Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Material Science and Metallurgy السبت 04 مايو 2024, 3:03 am | |
|
أخواني في الله أحضرت لكم كتاب Material Science and Metallurgy K. I. Parashivamurthy Professor and Head Department of Mechanical Engineering Government Engineering College Chamarajanagara Karnataka
و المحتوى كما يلي :
Brief Contents Preface xvii Acknowledgements xvii About the Author xix 1. Atomic Structure 1 2. Crystal Structure 13 3. Crystal Imperfections 39 4. Atomic Diffusion 50 5. Mechanical Behaviour of Metals 63 6. Fracture 86 7. Creep 94 8. Fatigue 104 9. Solidification of Metals and Alloys 113 10. Solid Solutions 122 11. Phase Diagrams 127 12. Iron Carbon Equilibrium Diagram 147 13. Isothermal and Continuous Cooling Transformation Diagrams 158 14. Heat Treatment 167 15. Composite Materials 188 16. Properties of Ferrous and Non-ferrous Materials 213 17. Powder Metallurgy 227 18. Ceramic Materials 236 19. Corrosion of Metals and Alloys 245 Index 259 Contentsviii Contents 3. Crystal Imperfections 39 3.1 Classification of Imperfections (Based on Geometry) 39 3.1.1 Point Imperfections 40 3.1.2 Line Imperfections 43 3.1.3 Surface Imperfections 45 3.2 Volume Imperfections (Stacking Fault) 47 Exercises 47 Objective-type Questions 47 4. Atomic Diffusion 50 4.1 Diffusion Mechanisms 51 4.2 Types of Diffusion 52 4.3 Fick’s Laws of Diffusion 53 4.3.1 Fick’s First Law of Diffusion—Steady-state Diffusion 53 4.3.2 Fick’s Second Law—Unsteady-state Diffusion 54 4.4 Activation Energy for Diffusion (Arrhenius Equation) 56 4.5 Factors Affecting Diffusion 59 4.5.1 Temperature 59 4.5.2 Crystal Structure 59 4.5.3 Concentration Gradient 59 4.5.4 Crystal Imperfection 59 4.5.5 Grain Size 59 4.6 Applications of Diffusion 59 Exercises 60 Objective-type Questions 60 5. Mechanical Behaviour of Metals 63 5.1 Stress and Strain 63 5.1.1 Stress 63 5.1.2 Strain 63 5.2 True Stress–Strain Curves 64 5.2.1 True Stress 64 5.2.2 True Strain 64 5.3 Deformation of Metals 65 5.3.1 Types of Metal Deformation 65 Exercises 82 Objective-type Questions 84 6. Fracture 86 6.1 Ductile Fracture 86 6.2 Brittle Fracture (Cleavage Fracture) 88 6.3 Theoretical Cohesive Strength of Materials 89Contents ix 6.4 Griffith’s Theory of Brittle Fracture 90 Exercises 92 Objective-type Questions 92 7. Creep 94 7.1 Creep Curve 94 7.1.1 Primary Creep 95 7.1.2 Secondary or Steady-state Creep 95 7.1.3 Tertiary or Viscous Creep 95 7.2 Effect of Temperature on Creep Deformation (Low Temperature and High Temperature Creep) 95 7.3 Transient Creep 96 7.4 Viscous Creep 96 7.5 Mechanism of Creep 97 7.5.1 Dislocation Climb 97 7.5.2 Sliding of Grain Boundary 97 7.5.3 Diffusion of Vacancy 98 7.6 Creep Properties 98 7.7 Creep Fracture 98 7.8 Elastic After-effect (an Elastic Behaviour or Delayed Elastic) 99 7.8.1 Stress Relaxation 99 7.9 Creep Testing 100 7.10 Factors Affecting Creep 101 Exercises 101 Objective-type Questions 102 8. Fatigue 104 8.1 Types of Fatigue Loading 105 8.1.1 Completely Reversed Loading 105 8.1.2 Repeated Loading 105 8.1.3 Irregular Loading 106 8.2 Mechanism of Fatigue Failure 106 8.2.1 Orowan’s Theory 107 8.2.2 Wood’s Theory 107 8.2.3 Cottrel and Hull Theory 107 8.3 Fatigue Properties 108 8.4 S–N Diagram 108 8.5 Factors Affecting Fatigue 108 8.6 Fatigue Test 109 8.7 Fatigue Fracture 110 Exercises 110 Objective-type Questions 111x Contents 9. Solidification of Metals and Alloys 113 9.1 Mechanism of Solidification of Metals 113 9.2 Nucleation 114 9.2.1 Homogenous or Self-nucleation 114 9.2.2 Heterogeneous Nucleation 116 9.3 Crystal Growth 117 9.4 Dendrite Growth 117 9.4.1 Volume