.7.4 Stacked Single-Segment Feature Control Frames 5-134 5.11.7.5 Rules for Stacked Single-Segment Feature Control Frames . 5-136 5.11.7.6 Coaxial and Coplanar Features . 5-136 5.11.8 Coaxiality and Coplanarity Control . 5-137x Contents 5.12 Runout Tolerance 5-138 5.12.1 Why Do We Use It? 5-138 5.12.2 How Does It Work? . 5-138 5.12.3 How to Apply It . 5-139 5.12.4 Datums for Runout Control . 5-140 5.12.5 Circular Runout Tolerance . 5-141 5.12.6 Total Runout Tolerance 5-143 5.12.7 Application Over a Limited Length 5-143 5.12.8 When Do We Use a Runout Tolerance? . 5-144 5.12.9 Worst Case Boundaries . 5-145 5.13 Profile Tolerance . 5-145 5.13.1 How Does It Work? . 5-145 5.13.2 How to Apply It . 5-145 5.13.3 The Basic Profile . 5-147 5.13.4 The Profile Tolerance Zone . 5-147 5.13.5 The Profile Feature Control Frame 5-149 5.13.6 Datums for Profile Control 5-149 5.13.7 Profile of a Surface Tolerance 5-149 5.13.8 Profile of a Line Tolerance 5-149 5.13.9 Controlling the Extent of a Profile Tolerance . 5-150 5.13.10 Abutting Zones 5-153 5.13.11 Profile Tolerance for Combinations of Characteristics 5-153 5.13.11.1 With Positional Tolerancing for Bounded Features 5-153 5.13.12 Patterns of Profiled Features . 5-154 5.13.12.1 Single-Segment Feature Control Frame 5-154 5.13.12.2 Composite Feature Control Frame . 5-154 5.13.12.3 Stacked Single-Segment Feature Control Frames 5-155 5.13.12.4 Optional Level 2 Control 5-155 5.13.13 Composite Profile Tolerance for a Single Feature . 5-156 5.14 Symmetry Tolerance 5-156 5.14.1 How Does It Work? . 5-157 5.14.2 How to Apply It . 5-159 5.14.3 Datums for Symmetry Control . 5-159 5.14.4 Concentricity Tolerance . 5-160 5.14.4.1 Concentricity Tolerance for Multifold Symmetry about a Datum Axis . 5-160 5.14.4.2 Concentricity Tolerance about a Datum Point . 5-161 5.14.5 Symmetry Tolerance about a Datum Plane 5-161 5.14.6 Symmetry Tolerancing of Yore (Past Practice) . 5-161 5.14.7 When Do We Use a Symmetry Tolerance? . 5-162 5.15 Combining Feature Control Frames . 5-162 5.16 “Instant” GD&T 5-163 5.16.1 The “Dimension Origin” Symbol 5-163 5.16.2 General Note to Establish Basic Dimensions 5-163 5.16.3 General Note in Lieu of Feature Control Frames 5-164 5.17 The Future of GD&T 5-164 5.18 References . 5-166 Chapter 6: Differences Between US Standards and Other Standards . . Alex Krulikowski Scott DeRaad 6.1 Dimensioning Standards . 6-1 6.1.1 US Standards 6-2 6.1.2 International Standards . 6-2 6.1.2.1 ISO Geometrical Product Specification Masterplan . 6-4 6.2 Comparison of ASME and ISO Standards . 6-5 6.2.1 Organization and Logistics . 6-5 6.2.2 Number of Standards . 6-5 6.2.3 Interpretation and Application 6-5Contents xi 6.2.3.1 ASME 6-6 6.2.3.2 ISO 6-6 6.3 Other Standards 6-27 6.3.1 National Standards Based on ISO or ASME Standards . 6-27 6.3.2 US Government Standards 6-28 6.3.3 Corporate Standards 6-28 6.3.4 Multiple Dimensioning Standards . 6-29 6.4 Future of Dimensioning Standards . 6-30 6.5 Effects of Technology . 6-30 6.6 New Dimensioning Standards 6-30 6.7 References . 