Admin مدير المنتدى
عدد المساهمات : 18930 التقييم : 35300 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Tribological Aspects of Additive Manufacturing الأربعاء 15 مايو 2024, 2:52 am | |
|
أخواني في الله أحضرت لكم كتاب Tribological Aspects of Additive Manufacturing Edited by Rashi Tyagi, Ranvijay Kumar, and Nishant Ranjan
و المحتوى كما يلي :
Contents Preface xii Editors’ Brief Bios . xiii List of Contributors xv Chapter 1 Tribological Study of 3D-Printed Thermoplastic Polymers 1 Vishal Thakur, Rupinder Singh, and Ranvijay Kumar 1.1 Introduction .1 1.2 Background 3 1.3 Tribological Properties of 3D-Printed Polymers .3 1.4 Lubrication Techniques to Reduce Wear Rate and Friction Behaviour .6 1.4.1 Solid Lubricants .6 1.4.2 Liquid Lubricants .7 1.4.3 Self-lubricating Thermoplastic Materials 7 1.4.4 Use of Composite Materials .7 1.5 Sustainability Aspects Related to Tribological Properties of 3D-Printed Polymers .7 1.6 Conclusion .8 Acknowledgements 8 References 8 Chapter 2 Investigation on Tribology of Additively Manufactured Metal Part . 11 Kumar Ujjwal, Raushan Kumar, Rashi Tyagi, and Alok Kumar Das 2.1 Introduction . 11 2.2 Different AM Processes 11 2.2.1 Directed Energy Deposition (DED) . 11 2.2.2 Powder Bed Fusion (PBF) 12 2.2.3 Material Extrusion 12 2.2.4 Binder Jetting . 14 2.2.5 Material Jetting 14 2.2.6 Sheet Lamination . 14 2.2.7 Vat Photopolymerization 15 2.3 Basic Tribology 16 2.3.1 Surfaces and Contacts 16 2.3.2 Friction . 18 2.3.3 Wear . 21vi Contents 2.4 Influence of Different Factors on Tribological Properties of Additively Manufactured (AMed) Materials 24 2.4.1 The Influence of Surface Finish .24 2.4.2 The Influence of Microstructure 24 2.5 Tribological Behaviour of Additively Manufactured Titanium Alloys .26 2.5.1 Characteristics of Titanium Alloys 26 2.5.2 Categories and Grades 27 2.5.3 Factors Influencing the Additive Manufacturing of Ti Alloys .28 2.5.4 Wear Analysis of Ti Alloys 28 2.6 Tribological Behaviour of Additively Manufactured Aluminium Alloys .29 2.6.1 Categories .29 2.6.2 Wear Analysis of Aluminium Alloys . 31 2.7 Tribological Behaviour of Additively Manufactured Stainless Steel 31 2.7.1 Properties and Characteristics 32 2.7.2 Types and Grades . 33 2.7.3 Wear Analysis of AMed Steel Alloys 34 2.8 Conclusions 35 Acknowledgements 35 References 35 Chapter 3 Tribological Properties of Polymer-Reinforced Matrix Composite Prepared by Additive Manufacturing 39 Ankan Shrivastava, Jasgurpeet Singh Chohan, Ranvijay Kumar, and Vinay Kumar 3.1 Introduction .39 3.2 Literature Survey on Polymer Composites 40 3.3 Methods and Experimentation 42 3.3.1 Materials . 42 3.3.2 Preparation of Composite Filament . 43 3.3.3 Manufacturing of 3D-Printed Samples 43 3.3.4 Wear Testing . 