Admin مدير المنتدى
عدد المساهمات : 18936 التقييم : 35318 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Applied Statistical Inference with MINITAB - Second Edition الثلاثاء 05 مارس 2024, 11:29 am | |
|
أخواني في الله أحضرت لكم كتاب Applied Statistical Inference with MINITAB Second Edition Sally A. Lesik Central Connecticut State University
و المحتوى كما يلي :
Contents Preface . xiii Acknowledgments . xvii 1. Introduction .1 1.1 What is Statistics? 1 1.2 What This Book Is About .2 1.3 Summary Tables and Graphical Displays .2 1.4 Descriptive Representations of Data 3 1.5 Inferential Statistics 4 1.6 Populations 5 1.7 Different Ways of Collecting Data 5 1.8 Types of Variables .6 1.9 Scales of Variables .7 1.10 Types of Analyses .9 1.11 Entering Data into Minitab 10 1.12 Best Practices . 11 Exercises 12 2. Graphs and Charts . 15 2.1 Introduction . 15 2.2 Frequency Distributions and Histograms . 15 2.3 Using Minitab to Create Histograms . 17 2.4 Stem-and-Leaf Plots 21 2.5 Using Minitab to Create Stem-and-Leaf Plots 22 2.6 Bar Charts 24 2.7 Using Minitab to Create a Bar Chart 24 2.8 Boxplots 27 2.9 Using Minitab to Create Boxplots . 31 2.10 Scatterplots . 32 2.11 Using Minitab to Create Scatterplots .33 2.12 Marginal Plots .33 2.13 Using Minitab to Create Marginal Plots 35 2.14 Matrix Plots 36 2.15 Using Minitab to Create a Matrix Plot .38 2.16 Best Practices .38 Exercises 41 Extending the Ideas .44 3. Descriptive Representations of Data and Random Variables .47 3.1 Introduction .47 3.2 Descriptive Statistics .47 3.3 Measures of Central Tendency 48 3.4 Measures of Variability 52 3.5 Using Minitab to Calculate Descriptive Statistics 55viii Contents 3.6 More on Statistical Inference .56 3.7 Discrete Random Variables .58 3.8 Sampling Distributions 61 3.9 Continuous Random Variables .64 3.10 Standard Normal Distribution 65 3.11 Non-Standard Normal Distributions .69 3.12 Other Discrete and Continuous Probability Distributions .73 3.13 The Binomial Distribution . 74 3.14 The Poisson Distribution .75 3.15 The t-Distribution 77 3.16 The Chi-Square Distribution .78 3.17 The F-Distribution .79 3.18 Using Minitab to Graph Probability Distributions 79 Exercises 85 4. Statistical Inference for One Sample 93 4.1 Introduction .93 4.2 Confidence Intervals .93 4.3 Using Minitab to Calculate Confidence Intervals for a Population Mean 99 4.4 Hypothesis Testing: A One-Sample t-Test for a Population Mean . 100 4.5 Using Minitab for a One-Sample t-Test 106 4.6 Power Analysis for a One-Sample t-Test 115 4.7 Using Minitab for a Power Analysis for a One-Sample t-Test 116 4.8 Confidence Intervals and Hypothesis Tests for One Proportion . 120 4.9 Using Minitab for a One-Sample Proportion 124 4.10 Power Analysis for a One-Sample Proportion 127 4.11 Confidence Intervals and Hypothesis Tests for One-Sample Variance 129 4.12 Confidence Intervals for One-Sample Variance . 130 4.13 Hypothesis Tests for One-Sample Variance 132 4.14 Using Minitab for One-Sample Variance 134 4.15 Power Analysis for One-Sample Variance . 136 4.16 Confidence Intervals for One-Sample Count Data . 140 4.17 Using Minitab to Calculate Confidence Intervals for a One-Sample Count Variable . 142 4.18 Hypothesis Test for a One-Sample Count Variable 144 4.19 Using Minitab to Conduct a Hypothesis Test for a One-Sample Count Variable . 146 4.20 Using Minitab for a Power Analysis for a One-Sample Poisson 147 4.21 A Note About One- and Two-Tailed Hypothesis Tests . 149 Exercises 151 References . 155 5. Statistical Inference for Two-Sample Data . 157 5.1 Introduction . 157 5.2 Confidence Interval for the Difference Between Two Means . 