6-30 Chapter 7: Mathematical Definition of Dimensioning and Tolerancing Principles Mark A. Nasson 7.1 Introduction 7-1 7.2 Why Mathematical Tolerance Definitions? . 7-1 7.2.1 Metrology Crisis (The GIDEP Alert) . 7-2 7.2.2 Specification Crisis . 7-3 7.2.3 National Science Foundation Tolerancing Workshop . 7-3 7.2.4 A New National Standard 7-4 7.3 What are Mathematical Tolerance Definitions? . 7-4 7.3.1 Parallel, Equivalent, Unambiguous Expression . 7-4 7.3.2 Metrology Independent . 7-4 7.4 Detailed Descriptions of Mathematical Tolerance Definitions . 7-4 7.4.1 Introduction 7-4 7.4.2 Vectors 7-5 7.4.2.1 Vector Addition and Subtraction 7-5 7.4.2.2 Vector Dot Products . 7-6 7.4.2.3 Vector Cross Products 7-6 7.4.3 Actual Value / Measured Value . 7-7 7.4.4 Datums 7-8 7.4.4.1 Candidate Datums / Datum Reference Frames . 7-8 7.4.4.2 Degrees of Freedom 7-8 7.4.5 Form tolerances 7-9 7.4.5.1 Circularity . 7-9 7.4.5.2 Cylindricity 7-12 7.4.5.3 Flatness 7-13 7.5 Where Do We Go from Here? 7-14 7.5.1 ASME Standards Committees 7-14 7.5.2 International Standards Efforts 7-14 7.5.3 CAE Software Developers . 7-14 7.6 Acknowledgments . 7-15 7.7 References . 7-15 Chapter 8: Statistical Tolerancing Vijay Srinivasan, Ph.D 8.1 Introduction 8-1 8.2 Specification of Statistical Tolerancing . 8-2 8.2.1 Using Process Capability Indices 8-2 8.2.2 Using RMS Deviation Index 8-4 8.2.3 Using Percent Containment 8-5 8.3 Statistical Tolerance Zones . 8-5 8.3.1 Population Parameter Zones 8-6 8.3.2 Distribution Function Zones . 8-7 8.4 Additional Illustrations . 8-7 8.5 Summary and Concluding Remarks . 8-9 8.6 References . 8-10xii Contents Part 3 Design Chapter 9: Traditional Approaches to Analyzing Mechanical Tolerance Stacks . Paul Drake 9.1 Introduction 9-1 9.2 Analyzing Tolerance Stacks 9-1 9.2.1 Establishing Performance/Assembly Requirements 9-1 9.2.2 Loop Diagram . 9-3 9.2.3 Converting Dimensions to Equal Bilateral Tolerances 9-5 9.2.4 Calculating the Mean Value (Gap) for the Requirement 9-7 9.2.5 Determine the Method of Analysis . 9-8 9.2.6 Calculating the Variation for the Requirement 9-9 9.2.6.1 Worst Case Tolerancing Model 9-9 9.2.6.2 RSS Model . 9-12 9.2.6.3 Modified Root Sum of the Squares Tolerancing Model . 9-18 9.2.6.4 Comparison of Variation Models . 9-22 9.2.6.5 Estimated Mean Shift Model . 9-23 9.3 Analyzing Geometric Tolerances . 9-24 9.3.1 Form Controls . 9-25 9.3.2 Orientation Controls . 9-26 9.3.3 Position . 9-27 9.3.3.1 Position at RFS . 9-27 9.3.3.2 Position at MMC or LMC 9-27 9.3.3.3 Virtual and Resultant Conditions . 9-28 9.3.3.4 Equations 9-28 9.3.3.5 Composite Position 9-32 9.3.4 Runout . 9-33 9.3.5 Concentricity/Symmetry 9-33 9.3.6 Profile 9-34 9.3.6.1 Profile Tolerancing with an Equal Bilateral Tolerance Zone 9-34 9.3.6.2 Profile Tolerancing with a Unilateral Tolerance Zone 9-35 9.3.6.3 Profile Tolerancing with an Unequal Bilateral Tolerance Zone . 9-35 9.3.6.4 Composite Profile . 9-36 9.3.7 Size Datums . 9-36 9.4 Abbreviations 9-37 9.5 Terminology . 