Shrinkage 118 9.5 Effect of Super-cooling or Under-cooling on Critical Radius of a Nucleus 118 9.6 Casting Metal Structure 119 Exercises 119 Objective-type Questions 119 10. Solid Solutions 122 10.1 Solid Solutions 122 10.2 Substitutional Solid Solution 123 10.2.1 Disordered Substitutional Solid Solution 123 10.2.2 Ordered Substitutional Solid Solution 123 10.2.3 Hume Rothery’s Rule 124 10.3 Interstitial Solid Solution 124 10.3.1 Metallic Compounds (Intermediate Phases) 125 Exercises 125 Objective-type Questions 125 11. Phase Diagrams 127 11.1 Cooling Curves 127 11.1.1 Cooling Curve for Pure Metals or Solidification of Pure Metals 128 11.1.2 Cooling Curve for Binary Alloy 128 11.2 Construction of Phase Diagram 129 11.3 Interpretation of Phase Diagram 130 11.3.1 Prediction of Phase 130 11.3.2 Prediction of Chemical Composition of Different Phases for a Given Temperature 131 11.3.3 Prediction of Amount of Phase (Lever-arm Rule) 131 11.4 Gibbs Phase Rule 132 11.5 Classification of Phase Diagrams 134 11.5.1 According to Number of Components in the System 134 11.5.2 According to Solubility of Components 134 11.6 Liquid and Solid-state Transformation 140 11.6.1 Eutectic Reaction (Transformation) 140Contents xi 11.6.2 Peritectic Reaction 140 11.6.3 Eutectoid Reaction 141 11.6.4 Peritectoid Reaction 142 11.7 Complex Alloy Systems 142 11.8 Ternary Phase Diagram 143 Exercises 143 Objective-type Questions 145 12. Iron Carbon Equilibrium Diagram 147 12.1 Solidification of Pure Iron (Constitution of Iron or Allotropy Modification of Iron) 147 12.2 Iron Carbon Phase Diagram 148 12.3 Phases of Iron Carbide, Phase Diagram 149 12.3.1 -Ferrite 149 12.3.2 Austenite 150 12.3.3 Ferrite 150 12.3.4 Cementite 150 12.3.5 Pearlite 150 12.3.6 Ledeburite 150 12.3.7 Solubility of Carbon in Iron 150 12.4 Reaction of Iron Carbon System 151 12.4.1 Peritectic Reaction 151 12.4.2 Eutectoid Reaction 151 12.4.3 Eutectic Reaction 151 12.5 Steels 151 12.5.1 Solidification and Transformation of Hypoeutectoid Steel (0.4% Carbon Steel) 151 12.5.2 Solidification and Transformation of Eutectoid Steel (0.8% Carbon Steel) 152 12.5.3 Solidification and Transformation of Hypereutectoid Steel (1.5% Carbon Steel) 152 12.6 Cast Iron 153 12.6.1 Solidification and Transformation of Hypoeutectic Cast Iron (4% Carbon Cast Iron) 153 12.6.2 Solidification and Transformation of Eutectic Cast Iron (4.33% Carbon Cast Iron) 154 12.6.3 Solidification and Transformation of Hypereutectic Cast Iron (6.23% Carbon Cast Iron) 154 12.7 Critical Temperature of the Iron and Iron Carbon Diagram 154 Exercises 155 Objective-type Questions 156xii Contents 13. Isothermal and Continuous Cooling Transformation Diagrams 158 13.1 Construction of TTT Diagram 158 13.2 Effect of Cooling Rate on TTT Diagram 161 13.2.1 Definitions 162 13.3 Continuous Cooling Transformation (CCT) Curve 162 13.4 Effect of Carbon Content and Alloying Elements 163 Exercises 164 Objective-type Questions 165 14. Heat Treatment 167 14.1 Heat Treatment Purposes 167 14.1.1 Temperature up to which the Metal or Alloy is Heated 168 14.1.2 Length of Time the Metal or Alloy is Held at this Temperature (Holding Time) 168 14.1.3 Rate of Cooling 168 14.1.4 Quenching Media 168 14.2 Heat Treatment of Steel 168 14.2.1 Treatments that Produce Equilibrium Condition 169 14.2.2 Treatments that Produce Nonequilibrium Condition 173 14.3 Martempering (Interrupted Quenching) 175 14.4 Austempering (Isothermal Transformation) 176 14.5 Hardenability 177 14.5.1 Jominy End-quench Tests 177 14.6 Surface Hardening 178 14.6.1 Method in which Whole Component is Heated 178 14.6.2 