43 3.4 Result and Discussion 44 3.5 Conclusion .46 Acknowledgment 46 References 46Contents vii Chapter 4 Tribocorrosion Properties of Additively Manufactured Parts 49 Gaurav Parmar, Mukul Anand, Harish Bishwakarma, Nitesh Kumar, Rashi Tyagi, and Alok Kumar Das 4.1 Introduction .49 4.2 Additive Manufacturing 50 4.2.1 Industrial Applications of AM . 51 4.3 Tribocorrosion . 53 4.4 Tribology of Additive Manufactured Orthopedic Implants 55 4.4.1 Friction and Wear . 55 4.4.2 Lubricating Behavior 56 4.5 Orthopedic Uses for Texturing AM Parts . 57 4.6 AM Orthopedic Components’ Corrosion Behavior 58 4.7 Obstacles with AM Orthopedic Implants 59 4.8 Conclusions 60 Acknowledgments 60 References 60 Chapter 5 Future Trends in Laser Powder Bed Fusion Process for Tribological Applications .65 Nishant Ranjan 5.1 Introduction .65 5.2 Fundamentals of LPBF for Tribological Applications 67 5.2.1 Introduction to LPBF 68 5.2.2 Material Selection and Characteristics for Tribology .68 5.2.3 Tribological Challenges Addressed by LPBF .68 5.3 State of the Art in LPBF for Tribological Applications 69 5.3.1 Case Studies .70 5.4 Design Considerations for Tribological Performance . 71 5.4.1 Topology Optimization for LPBF Components . 71 5.4.2 Lattice Structures and Their Tribological Benefits . 71 5.4.3 Surface Texturing and Its Impact on Friction and Wear . 71 5.5 Challenges and Future Directions .72 5.5.1 Residual Stresses and Microstructural Defects 72 5.5.2 Standardization and Testing Protocols .72 5.5.3 Multi-Material Printing and Integration 72 5.6 Industry Applications and Case Studies 72 5.7 Conclusions 73 Acknowledgements 73 References 73viii Contents Chapter 6 Role of Natural Fiber-Based Composite on Wear and Friction Resistance 76 Rajnish P. Modanwal, Dan Sathiaraj, Pradeep K. Singh, Rashi Tyagi, and Ashwath Pazhani 6.1 Introduction . 76 6.2 Natural Fibers 79 6.3 Tribology .82 6.3.1 Pin on Drum .82 6.3.2 Pin on Disk .83 6.3.3 Block on Ring .83 6.3.4 Block on Disk .84 6.3.5 Linear Tribo Machine 84 6.3.6 Dry Sand Rubber Wheel 85 6.4 Description of AM 3DP Technique .85 6.4.1 Fused Filament Fabrication 86 6.4.2 Direct Write 87 6.4.3 Stereolithography .87 6.4.4 Selective Laser Sintering 88 6.4.5 Binder Jetting .89 6.5 Wear Performance of 3D AM Composites 89 6.5.1 Biogenic Carbon/PLA Composite 89 6.5.2 Flex Yarn/PLA Composite .90 6.5.3 Grewia/Nettle/Sisal/PLA Composite . 91 6.5.4 Corn Cob/PLA Composite . 91 6.5.5 Date Particle/PLA Composite 91 6.6 Conclusion .93 Acknowledgments 94 References 94 Chapter 7 Study on the Effect of Carbon-Fiber-Reinforced Composites on Tribological Properties 97 Shalini Mohanty, Adrian Murphy, and Rashi Tyagi 7.1 Introduction .97 7.2 Tribological Analysis of Carbon-Fiber-Reinforced Composites 99 7.3 Case Studies . 101 7.4 Applications and Future in 3D-Printed Carbon Fiber Composites 103 7.5 Conclusions 104 Acknowledgments 105 References 105Contents ix Chapter 8 Impact of 3D Printing Process Parameters on Tribological Behaviour of Polymers . 