9-39 9.6 References . 9-39 Chapter 10: Statistical Background and Concepts Ron Randall 10.1 Introduction 10-1 10.2 Shape, Locations, and Spread 10-2 10.3 Some Important Distributions 10-2 10.3.1 The Normal Distribution . 10-2 10.3.2 Lognormal Distribution . 10-6 10.3.3 Poisson Distribution . 10-8 10.4 Measures of Quality and Capability . 10-10 10.4.1 Process Capability Index . 10-10 10.4.2 Process Capability Index Relative to Process Centering (Cpk) 10-12 10.5 Summary 10-14 10.6 References . 10-14 10.7 Appendix . 10-15Contents xiii Chapter 11: Predicting Assembly Quality (Six Sigma Methodologies to Optimize Tolerances) Dale Van Wyk 11.1 Introduction .11-1 11.2 What is Tolerance Allocation? .11-1 11.3 Process Standard Deviations 11-2 11.4 Worst Case Allocation .11-5 11.4.1 Assign Component Dimensions 11-6 11.4.2 Determine Assembly Performance, P .11-7 11.4.3 Assign the process with the largest si to each component 11-8 11.4.4 Calculate the Worst Case Assembly, twc6 11-8 11.4.5 Is P³t wc6? .11-9 11.4.6 Estimating Defect Rates 11-10 11.4.7 Verification 11-12 11.4.8 Adjustments to Meet Quality Goals 11-13 11.4.9 Worst Case Allocation Summary 11-13 11.5 Statistical Allocation 11-13 11.5.1 Calculating Assembly Variation and Defect Rate .11-15 11.5.2 First Steps in Statistical Allocation .11-15 11.5.3 Calculate Expected Assembly Performance, P6 .11-15 11.5.4 Is P³P 6? 11-16 11.5.5 Allocating Tolerances 11-17 11.5.6 Statistical Allocation Summary 11-20 11.6 Dynamic RSS Allocation .11-20 11.7 Static RSS analysis .11-23 11.8 Comparison of the Techniques 11-24 11.9 Communication of Requirements 11-25 11.10 Summary .11-26 11.11 Abbreviations .11-26 11.12 References 11-27 Chapter 12: Multi-Dimensional Tolerance Analysis (Manual Method) Dale Van Wyk 12.1 Introduction 12-1 12.2 Determining Sensitivity . 12-2 12.3 A Technique for Developing Gap Equations . 12-4 12.4 Utilizing Sensitivity Information to Optimize Tolerances 12-12 12.5 Summary 12-13 Chapter 13: Multi-Dimensional Tolerance Analysis (Automated Method) Kenneth W. Chase, Ph.D. 13.1 Introduction 13-1 13.2 Three Sources of Variation in Assemblies . 13-2 13.3 Example 2D Assembly – Stacked Blocks 13-3 13.4 Steps in Creating an Assembly Tolerance Model 13-4 13.5 Steps in Analyzing an Assembly Tolerance Model 13-12 13.5.5.1 Percent rejects 13-21 13.5.5.2 Percent Contribution Charts 13-22 13.5.5.3 Sensitivity Analysis 13-24 13.5.5.4 Modifying Geometry . 13-24 13.6 Summary 13-26 13.7 References . 13-27xiv Contents Chapter 14: Minimum-Cost Tolerance Allocation Kenneth W. Chase, Ph.D. 14.1 Tolerance Allocation Using Least Cost Optimization . 14-1 14.2 1-D Tolerance Allocation 14-1 14.3 1-D Example: Shaft and Housing Assembly . 14-3 14.4 Advantages / Disadvantages of the Lagrange Multiplier Method . 14-7 14.6 2-D and 3-D Tolerance Allocation 14-8 14.5 True Cost and Optimum Acceptance Fraction 14-8 14.7 2-D Example: One-way Clutch Assembly . 14-9 14.7.1 Vector Loop Model and Assembly Function for the Clutch . 14-10 14.8 Allocation by Scaling, Weight Factors . 