Method in which only Surface of Component is Heated 180 14.7 Heat Treatment of Nonferrous Metals 182 14.7.1 Precipitation Hardening (Age Hardening) 182 14.7.2 Annealing 184 Exercises 184 Objective-type Questions 185 15. Composite Materials 188 15.1 Particulate Reinforced Composites 189 15.2 Fibre Reinforced Composites 189 15.3 Laminated Composite Material 190 15.4 Polymer Matrix Composites 190 15.5 Metal Matrix Composite 191 15.6 Ceramic Matrix Composites 191 15.7 Agglomerated Composite Material 192Contents xiii 15.8 Manufacturing Methods for Composite Materials 192 15.9 Manufacturing Method for Particulate Reinforced Composites 192 15.9.1 Liquid-state Methods 192 15.9.2 Solid-state Methods 195 15.10 Manufacturing of Fibre-reinforced Polymer Matrix Composites 197 15.10.1 Open Mould Process 197 15.10.2 Closed Mould Process 200 15.11 Manufacture of Laminated Composite 201 15.11.1 Solid-state Bonding of Composite 201 15.12 Mechanical Behaviours of a Composite Material 202 15.12.1 Determination of E 1 (Longitudinal Direction or Iso-strain Condition) 203 15.12.2 Determination of Young’s Modulus in the Direction of E2 (Transverse Direction or Iso-stress Condition) 204 15.12.3 Determination of Poisson’s Ratio V 12 206 15.12.4 Determination of G 12 (Shear Modulus) 206 15.13 Properties of Composite Materials 207 15.14 Advantages of Composites 207 15.15 Limitations of Composites 208 15.16 Applications 208 Exercises 209 Objective-type Questions 210 16. Properties of Ferrous and Non-ferrous Materials 213 16.1 Ferrous metals 213 16.1.1 Steels 213 16.1.2 Pig Iron 217 16.1.3 Wrought Iron 218 16.1.4 Cast Iron 218 16.2 Non-ferrous Metals and Alloys 220 16.2.1 Copper and Copper-based Alloys 220 16.2.2 Aluminum and Its Alloys 223 Exercises 224 Objective-type Questions 225 17. Powder Metallurgy 227 17.1 Method of Producing Powders 228 17.1.1 Atomization of Molten Metal 228 17.1.2 Electrodeposition 228 17.1.3 Reduction of a Compound 229 17.1.4 Crushing and Milling 229 17.2 Blending of Powder 229 17.3 Compaction (Cold and Hot) 229xiv Contents 17.4 Pre-sintering and Sintering 230 17.5 Finishing Operations 230 17.6 Heat Treatment 230 17.7 Characteristics of Powder and Its Parts 231 17.8 Applications of Some Powder Metallurgy Parts 231 17.9 Advantages of Powder Metallurgy Components 232 17.10 Disadvantages of Powder Metallurgy 232 Exercises 233 Objective-type Questions 233 18. Ceramic Materials 236 18.1 Classification of Ceramics 236 18.1.1 Based on Fusing or Melting Temperature 236 18.1.2 Based on Nature of Reaction 237 18.1.3 On the Basis of Chemical Composition of the Refractories 237 18.1.4 Based on the Nature of Materials 237 18.2 Characteristics of Refractories 239 18.3 Properties of Ceramic Materials 239 18.4 Application of Ceramics 239 18.4.1 Traditional Ceramics 239 18.4.2 Industrial Ceramics 240 18.4.3 Automotive Ceramics 240 18.4.4 Tribological Ceramics 241 18.4.5 Conductive Ceramics 241 18.4.6 Nuclear Ceramics 242 18.4.7 Optical Ceramics 242 18.4.8 Pigments 242 Exercises 242 Objective-type Questions 243 19. Corrosion of Metals and Alloys 245 19.1 Electrochemical Theory of Corrosion 245 19.2 Galvanic Cell 246 19.3 Electrode Potential 247 19.3.1 Primary Reference Electrode 248 19.3.2 Secondary Reference Electrode 249 19.4 Standard Electrode Potential and Electrochemical Series 250 19.5 Types of Corrosion 251 19.5.1 Uniform Corrosion 251 19.5.2 Galvanic Corrosion 251 19.5.3 Pitting Corrosion 251 19.5.4 Stress Corrosion 25219.6 Prevention and Control of Corrosion 252 19.6.1 Proper Design and Selection of Metals 253 19.6.2 Change of Environment 253 19.6.3 Change