109 Sehra Farooq and Nishant Ranjan 8.1 Introduction . 109 8.2 Types of 3D Printing . 110 8.2.1 Fused Deposition Modelling Printing 110 8.2.2 Stereolithography . 110 8.2.3 Selective Laser Sintering 112 8.2.4 3D Inkjet Printer . 112 8.2.5 Binder Jetting Printer . 113 8.3 3DP Process Parameters 113 8.4 Polymer Additive Manufacturing 115 8.5 Metal Additive Manufacturing 116 8.6 Composite Additive Manufacturing 116 8.7 Materials Used in 3D Printing . 117 8.8 Tribological Properties of Polymers and Composites . 119 8.9 Parameters Affecting the Tribological Properties of Polymers 120 8.9.1 Structure of the Polymer 120 8.9.2 Viscoelasticity 120 8.9.3 Transfer Film 120 8.9.4 Polymer Wear .120 8.10 Significance of Tribological Properties in Additive Manufacturing . 121 8.11 Effect of Post-Processing on Tribological Properties . 122 8.12 Conclusion and Future Scope 124 Acknowledgements 124 References 124 Chapter 9 Effect of the Tribological Properties on Structural Applications of 3D-Printed Thermoplastic Composites 129 Vinay Kumar 9.1 Introduction . 129 9.2 Research Gap and Problem Formulation . 134 9.3 Experimentation 139 9.4 Results and Discussion 139 9.5 Summary . 146 Acknowledgments 146 References 146x Contents Chapter 10 Effect of Surface Texturing on Tribological Behavior of Additively Manufactured Parts 149 Alireza Hajialimohammadi and Rashi Tyagi 10.1 Introduction . 149 10.2 Tribological Behavior of Polymer Parts 150 10.3 Tribological Behavior of Metal Parts 152 10.4 Conclusion . 153 Acknowledgments 154 References 154 Chapter 11 Trends of Tribology in Biomedical Application of Additively Manufactured Parts 156 Pratik Kumar Shaw, Suryank Dwivedi, Amit Rai Dixit, and Rashi Tyagi 11.1 Introduction . 156 11.2 Additive Manufacturing Techniques and Tribology Tests for Biomedical Components . 156 11.3 Parameters Influencing the Tribological Properties of AM Parts for Biomedical Application 158 11.3.1 Material Section . 158 11.3.2 Surface Modification Techniques . 163 11.4 In Vitro Wear Study of AM Parts . 170 11.5 Future Perspectives and Challenges 172 11.6 Conclusion . 172 References 173 Chapter 12 Tribological Effect of 3D Printing in Industrial Applications . 177 Harpreet Kaur Channi 12.1 Introduction . 177 12.2 Overview of 3D Printing Technology . 178 12.2.1 Materials . 178 12.2.2 Printing Technologies . 178 12.3 Applications . 179 12.3.1 Tribological Effect of 3D Printing in Industrial Applications 179 12.4 Influence of Manufacturing Parameters on Tribological Behaviour . 181 12.5 Real-Life Applications of 3D Printing and Tribology . 182 12.5.1 Customized Prosthetics 182 12.5.2 Transradial 182 12.5.3 Transhumeral 183 12.5.4 Transtibial . 183Contents xi 12.5.5 Transfemoral . 184 12.5.6 Bearings and Bushings . 184 12.5.7 Aerospace Components 185 12.5.8 Tooling and Mold Manufacturing 185 12.5.9 Automotive Applications 186 12.6 Biomedical Devices . 