14-10 14.8.1 Proportional Scaling by Worst Case .14-11 14.8.2 Proportional Scaling by Root-Sum-Squares .14-11 14.8.3 Allocation by Weight Factors .14-11 14.9 Allocation by Cost Minimization . 14-12 14.9.1 Minimum Cost Tolerances by Worst Case 14-13 14.9.2 Minimum Cost Tolerances by RSS 14-14 14.10 Tolerance Allocation with Process Selection 14-15 14.11 Summary 14-16 14.12 References . 14-17 14.13 Appendix: Cost-Tolerance Functions for Metal Removal Processes . 14-18 Chapter 15: Automating the Tolerancing Process . Charles Glancy James Stoddard . Marvin Law 15.1 Background Information 15-2 15.1.1 Benefits of Automation 15-2 15.1.2 Overview of the Tolerancing Process 15-2 15.2 Automating the Creation of the Tolerance Model 15-3 15.2.1 Characterizing Critical Design Measurements . 15-3 15.2.2 Characterizing the Model Function . 15-4 15.2.2.1 Model Definition 15-4 15.2.2.2 Model Form 15-5 15.2.2.3 Model Scope 15-5 15.2.3 Characterizing Input Variables . 15-6 15.3 Automating Tolerance Analysis . 15-6 15.3.1 Method of System Moments 15-6 15.3.3 Distribution Fitting 15-8 15.3.2 Monte Carlo Simulation . 15-8 15.4 Automating Tolerance Optimization 15-9 15.5 Automating Communication Between Design and Manufacturing . 15-9 15.5.1 Manufacturing Process Capabilities . 15-10 15.5.1.1 Manufacturing Process Capability Database . 15-10 15.5.1.2 Database Administration 15-11 15.5.2 Design Requirements and Assumptions .15-11 15.6 CAT Automation Tools . 15-12 15.6.1 Tool Capability 15-12 15.6.2 Ease of Use . 15-12 15.6.3 Training . 15-13 15.6.4 Technical Support . 15-13 15.6.5 Data Management and CAD Integration 15-13 15.6.6 Reports and Records . 15-13 15.6.7 Tool Enhancement and Development . 15-14 15.6.8 Deployment 15-14 15.7 Summary 15-14 15.8 References . 15-14Contents xv Chapter 16: Working in an Electronic Environment .Paul Matthews 16.1 Introduction 16-1 16.2 Paperless/Electronic Environment 16-2 16.2.1 Definition . 16-2 16.3 Development Information Tools 16-3 16.3.1 Product Development Automation Strategy 16-3 16.3.2 Master Model Theory . 16-4 16.3.3 Template Design . 16-7 16.3.3.1 Template Part and Assembly Databases . 16-7 16.3.3.2 Template Features 16-8 16.3.3.3 Templates for Analyses 16-9 16.3.3.4 Templates for Documentation 16-9 16.3.4 Component Libraries . 16-9 16.3.5 Information Verification . 16-10 16.4 Product Information Management .16-11 16.4.1 Configuration Management Techniques .16-11 16.4.2 Data Management Components 16-12 16.4.2.1 Workspace . 16-12 16.4.2.2 Product Vault 16-12 16.4.2.3 Company Vault . 16-12 16.4.3 Document Administrator . 16-13 16.4.4 File Cabinet Control 16-13 16.4.5 Software Automation . 16-13 16.5 Information Storage and Transfer . 16-13 16.5.1 Internet . 16-13 16.5.2 Electronic Mail 16-14 16.5.3 File Transfer Protocol . 16-14 16.5.4 Media Transfer 16-15 16.6 Manufacturing Guidelines . 16-15 16.6.1 Manufacturing Trust . 16-15 16.6.2 Dimensionless Prints 16-15 16.6.2.1 Sheetmetal . 16-16 16.6.2.2 Injection Molded Plastic . 