157 5.3 Using Minitab to Calculate a Confidence Interval for the Difference Between Two Means . 160 5.4 Hypothesis Tests for the Difference Between Two Means 162 5.5 Using Minitab to Test the Difference Between Two Means 166Contents ix 5.6 Using Minitab to Create an Interval Plot . 167 5.7 Using Minitab for a Power Analysis for a Two-Sample t-Test 170 5.8 Paired Confidence Interval and t-Test 172 5.9 Using Minitab for a Paired Confidence Interval and t-Test 176 5.10 Differences Between Two Proportions 178 5.11 Using Minitab for Two-Sample Proportion Confidence Intervals and Hypothesis Tests . 182 5.12 Power Analysis for a Two-Sample Proportion 184 5.13 Confidence Intervals and Hypothesis Tests for Two Variances . 184 5.14 Using Minitab for Testing Two Sample Variances . 191 5.15 Power Analysis for Two-Sample Variances . 193 5.16 Confidence Intervals and Hypothesis Tests for Two-Count Variables . 195 5.17 Using Minitab for a Two-Sample Poisson . 198 5.18 Power Analysis for a Two-Sample Poisson Rate . 199 5.19 Best Practices . 201 Exercises 203 6. Simple Linear Regression . 213 6.1 Introduction . 213 6.2 The Simple Linear Regression Model 214 6.3 Model Assumptions for Simple Linear Regression .220 6.4 Finding the Equation of the Line of Best Fit . 221 6.5 Using Minitab for Simple Linear Regression 224 6.6 Standard Errors for Estimated Regression Parameters .227 6.7 Inferences about the Population Regression Parameters 227 6.8 Using Minitab to Test the Population Slope Parameter .230 6.9 Confidence Intervals for the Mean Response for a Specific Value of the Predictor Variable 232 6.10 Prediction Intervals for a Response for a Specific Value of the Predictor Variable 233 6.11 Using Minitab to Find Confidence and Prediction Intervals .235 Exercises 242 7. More on Simple Linear Regression . 247 7.1 Introduction . 247 7.2 The Coefficient of Determination . 247 7.3 Using Minitab to Find the Coefficient of Determination 249 7.4 The Coefficient of Correlation .250 7.5 Correlation Inference 254 7.6 Using Minitab for Correlation Analysis 257 7.7 Assessing Linear Regression Model Assumptions 259 7.8 Using Minitab to Create Exploratory Plots of Residuals .259 7.9 A Formal Test of the Normality Assumption .264 7.10 Using Minitab for the Ryan–Joiner Test .266 7.11 Assessing Outliers 268 7.12 Assessing Outliers: Leverage Values 269 7.13 Using Minitab to Calculate Leverage Values 269 7.14 Assessing Outliers: Standardized Residuals 272 7.15 Using Minitab to Calculate Standardized Residuals . 273x Contents 7.16 Assessing Outliers: Cook’s Distances 274 7.17 Using Minitab to Find Cook’s Distances . 275 7.18 How to Deal with Outliers 276 Exercises 277 References .283 8. Multiple Regression Analysis 285 8.1 Introduction .285 8.2 Basics of Multiple Regression Analysis .285 8.3 Using Minitab to Create Matrix Plots 287 8.4 Using Minitab for Multiple Regression .289 8.5 The Coefficient of Determination for Multiple Regression .290 8.6 The Analysis of Variance Table . 292 8.7 Testing Individual Population Regression Parameters . 296 8.8 Using Minitab to Test Individual Regression Parameters 299 8.9 Multicollinearity 300 8.10 Variance Inflation Factors 302 8.11 Using Minitab to Calculate Variance Inflation Factors .303 8.12 Multiple Regression Model Assumptions .304 8.13 Using Minitab to Check Multiple Regression Model Assumptions 305 Exercises 306 9. More on Multiple Regression 313 9.1 Introduction . 313 9.2 Using Categorical Predictor Variables . 313 9.3 Using Minitab for Categorical Predictor Variables 315 9.4 Adjusted R2 321 9.5 Best Subsets Regression . 