188 12.7 Robotics and Mechanisms . 189 12.7.1 Anisotropy in 3D-Printed Components and Its Tribological Effects 190 12.8 Future Directions and Research Opportunities of Tribological Effect of 3D Printing . 191 12.9 Global Status of Tribological Effect of 3D Printing in Research 192 12.10 Conclusion . 194 Acknowledgements 199 References 200 Chapter 13 Emerging Applications of 3D-Printed Parts with Enhanced Tribological Properties 203 Ratnesh Raj, Annada Prasad Moharana, Vishal Kumar, Rashi Tyagi, and Amit Rai Dixit 13.1 Introduction .203 13.2 Friction and Wear 204 13.3 Tribology and Lubrication .207 13.4 Tribology and 3D Printing .208 13.5 3D Printing Techniques .208 13.5.1 Extrusion-Based Technique 209 13.5.2 Vat Photopolymerization 210 13.5.3 Powder Bed Fusion (PBF) 210 13.5.4 Material Jetting 210 13.5.5 Binder Jetting . 211 13.5.6 Sheet Lamination . 211 13.5.7 Direct Energy Deposition . 211 13.6 Industrial Applications 212 13.6.1 Classical and Open Systems Tribology 212 13.6.2 Biotribology 214 13.6.3 Nanotribology . 217 13.6.4 Tribotronics 220 13.6.5 Aerospace Tribology 221 13.7 Conclusions 223 Acknowledgments 224 References 224 Index 231xii Index ability 27, 33, 44, 72, 85, 102, 116, 118, 214, 218 abrasion 2, 7, 21, 22, 44, 45, 53, 54, 90, 121, 150, 206, 216 acoustic 17 acrylonitrile 1, 37, 63, 74, 75, 86, 100, 105, 107, 110, 127, 129, 155, 175, 212 affordable 117, 179, 201, 211 aluminum 84, 103, 104, 128, 155, 212 ASTM 11, 22, 27, 33–35, 50, 51, 82–85, 156, 157, 170, 209, 211 austenitic 32–34, 74, 122 binder 11, 14, 52, 85, 89, 113, 114, 125, 146, 157, 159, 173, 208, 211 bioactive 61, 86, 118, 163, 165, 175, 189 biocarbon 89, 90 biocompatible 8, 33, 58, 70, 119, 160, 163–165, 188, 202 biodegradable 8, 61, 95, 163 blending 40, 72, 97, 132, 139 calcium 1, 6, 170 carbide 24–26, 152, 154 cartilage 160, 170, 174, 176 ceramic 36, 55, 60, 105, 109, 113, 118, 122, 125, 126, 149, 165, 175, 211, 216 chamber 14, 87, 88, 212 chitosan 119 cladding 29, 38, 63, 64, 108, 155, 211, 228 cohesive 22, 120 combine 26, 211 compatibility 150, 172, 189, 208, 210, 224, 227 composition 5, 29, 40, 42, 65, 68, 80, 81, 165, 169, 170, 181, 191, 203, 204 conductivity 29, 30, 32, 40, 99, 119, 205 copper 30, 32, 42, 74, 220 coupling 35, 61, 85, 94, 128, 216 crystallinity 120, 121 damage 21, 49, 58, 89, 115, 150, 165, 189, 192, 206, 214, 216, 217, 222 defect 74, 134 degradation 53, 61, 77, 82, 93, 95, 172, 205, 215, 227 density 1, 28, 32, 34, 42, 44, 46, 56, 77, 82, 115, 118, 139–146, 152–154, 170, 181, 222 denture 171, 174–176 dependability 54, 66, 68, 77, 177 digestive 216 droplets 52, 210, 211 drug 159, 163, 165, 172, 173, 189, 226 durability 7, 31, 32, 49, 60, 70, 119, 122, 156, 164, 172, 178, 186, 199, 204, 208, 214, 218, 221–223 dynamic 21, 41, 94, 109, 135, 201, 206, 213, 222–224 elastomer 80, 86, 106, 147 