16-17 16.6.2.3 Hog Out Parts . 16-17 16.6.2.4 Castings 16-18 16.6.2.5 Rapid Prototypes . 16-18 16.7 Database Format Standards 16-19 16.7.1 Native Database . 16-19 16.7.2 2-D Formats 16-19 16.7.2.1 Data eXchange Format (DXF) . 16-19 16.7.2.2 Hewlett-Packard Graphics Language (HPGL) 16-20 16.8 3-D Formats 16-20 16.8.1 Initial Graphics Exchange Specification (IGES) . 16-20 16.8.2 STandard for the Exchange of Product (STEP) 16-20 16.8.3 Virtual Reality Modeling Language (VRML) 16-20 16.8.4 STereoLithography (STL) 16-21 16.9 General Information Formats . 16-21 16.9.1 Hypertext Markup Language (HTML) 16-21 16.9.2 Portable Document Format (PDF) . 16-22 16.10 Graphics Formats . 16-22 16.10.1 Encapsulated PostScript (EPS) . 16-22 16.10.2 Joint Photographic Experts Group (JPEG) 16-22 16.10.3 Tagged Image File Format (TIFF) 16-22 16.11 Conclusion . 16-23 16.12 Appendix A IGES Entities 16-23xvi Contents Part 4 Manufacturing Chapter 17: Collecting and Developing Manufacturing Process Capability Models . Michael D. King 17.1 Why Collect and Develop Process Capability Models? . 17-1 17.2 Developing Process Capability Models 17-2 17.3 Quality Prediction Models - Variable versus Attribute Information 17-3 17.3.1 Collecting and Modeling Variable Process Capability Models . 17-3 17.3.2 Collecting and Modeling Attribute Process Capability Models . 17-7 17.3.3 Feature Factoring Method . 17-7 17.3.4 Defect Weighting Methodology 17-7 17.4 Cost and Cycle Time Prediction Modeling Variations . 17-8 17.5 Validating and Checking the Results of Your Predictive Models 17-9 17.6 Summary .17-11 17.7 References 17-11 Part 5 Gaging Chapter 18: Paper Gage Techniques .Martin P. Wright 18.1 What is Paper Gaging? . 18-1 18.2 Advantages and Disadvantages to Paper Gaging . 18-2 18.3 Discrimination Provided By a Paper Gage 18-3 18.4 Paper Gage Accuracy . 18-3 18.5 Plotting Paper Gage Data Points . 18-4 18.6 Paper Gage Applications . 18-4 18.6.1 Locational Verification 18-5 18.6.1.1 Simple Hole Pattern Verification 18-5 18.6.1.2 Three-Dimensional Hole Pattern Verification 18-8 18.6.1.3 Composite Positional Tolerance Verification 18-10 18.6.2 Capturing Tolerance From Datum Features Subject to Size Variation . 18-12 18.6.2.1 Datum Feature Applied on an RFS Basis . 18-12 18.6.2.2 Datum Feature Applied on an MMC Basis 18-12 18.6.2.3 Capturing Rotational Shift Tolerance from a Datum Feature Applied on an MMC Basis 18-16 18.6.2.4 Determining the Datum from a Pattern of Features 18-19 18.6.3 Paper Gage Used as a Process Analysis Tool . 18-21 18.7 Summary 18-23 18.8 References . 18-23 Chapter 19: Receiver Gages — Go Gages and Functional Gages James D. Meadows 19.1 Introduction 19-1 19.2 Gaging Fundamentals 19-2 19.3 Gage Tolerancing Policies . 19-3 19.4 Examples of Gages . 19-4 19.4.1 Position Using Partial and Planar Datum Features . 19-4 19.4.2 Position Using Datum Features of Size at MMC 19-6 19.4.3 Position and Profile Using a Simultaneous Gaging Requirement . 19-9 19.4.4 Position Using Centerplane Datums . 