of Metal Potential 253 19.6.4 Protective Coatings 254 19.6.5 Passivation 254 19.7 Metallic Coatings 255 19.7.1 Nickel Plating 255 19.7.2 Chromium Plating 255 19.7.3 Silver Plating 255 19.7.4 Cadmium Plating 256 19.7.5 Gold Plating 256 19.8 Organic Protective Coatings 256 19.9 Disadvantages of Corrosion 256 Exercises 257 Objective-type Questions 257 Index 259 Index A acidic refractories, 237 activation energy, 56 age hardening, 183 ageing treatment, 183 aircraft engines, 180 allotropic modification, 147 alloy steels, 216 alpha iron, 147–148 alumina, 240 aluminous refractories, 237 aluminum bronzes, 222 aluminum–silicon alloys, 224 aluminum–zinc alloys, 224 amorphous, 13 angle of contact, 116 Angstrom, 15 angular momentum quantum number, 5 anisotropic, 189 annealing, 101, 161, 169 annealing twin, 47, 73 antimony–bismuth, 133 argon, 6 array of atoms, 14 Arrhenius equation, 56 artificial ageing, 183 atomic mass number, 2 atomic number, 2 atomic radius, 17 atomic weight, 2 atoms, 13, 122 attractive force, 89 austenite, 150, 158, 160 structure, 169 austenitic stainless steels, 217 autoclave process, 199 automobile bodies, 147 automotive ceramics, 240 azimuthal quantum number, 5 B bainite, 160, 162 bakelite, 13 basic refractories, 237 Bauschinger effect, 80 bearing alloys, 139 bell metal, 222 beryllium, 6 beryllium bronzes, 222 binary alloy, 142 binary diagram, 133 body-centred cubic, 17 Bohr’s theory, 4 Boltzmann constant, 56 boron, 125, 190 brass, 123 Bravais lattices, 15 brick, 240 brittle fracture, 88, 90–91 brittle material, 91 bronzes, 222 Burgers vector, 43 C cadmium plating, 256 calcium, 6 camshafts, 59 carbon, 3, 52, 178 carbon nanotube, 189 carbon steel, 52 carburization, 52 case hardening, 178 cast iron, 147, 153, 218 caustic embrittlement, 252 cellulouse, 13 cementite, 150 ceramic, 13 matrix of, 191 ceramic materials, 237260 Index cermets, 240 chemical affinity factor, 124 chemical bond, 7 chemical vessels, 240 chinaware, 240 chlorine, 3 chromium plating, 255 chromium steels, 216 civil structures, 147 coarse-grained steels, 101 coefficient of diffusion, 54 cohesive forces, 89 coining, 230 cold working effects, 170 columnar crystal, 119 composite melt slurry, 193 concentration gradient, 50, 53 conductive ceramics, 241 conventional strain, 63 conveyers chain, 219 coordination number, 17 copper, 123, 220 alloys of, 170 copper-based alloys, 220 corrosion, 245 prevention and control of, 252–253 corrosive environment, 109 Cottrel and Hull theory, 107 covalent bonds, 7 crack nucleation, 88 crack propagation, 88 crake propagation, 91 crank shafts, 182 creep curve, 94 creep fracture, 98 creep limit, 98 creep rupture strength, 98 creep strength, 101 critical cooling rate, 174 critical radius, 118 critical resolved shear stress, 71 critical shear stress, 71 crushing and milling, 229 crystal growth, 47 crystal imperfections, 39 crystal lattice, 14 crystal structure factor, 124 crystal systems, 15 crystalline solids, 13 crystallization, 78 crystallographer, 25 crystallography, 13 crystals, 114 Curi temperature, 148 cyaniding, 180 D Daniel cell, 246 Debye–Scherrer method, 33 defects, 39 deformation, 63 delta iron, 147 dendrite growth, 118 density packing factor, 17 die casting, 193 differential aeration, 245 diffusion annealing, 171 diffusivity, 55 dislocation density, 78 ductility, 77 dyes, 8 E edge defect, 39 edge dislocation, 72 elastic action, 63 elastic deformation, 65 elastic limit, 67, 88 elastic strain energy, 91 elastic strength, 68 electrochemical theory, 245 electrode potential, 247–250 electrolytic deposition, 228 electromagnetic radiation, 