electrochemical 53, 54, 59–63, 70, 150, 191 electronic 6, 51, 98, 104, 186, 187, 220 element 14, 26, 29, 30, 36, 37, 77, 181, 201, 223 entropy 170, 174 equipment 6, 18, 26, 27, 46, 51, 73, 82, 84, 119, 214, 217, 221 erosion 2, 37, 53, 54, 100, 105, 107, 150 extraction 95 extruder 38, 43, 87, 114, 139 extrusion 11–13, 52, 86, 90, 95, 99, 139, 157, 209, 228 fabricate 28, 35, 66, 79, 85, 86, 102, 115 factor 17, 55, 68, 130, 152, 169 fatigue 2, 21, 23, 35, 37, 54, 73, 74, 90, 121, 162, 206 feedstock 11, 12, 37, 43, 63, 70, 74, 85–87, 93, 107, 122, 127, 139, 155, 175, 228 ferrite 33, 34 flexible 39, 178 flexural 81, 101, 136 fluids 55, 57, 165, 170, 172 fluoride 216, 228 frequency 51, 123, 193, 199 fusion 12, 52, 53, 59, 65, 67, 68, 73–75, 88, 99, 125, 149, 174, 176, 208–210, 212, 218, 226, 227 genetics 193 gentile 201 geometry 50, 59, 75, 115, 124, 150, 185, 208, 210, 217, 219, 222 graphite 1, 6, 41, 47, 48, 100, 105, 136, 178, 180 healing 165, 175, 215, 225 health 55, 59, 107, 118, 134, 147, 193 healthcare 51, 65, 115, 178–180, 202 heritage 131, 132, 134, 139, 146–148 homogeneous 24 honeycomb 101, 115 horizontal 18, 21, 83, 190 hybrid 9, 62, 68, 71, 72, 105, 136, 163, 186, 191, 220 hydrodynamic 58, 70, 174, 207, 214, 223, 225232 Index hydrogel 62, 86, 87, 228 hydrophobic 218 hydroxyapatite 86, 163, 165 identical 59 impingement 23, 54 implant 55–59, 61, 94, 119, 130, 160, 161, 163, 165, 170, 172–175, 202, 215, 225 inclination 18 injectable 169, 170, 174 innovation 38, 99, 201, 217, 218, 224 interlocking 20, 21, 181 intricate 51, 60, 67, 99, 156, 170–172, 189, 203, 204, 214, 217, 218, 223, 224 isometric 168 isotropic 21 joint 55–57, 60–62, 70, 73, 94, 107, 158–160, 167, 169, 174, 221, 225, 227 jute 77, 79, 81, 82, 94 ketone 6, 63, 86, 100, 117, 135, 163, 174, 175, 206 kinetic 18, 205 lamination 11, 14, 52, 157, 211 landscape 51, 67, 218 lifespan 16, 56, 58, 97, 134, 169, 172, 186, 189, 208, 220, 221, 224 linear 2, 43, 82, 84, 85, 120, 157, 158, 205 liquefier 14 lubricant 7, 57, 68, 70, 71, 100, 102, 152, 169, 181, 189, 207, 213, 217, 226, 227 machinability 26, 28, 35, 36, 38 machinery 16, 18, 65, 119, 184, 212 magnesium 30, 31, 170, 200, 206 manufacture 1, 11, 36, 38, 51, 99, 104, 109, 147, 186, 194, 199, 221, 222 measurement 17, 18, 44, 220 mechanics 47, 106, 124, 177, 192, 229 membrane 126 metallic 11, 12, 24, 40, 55, 57, 59, 60, 74, 106, 110, 115, 117, 122, 123, 163, 165, 173, 206, 225–227 metallurgical 35 metastable 27, 74 microcrack 23 mobility 55, 184 moderate 30, 211 modification 47, 57, 125, 150, 163, 167, 172, 181, 191, 225 moisture 32, 81, 89, 93, 95, 98, 202, 204 molybdenum 6, 8, 70, 178, 180, 181 morphological 38, 63, 75, 108, 128, 139–147, 155, 176, 228 multidirectional 61 multidisciplinary 193, 223, 224 nanoclay 95 nanocomposite 47, 163, 173, 200 nanofiller 146 nanoscale 70, 71, 217, 218, 220, 224 nanotube 9, 