19-12 19.4.5 Multiple Datum Structures 19-14 19.4.6 Secondary and Tertiary Datum Features of Size . 19-17Contents xvii 19.5 Push Pin vs. Fixed Pin Gaging . 19-20 19.6 Conclusion . 19-20 19.7 References . 19-20 Part 6 Precision Metrology Chapter 20: Measurement Systems Analysis Gregory A. Hetland, Ph.D. 20.1 Introduction 20-1 20.2 Measurement Methods Analysis 20-2 20.2.1 Measurement System Definition (Phase 1) . 20-2 20.2.1.1 Identification of Variables 20-2 20.2.1.2 Specifications of Conformance 20-3 20.2.1.3 Measurement System Capability Requirements . 20-3 20.2.2 Identification of Sources of Uncertainty (Phase 2) . 20-3 20.2.2.1 Machine Sources of Uncertainty 20-4 20.2.2.2 Software Sources of Uncertainty . 20-4 20.2.2.3 Environmental Sources of Uncertainty . 20-5 20.2.2.4 Part Sources of Uncertainty 20-5 20.2.2.5 Fixturing Sources of Uncertainty . 20-5 20.2.2.6 Operator Sources of Uncertainty . 20-6 20.2.3 Measurement System Qualification (Phase 3) 20-6 20.2.3.1 Plan the Capabilities Studies 20-6 20.2.3.2 Production Systems . 20-7 20.2.3.3 Calibrate the System 20-7 20.2.3.4 Conduct Studies and Define Capabilities . 20-8 20.2.4 Quantify the Error Budget (Phase 4) 20-8 20.2.4.1 Plan Testing (Isolate Error Sources) . 20-8 20.2.4.2 Analyze Uncertainty 20-9 20.2.5 Optimize Measurement System (Phase 5) 20-9 20.2.5.1 Identify Opportunities 20-9 20.2.5.2 Attempt Improvements and Revisit Testing . 20-9 20.2.5.3 Revisit Qualification 20-10 20.2.6 Implement and Control Measurement System (Phase 6) 20-10 20.2.6.1 Plan Performance Criteria . 20-10 20.2.6.2 Plan Calibration and Maintenance Requirements .20-11 20.2.6.3 Implement System and Initiate Control 20-11 20.2.6.4 CMM Operator Competencies 20-11 20.2.6.5 Business Issue . 20-12 20.3 CMM Performance Test Overview 20-17 20.3.1 Environmental Tests (Section 1) 20-17 20.3.1.1 Temperature Parameters . 20-17 20.3.1.2 Other Environmental Parameters 20-20 20.3.2 Machine Tests (Section 2) . 20-21 20.3.2.1 Probe Settling Time 20-21 20.3.2.2 Probe Deflection 20-24 20.3.2.3 Other Machine Parameters . 20-27 20.3.2.4 Multiple Probes . 20-27 20.3.3 Feature Based Measurement Tests (Section 3) . 20-28 20.3.3.1 Number of Points Per Feature 20-30 20.3.3.2 Other Geometric Features 20-34 20.3.3.3 Contact Scanning 20-34 20.3.3.4 Surface Roughness 20-35 20.4 CMM Capability Matrix 20-35 20.5 References . 20-38xviii Contents Part 7 Applications Chapter 21: Predicting Piecepart Quality . Dan A. Watson, Ph.D. 21.1 Introduction 21-1 21.2 The Problem 21-2 21.3 Statistical Framework 21-3 21.3.1 Assumptions . 21-3 21.3.2 Internal Feature at MMC 21-5 21.3.3 Internal Feature at LMC . 21-7 21.3.4 External Features 21-8 21.3.5 Alternate Distribution Assumptions . 21-8 21.4 Non-Size Feature Applications . 21-9 21.5 Example . 21-9 21.6 Summary 21-10 21.7 References 21-11 Chapter 22: Floating and Fixed Fasteners .Paul Zimmermann 22.1 Introduction 22-1 22.2 Floating and Fixed Fasteners 22-1 22.2.1 What is a Floating Fastener? . 22-4 22.2.2 What is a Fixed Fastener? . 