4 electromotive force, 246 electron configuration, 3 electronic defects, 42 electrostatic attraction, 7 embryo, 114Index 261 endurance limit (EL), 108 energy barrier, 56 epoxies, 197 epoxy composite, 189, 190 equiaxed grain, 117, 119 equilibrium diagram, 135 eutecic mixture, 136, 154 eutectic reaction, 139, 151 eutectoid reaction, 151 eutectoid transformation, 150 F face-centred cubic, 17 fatigue behaviour, 105 fatigue fracture, 104 fatigue life, 108 fatigue strength, 108 ferrite, 149, 150 ferritic stainless steels, 217 fibre-reinforced composites, 189 filament-winding method, 199 fine pearlite, 160 flame hardening, 181 flywheels, 220 fracture strength, 76 Frenkel defect, 42 full annealing, 171 G galvanic cell, 245 galvanic corrosion, 246, 251 gas carburizing, 179 gaseous nitrogen, 180 gating system, 193 Gaussian error function, 55 gear, 59 gold plating, 256 grain boundaries, 101 grain boundary diffusion, 52–53 grain boundary imperfection, 45 grain growth, 117 granular coal, 178 graphite, 10, 153, 240 gray cast iron, 153 Guinier-Preston zones, 183 gun metal, 222 H half-cell reactions, 247 hand lay-up process, 197 hard creep, 95 hardenability, 177 hardening stress, 175 helium, 6 heterogeneous nucleation, 114, 116 hexagonal close-packed, 17 hexagonal lattice, 28 hexagonal planes, 22 high alloys steels, 216 high carbon steels, 151, 251 high-speed steels, 217 high-performance ceramics, 238 homogenization, 50 Hook’s law, 65 hot creep, 96 Hume theory, 124 hydrogen scale, 250 hypereutectic cast iron, 153 hypoeutectic cast iron, 148, 153–154 hypoeutectoid steel, 151 I ideal crystals, 39 imperfections, 39 impurity defect, 40 induction hardening process, 181 industrial ceramics, 240 inert gas stream, 194 infiltration, 230 injection moulding process, 200 inoculants, 117 insulating refractories, 237 insulators, 237 interatomic attractions, 7 interface energy, 116 interfacial angles, 14262 Index intermediate phases, 125 internal combustion engine, 220 internal stress, 167 interplanar spacing, 34 interstitial defect, 39, 41 interstitial diffusion mechanism, 52 interstitial solid solution, 123–124 ion vacancy, 42 ionic bond, 7 iron, 125 iron–carbon diagram, 168 irregular loading, 106 isothermal curve, 158 isothermal heat treatment, 158 isothermal transformation, 151 isotones, 3 isotope, 3 L laminated composite, 190 lattice constants, 14 lattice parameters, 14 law alloy steel, 216 leaded yellow brass, 221 ledeburite, 150, 154 lithium chloride, 8 low carbon steel, 170 lower yield point, 74 low-temperature refractory, 236 M machinability, 167 machining, 230 magnesia, 240 magnesium, 6 magnetic iron, 147 malleability, 77 malleable cast iron, 219 manganese steel, 216 manhole covers, 218 martensite, 159, 162 martensitic stainless steels, 217 Maxwell–Boltzmann distribution law, 56 mechanical twin, 47 medium carbon steels, 151 metal matrix composites, 196 metal powder, 196 metallic bond, 9 metallic coatings, 255–256 metallurgy, 125 methane, 10 microconstituents, 167, 188 mild steel, 170, 214 Miller indices, 25 modulus of elasticity, 65 modulus of resilience, 68 molecular weight, 2 Muntz metal, 221 N natural ageing, 183 natural refractories, 237 naval brass, 221 neck formation, 87 negligible deformation, 88 neutron, 1 nickel plating, 255 nickel steels, 216 nitriding, 180 nitrogen, 125, 178 nodular cast iron, 220 non-linear elastic properties, 69 nonoxide refractories, 237–238 normalizing, 101 notch sensitivity, 81 nuclear ceramics, 242 nucleating agents, 119 nucleation, 114, 128 nuclei crystallizes, 114 O offset method, 75 oil-hardening steels, 174 open mould, 197 