324 9.6 Using Minitab for Best Subsets Regression . 329 9.7 Confidence and Prediction Intervals for Multiple Regression . 331 9.8 Using Minitab to Calculate Confidence and Prediction Intervals for a Multiple Regression Analysis . 331 9.9 Assessing Outliers 333 Exercises 334 10. Analysis of Variance (ANOVA) .341 10.1 Introduction .341 10.2 Basic Experimental Design 341 10.3 One-Way ANOVA .342 10.4 One-Way ANOVA Model Assumptions 349 10.5 Assumption of Constant Variance 350 10.6 Normality Assumption 355 10.7 Using Minitab for One-Way ANOVAs . 357 10.8 Multiple Comparison Techniques 370 10.9 Using Minitab for Multiple Comparisons . 373 10.10 Power Analysis and One-Way ANOVA . 374 Exercises 378 References .383Contents xi 11. Nonparametric Statistics .385 11.1 Introduction .385 11.2 Wilcoxon Signed-Rank Test .385 11.3 Using Minitab for the Wilcoxon Signed-Rank Test 389 11.4 The Mann–Whitney Test 395 11.5 Using Minitab for the Mann–Whitney Test 400 11.6 Kruskal–Wallis Test 400 11.7 Using Minitab for the Kruskal–Wallis Test .405 Exercises 411 12. Two-Way Analysis of Variance and Basic Time Series . 417 12.1 Two-Way Analysis of Variance . 417 12.2 Using Minitab for a Two-Way ANOVA . 424 12.3 Basic Time Series Analysis 440 Exercises 449 Appendix 453 Index 461 Index A Alternative hypothesis, 101, 149 correlation inference, 255, 256 Kruskal–Wallis test, 400 Mann–Whitney test, 400 normality assumption, 265 one-sample t-test, 101, 103 one-way ANOVA, 344 population regression parameters, 228–229 Analyses, types of, 9–10 Analysis of variance (ANOVA), 9–10, 341–383 assumption of constant variance, 350–355 Bartlett’s test, 350 χ2 distribution, 351 example, 352 Levene’s test, 352 rejection of null hypothesis, 351 test statistic, 351 balanced two-way, 424 basic experimental design, 341–342 one-way analysis of variance, 342 random assignment of brands, 342 randomized block design, 342 randomized design, 341 exercises, 378–383 F-distribution, 345 MINITAB use for multiple comparisons, 373–376 MINITAB use for one-way ANOVAs, 357–370 commands, 362 dialog box, 358, 360, 363 example, 366 histogram of residuals, 361, 368 interval plot, 360, 368 normal probability plot, 362, 368 output, 365, 369–370 printout, 367 residual versus fitted values, 361, 368 residual versus order plot, 361 Ryan–Joiner test, 361, 362, 369 worksheet, 400 model assumptions, 349–350 multiple comparison techniques, 370–373 confidence interval, interpretation of, 373 example, 371 Fisher’s Least Significant Difference (LSD), 371 MINITAB use, 373–376 t-distribution, 371 normality assumption, 355–357 example, 356 rejection of null hypothesis, 357 one-way ANOVA, 342–349 alternative hypothesis, 344 balanced, 343 degrees of freedom for the denominator, 344 degrees of freedom for the numerator, 344 example, 345 factor, 343 F-distribution, 344 fixed-effects ANOVA model, 343 mean square error, 347 null hypothesis, 344 samples, 343 table, 349 power analysis and one-way ANOVA, 374–378 example, 376 MINITAB printout, 377 rejection of null hypothesis, 374 sample size estimation, 375 randomized block design, 342 Analysis of variance table, 292–296 degrees of freedom for the denominator, 292–293 degrees of freedom for the numerator, 292–293 example, 293 F-distribution, 292–293, 294 F-test, 292 printout, 294 ANOVA, see Analysis of variance Automatic setting, in MINITAB, 18 B Balanced two-way ANOVA, 424 Bar charts, 24 discrete data, 24462 Index Bar charts (cont.) MINTAB use, 24–27 variables, 24 Bartlett’s test, 350 Basic statistical inference, 9 Basic time series, see also Time series analysis, basic exercises, 449–452 Best