105, 135, 227 nickel 26, 32–34, 118 nitride 173 non-toxicity 77 nozzle 12, 14, 39, 43, 52, 86, 93, 99, 110, 114, 139, 179, 209, 211, 222 nylon 42, 95, 101, 102, 106, 132, 150, 154, 178, 202, 214 occurrences 3, 5, 135, 136, 204 ongoing 55, 78, 189, 191, 194, 207 opensource 109 operates 79, 122, 210 optical 17, 74 optimize 66, 68, 70, 104, 180, 181, 189, 208, 221 organic 79, 98, 204, 216 orthogonal 37 orthopaedic 60–62, 73, 117, 174, 227 osteoblast 62 oxidation 22–24, 59, 60, 165, 167, 210 parameter 6, 59, 114, 146, 175, 180, 187, 228 partial 108, 162, 184, 207 particle 54, 91, 100, 107, 150, 207 patient 58, 172, 173, 180, 188, 189, 200 pattern 5, 43, 44, 46, 86, 101, 115, 139, 152, 168, 171 peaks 17, 19 PEEK 6, 8, 40, 41, 46, 56, 63, 86, 100, 106, 117, 119, 160, 163, 174, 200, 206 PETG 2, 101, 178, 213, 214 pharmaceutical 33, 156 plasma 52, 74, 165, 167, 170, 174, 211, 222, 227 plastic 9, 20, 22, 63, 73, 101, 110, 112, 162, 165, 168, 186, 202, 205, 206, 211, 214, 223, 227 platform 16, 74, 87–89, 110, 210 polyamide 1, 9, 86, 102, 107 polybutadiene 80 polycarbonates 86 polycrystalline 225 polyester 6, 79, 94, 95, 117 polylactic-acid 94, 174, 225 polyphenylene 2, 9, 212, 227 polypropylene 6, 8, 9, 86, 107, 147 porosity 35, 38, 63, 74, 123, 146, 211 porous 7, 10, 25, 38, 160, 169, 176 possibility 65, 66, 103, 122 potassium 170 precision 18, 32, 36–38, 61, 69, 87, 112, 155, 173, 179, 189, 218 prefabricated 171, 174 preparation 43, 48, 62, 92, 93, 123Index 233 prevent 22, 89, 212, 217 print 9, 15, 28, 43, 47, 71, 89, 104, 107, 110, 114, 118, 175, 185, 200, 210, 219, 228 prior 66, 99, 171 progress 70, 76, 107, 124–126, 148, 173, 177, 218, 224, 226 projection 21, 126 propylene 220 prosthesis 55, 182–184, 201 pure 30, 37, 90, 91, 102, 105, 165, 213 PVA 175, 217, 228 PVDF 131, 132, 136, 147 quality 59, 66–68, 70, 74, 89, 93, 103, 110, 122–124, 128, 172, 180, 185, 186, 192, 197, 200, 220, 227 quantity 18, 27, 66, 77, 192 rapidly 11, 39, 54, 68, 109, 149, 185 raster 1, 2, 100, 212, 213 ratio 26, 31, 34, 40, 79, 122, 205, 207 react 49 reaction 15, 21, 51, 54 reactive 85, 87, 209, 212 reagent 170 reciprocal 157, 227 recyclable 7, 33, 147 renewable 37, 77 repair 51, 131, 139, 146, 147, 222 replacement 51, 57, 182, 184, 216 replica 150, 154 requirement 7, 70, 99, 122, 192, 197 restoration 54, 57, 104, 215, 216 rough 20, 70 roughness 5, 17, 21, 22, 24, 28, 68, 70, 79, 120, 124, 146, 150, 159, 161, 173, 180, 181, 189, 190, 194, 202, 203, 206, 212 safety 27, 172, 187, 208, 220, 221, 223, 224 sample 19, 41, 43–46, 84, 90, 139–145, 152, 153, 160–162, 165, 176, 219 scaffolds 131, 159, 160, 163, 169, 174, 176, 189 scale 11, 51, 59, 79, 126, 130, 131, 193, 205 scanning 34, 72, 126, 135, 168, 193, 199, 202, 210, 218 schematic 26, 67, 83, 110–114, 152, 153, 157, 158, 167, 209 screw 43, 82, 84, 139, 148, 160, 209, 215, 227 self-lubricating 7, 