optical ceramics, 242 optical extensometer, 101 organic protective coatings, 256 oxidation potential, 247Index 263 oxide refractories, 238 oxy-acetylene flame, 181 P packing factor, 17 paint, 8 paraffin, 10 partial annealing, 171 particulates, 191 passiviation, 254 Pauli’s exclusion principle, 6 pearlite, 150–154 percent elongation, 77 peritectic reaction, 140, 151 peritectic temperature, 140 peritectoid reaction, 141 phosphar bronze, 222 pig iron, 217 pigments, 242 piston pins, 59 piston rings, 218 pitting corrosion, 251–252 plain carbon steel, 214 Plank’s constant, 4 plastic deformation, 43, 63 plywood, 190 point imperfections, 40 Poisson’s ratio, 64 polycrystalline, 33 polycrystals, 98 polymer matrix composite, 190 polymers, 109 porcelain, 240 positive free energy, 115 pottery, 240 precipitation hardening, 182 pre-sintering, 230 pressure bag, 198 primary reference electrode, 248–249 principle quantum number, 4 Q quantum numbers, 3 quenching media, 168 R real crystals, 39 recrystallization, 124, 169 red brass, 221 red metal, 221 reinforcement, 188 repulsive force, 89 resilience, 68, 70 rotating crystal method, 33 rubber, 69 rusting of iron, 246 S Schottky defect, 42 screw dislocation, 43, 45 secondary quantum number, 5 secondary reference electrode, 249–250 self-diffusion, 52 self-nucleation, 114 silica bricks, 237 silica gel, 253 siliceous refractories, 237 silicon bronzes, 222 silver, 20 silver plating, 255 solid solubility, 125 solid solution, 122, 136 solidification, 193 solute, 122 sorbite, 174 space lattice, 14 special refractories, 237 speculum metal, 222 spheroid graphite iron, 220 spheroidal annealing, 170 spin quantum number, 4, 5 spray deposition, 194–195 squeeze casting, 193 stable nucleus, 117 stacking fault, 47 stainless steels, 217 standard electrode potential, 250 steady loads, 104 steady-state condition, 54 steam turbines, 180264 Index steel, 147, 151, 168 steel shaft, 182 stiffness, 66 stir casting, 192 strain energy, 68 strain hardening, 95 stress corrosion, 252 stress relaxation, 100 stress-relieving, 169 sub-critical annealing, 171–172 substitutional impurity, 41 substitutional solid solution, 123 supersaturated solid solution, 183 surface distortion, 45 T technical ceramics, 238 tempering, 174 tensile axis, 74 ternary phase diagram, 142 theoretical density, 19 theoretical shear stress, 72 thermal hysterias, 155 thermosets moulding, 201 tin, 72 traditional ceramic, 240 transient creep, 95–96 treatment of steel, 168 triaxiality, 81 tribiological ceramics, 241 true stress, 64 tungsten high speed steel, 217 twin boundaries, 45 twin boundary imperfection, 46 twin region, 73 twining, 70 twinning deformation, 73 twinning plane, 73 U ultimate tensile strength, 66–67, 76 unary diagram, 133 under-cools, 114 uniform corrosion, 251 unit cell, 14 unsteady state, 54 V vacancy defect, 40 vacant lattice, 51 vacuum bag process, 198 valency electrons, 9 van der Waals forces, 9 vectors, 14 vertex, 192 vibration energy, 51 viscous creep, 95–96 volume diffusion, 52 volume imperfections, 47 W water-hardening steels, 174 wave mechanics, 4 wear resistance, 123 wear-resistant, 180 white brass, 221 white cast iron, 153, 219 whiteware, 240 Wood’s theory, 107 work hardening, 110 wrought iron, 218 X X-ray, 9, 30 Y y-alloy, 224 yellow brass, 221 yield point phenomenon, 74 yield strength, 66, 75–76 yielding, 74–81 Young’s modulus, 65 Z zero-dimensional imperfections, 40 zinc, 109, 123 zinc oxide, 42 zirconia, 240
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Material Science and Metallurgy رابط مباشر لتنزيل كتاب Material Science and Metallurgy
|
|