22-4 22.2.3 What is a Double-Fixed Fastener? . 22-4 22.3 Geometric Dimensioning and Tolerancing (Cylindrical Tolerance Zone Versus +/- Tolerancing) 22-5 22.4 Calculations for Fixed, Floating and Double-fixed Fasteners . 22-8 22.5 Geometric Dimensioning and Tolerancing Rules/Formulas for Floating Fastener 22-8 22.5.1 How to Calculate Clearance Hole Diameter for a Floating Fastener Application 22-8 22.5.2 How to Calculate Counterbore Diameter for a Floating Fastener Application 22-9 22.5.3 Why Floating Fasteners are Not Recommended 22-10 22.6 Geometric Dimensioning and Tolerancing Rules/Formulas for Fixed Fasteners 22-10 22.6.1 How to Calculate Fixed Fastener Applications 22-10 22.6.2 How to Calculate Counterbore Diameter for a Fixed Fastener Application . 22-10 22.6.3 Why Fixed Fasteners are Recommended .22-11 22.7 Geometric Dimensioning and Tolerancing Rules/Formulas for Double-fixed Fastener .22-11 22.7.1 How to Calculate a Clearance Hole .22-11 22.7.2 How to Calculate the Countersink Diameter, Head Height Above and Head Height Below the Surface .22-11 22.7.3 What Are the Problems Associated with Double-fixed Fasteners? . 22-13 22.8 Nut Plates: Floating and Nonfloating (see Fig. 22-14) 22-14 22.9 Projected Tolerance Zone . 22-15 22.9.1 Comparison of Positional Tolerancing With and Without a Projected Tolerance Zone . 22-16 22.9.2 Percent of Actual Orientation Versus Lost Functional Tolerance . 22-18 22.10 Hardware Pages 22-18 22.10.1 Floating Fastener Hardware Pages . 22-20 22.10.2 Fixed Fastener Hardware Pages 22-21 22.10.3 Double-fixed Fastener Hardware Pages . 22-23 22.10.4 Counterbore Depths - Pan Head and Socket Head Cap Screws 22-25 22.10.5 Flat Head Screw Head Height - Above and Below the Surface . 22-26 22.11 References . 22-26Contents xix Chapter 23: Fixed and Floating Fastener Variation .Chris Cuba 23.1 Introduction 23-1 23.2 Hole Variation . 23-2 23.3 Assembly Variation 23-4 23.4 Fixed and Floating Fasteners 23-4 23.4.1 Fixed Fastener Assembly Shift 23-5 23.4.2 Fixed Fastener Assembly Shift Using One Equation and Dimension Loop . 23-6 23.4.3 Fixed Fastener Equation 23-7 23.4.4 Fixed Fastener Gap Analysis Steps . 23-7 23.4.5 Floating Fastener Gap Analysis Steps 23-8 23.5 Summary 23-9 23.6 References . 23-10 Chapter 24: Pinned Interfaces . Stephen Harry Werst 24.1 List of Symbols (Definitions and Terminology) 24-1 24.2 Introduction 24-2 24.3 Performance Considerations . 24-2 24.4 Variation Components of Pinned Interfaces . 24-3 24.4.1 Type I Error . 24-3 24.4.2 Type II Error 24-3 24.5 Types of Alignment Pins . 24-4 24.6 Tolerance Allocation Methods - Worst Case vs. Statistical 24-6 24.7 Processes and Capabilities 24-6 24.8 Design Methodology 24-7 24.9 Proper Use of Material Modifiers 24-10 24.10 Temperature Considerations 24-11 24.11 Two Round Pins with Two Holes .24-11 24.11.1 Fit 24-12 24.11.2 Rotation Errors 24-12 24.11.3 Translation Errors . 24-13 24.11.4 Performance Constants 24-13 24.11.5 Dimensioning Methodology 24-14 24.12 Round Pins with a Hole and a Slot 24-14 24.12.1 Fit 24-14 24.12.2 Rotation Errors 24-16 24.12.3 Translation Errors . 