10, 56, 67, 68, 70, 77, 119, 122, 150, 169, 180, 186, 189, 191, 214 SEM 168, 169, 171, 219 semicrystalline 86 sensor 146, 186, 187, 221, 229 shape 23, 58, 69, 85, 116, 117, 120, 150, 152, 170, 180, 185, 186, 211, 215, 224 SLA 50, 52, 56, 85, 86, 88, 110, 118, 125, 128, 159, 179, 208, 210 solution 27, 59, 87, 116, 129, 134, 147, 154, 160, 169, 170, 174, 219, 226 sophisticated 55, 156, 180, 185 specimen 18, 82–85, 165 stability 27, 58, 61, 70, 90, 165, 184, 201, 210, 215, 220, 221 stable 56, 101, 152, 160, 165, 185, 205 standard 17, 27, 34–36, 50, 57, 68, 82–85, 90, 114, 157, 202, 215 stereolithographic 110, 111, 126 stiffness 90, 99, 119, 206, 218, 224 stress 30, 34, 69, 81, 98, 103, 120, 168, 169, 181, 205 subsequent 21, 29, 57, 86–89, 110, 210, 218 substance 17, 68, 117, 120, 121, 123, 206 substrate 12, 39, 110, 163, 165, 209, 210 surgical 6, 27, 51, 132, 160, 163, 164, 189, 214, 216 sustainability 7, 8, 62, 63, 77, 101, 113, 179, 202, 225, 228 sustainable 8, 37, 94, 123, 129, 148, 201 synthetic 58, 77, 78, 97, 150, 178, 214 systematic 61, 63, 74, 132, 148, 154 technical 8, 34, 35, 46, 67, 73, 94, 98, 105, 114, 125, 126, 128, 185 technological 3, 65, 104, 119, 124, 127, 156, 202, 217 tensile 5, 82, 95, 98, 99, 101, 106, 122 texture 5, 35, 58, 149–155, 167, 168, 226 thermoplastics 5–7, 12, 79, 86, 99, 103, 104, 129–132 thermo-responsive 37, 63 thermosetting 79, 106, 129 tissue 57, 159, 165, 170, 172, 174–176, 189, 214, 216 titanium 1, 6, 8, 26–28, 34–38, 55–62, 64, 70, 72, 103, 104, 152, 154, 159, 160, 165, 173, 174, 206, 212 tolerance 123, 222 topological 185 transition 65, 66, 136, 148, 205–207, 209 treatment 26, 28, 31, 34, 35, 37, 38, 61, 92, 93, 95, 96, 100, 122, 123, 180, 181, 190 trend 90, 103, 151, 193, 196 tribometer 1, 5, 43, 83, 90, 157, 158, 214 ultrasonic 24, 52, 188, 202, 211 undesirability 51 unique 25, 26, 29, 31, 32, 68, 112, 116, 165, 170, 190 utilization 33, 76–79, 83–85, 89, 93, 109, 134, 163, 170, 215, 218, 220, 223 vacuum 210, 212, 214, 227 validation 171, 172, 180, 181, 227 vat-photopolymerization 175, 228 velocity 23, 82, 139, 207234 Index versatile 26, 29, 98, 109, 110, 169 vibration 24, 119, 187, 188, 221 waste 7, 8, 66, 68, 95, 101, 106, 123, 149, 179, 197 water 80, 99, 101, 102, 106, 128, 154, 169, 177, 217 weight 21, 31, 39, 41, 43, 44, 51, 55, 58, 71, 90, 102, 122, 139, 182, 183, 185, 200, 216, 219, 222 welding 32, 34, 35, 128–130, 134, 146, 202, 211 wet 1, 2, 160 wide 29, 31, 33, 34, 69, 76, 86, 110, 116, 117, 130, 149, 188, 208, 212, 214, 222 width 1, 2, 88 worn 5, 23, 101, 121, 123, 139, 162, 168, 169, 206, 207, 216 yield 20, 21, 33, 34, 205 zirconia 6, 8, 55, 56, 118, 160, 167, 216 zone 22, 74, 121, 163, 167, 207
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Tribological Aspects of Additive Manufacturing رابط مباشر لتنزيل كتاب Tribological Aspects of Additive Manufacturing
|
|