24-17 24.12.4 Performance Constants 24-17 24.12.5 Dimensioning Methodology 24-17 24.13 Round Pins with One Hole and Edge Contact 24-18 24.13.1 Fit 24-19 24.13.2 Rotation Errors 24-20 24.13.3 Translation errors . 24-20 24.13.4 Performance Constants 24-20 24.13.5 Dimensioning Methodology 24-20 24.14 One Diamond Pin and One Round Pin with Two Holes . 24-23 24.14.1 Fit 24-23 24.14.2 Rotation and Translation Errors . 24-24 24.14.3 Performance Constants 24-24 24.14.4 Dimensioning Methodology 24-24 24.15 One Parallel-Flats Pin and One Round Pin with Two Holes . 24-26 24.15.1 Fit 24-26 24.15.2 Rotation and Translation Errors . 24-27 24.15.3 Performance Constants 24-27 24.15.4 Dimensioning Methodology 24-28 24.16 References . 24-29xx Contents Chapter 25: Gage Repeatability and Reproducibility (GR&R) Calculations . . Gregory A. Hetland, Ph.D. 25.1 Introduction 25-1 25.2 Standard GR&R Procedure 25-1 25.3 Summary 25-7 25.4 References . 25-7 Part 8 The Future Chapter 26: The Future . Several contributors Figures . F-1 Tables . T-1 Index I-1
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Dimensioning and Tolerancing Handbook رابط مباشر لتنزيل كتاب Dimensioning and Tolerancing Handbook
عدل سابقا من قبل Admin في السبت 02 نوفمبر 2019, 7:02 pm عدل 3 مرات |
| | | rambomenaa كبير مهندسين
عدد المساهمات : 2041 تاريخ التسجيل : 21/01/2012
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الثلاثاء 03 أبريل 2012, 12:34 pm | |
| |
| | | Admin مدير المنتدى
عدد المساهمات : 19004 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الثلاثاء 03 أبريل 2012, 6:06 pm | |
|
- rambomenaa كتب:
- جزاك اللة كل خير
جزانا الله وإياك خيراً ونتمنى لك الإستفادة
|
| | | Admin مدير المنتدى
عدد المساهمات : 19004 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الجمعة 14 سبتمبر 2012, 2:23 pm | |
| |
| | | Admin مدير المنتدى
عدد المساهمات : 19004 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الأربعاء 03 يوليو 2013, 3:35 pm | |
| |
| | | محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الجمعة 12 يوليو 2013, 1:10 am | |
| |
| | | Admin مدير المنتدى
عدد المساهمات : 19004 التقييم : 35512 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الجمعة 12 يوليو 2013, 1:28 pm | |
|
- محمد محمد أحمد كتب:
- جزاك الله خيرا
جزانا الله وإياك خيراً |
| | | amgad173@gmail.com مهندس تحت الاختبار
عدد المساهمات : 5 التقييم : 5 تاريخ التسجيل : 11/07/2016 العمر : 51 الدولة : KSA العمل : مهندس الجامعة : قناة السويس
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الأربعاء 05 أكتوبر 2016, 10:06 am | |
| |
| | | Admin مدير المنتدى
عدد المساهمات : 19004 التقييم : 35512 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Dimensioning and Tolerancing Handbook الجمعة 04 نوفمبر 2016, 6:58 pm | |
|
- amgad173@gmail.com كتب:
- جزاكم الله خيراً كثيراً
جزانا الله وإياك خيراً |
| | | | كتاب Dimensioning and Tolerancing Handbook | |
|
مواضيع مماثلة | |
|
| صلاحيات هذا المنتدى: | لاتستطيع الرد على المواضيع في هذا المنتدى
| |
| |
| |
|