practices, 11–12, 201–203 graphs and charts, 38, 40, 41 Best subsets regression, 324–329 example, 325 full regression model, 324 Mallow’s C p statistic, 324 MINITAB use, 329–331 model fitting, 331 predictor variables, 324 regression analysis including variables, 326, 327, 328 statistical modeling using, 325 Binary variables, 314 Binomial distribution, 74–75 Box plots, 27–31 construction, 27 example, 28–31 general form, 28 Kruskal–Wallis test (MINITAB), 410 median, 29 quartiles, 27 two-way ANOVA, 434, 430 upper and lower limits, 27–28 whiskers, 27, 30 C Cartesian plane, 33 Categorical variables, 24 Central limit theorem, 64 Chi-square distribution, 78–79, 130, 131 Coefficient of correlation, 250–253 example, 252 formula, 250 linear relationship, 253 linear relationship between variables, 250 negative relationship, 250 no relationship, 250 positive relationship, 250 sample standard deviation, 251 scatter plot, 253 Coefficient of determination, 247–249 example, 248 MINITAB use, 249 predictor variable, 247 sample mean, 247 SAT–GPA data set, 247 scatter plot, 248 Coefficient of variation (COV), 88 Column factor, 417 Columns, of data set, 1 Conceptual populations, 5 Confidence interval, 93–99 calculation, 95–96 degrees of freedom, 94 for difference between two means, 157–160 calculation, 157 degrees of freedom, 159 example, 158 hypothesis tests, 157 MINITAB calculation, 160–162 population mean lifetimes, 159 unequal variances, 158 example, 96–97 hypothesis tests for proportions and, 120–124 distribution of sample proportion, 121 example, 121 population proportion, 120–121 p-value, 123 rejection region, 123 standard normal tables, 123 test statistic, 122, 124 MINITAB calculation, 99–100 commands, 99 dialog box, 100 printout, 100 for one-sample count variable, 140–142 for one-sample variance, 129–132 example, 132–133 point estimate, 93 t-distribution, 94, 98 theory for population mean, 94 and t-test, 172–176 two-count variables, and hypothesis tests for, 195–197 example, 195 two variances, hypothesis tests for, 184–191 unknown population mean, 95 use, 93 Continuous random variable, 63 Continuous variables, 6, 24 Control group, 5 Control variables, 285 Cook’s distance, 274–275 Correlation analysis, use of MINITAB for, 257–258 Correlation inference, 254–257Index 463 example, 256, 257 negative linear correlation, 254 null and alternative hypotheses, 255, 256 population coefficient of correlation, 254 positive linear correlation, 254 rejection region, 255, 256, 257 sampling distribution, 254 test statistic, 255 true population coefficient of correlation, 255 Count variable, 140 COV, see Coefficient of variation Cyclical trend, time series analysis, 441 D Data, 1 descriptive representations of, see Descriptive statistics qualitative, 1 quantitative, 1 residual, 262 Data sets, 1 box plots, 32 kurtosis of, 91 SAT–GPA, 247 skewness of, 91 Degrees of freedom, 94 for the denominator, 292–293, 344 for the numerator, 292–293, 344 Dependent populations, 172 Dependent variable, 32, 33 Descriptive representations, of data, 2, 3–4 Descriptive statistics, 47–91, 188 binomial distribution, 74–75 chi-square distribution, 78–79 coefficient of variation, 88 definition of, 47 discrete random variables, 58–60 probability distribution, 58 representation, 59 summarized, 59 exercises, 85–91 F-distribution, 79 kurtosis of data set, 91 measures of central tendency, 48–52 definition of, 48 example, 48, 50–52 median of numeric variable, 50 median position, 50 mode, 51 population mean, 49 sample average, 48 summation notation, 48 measures of variability, 52–55 example, 52 interquartile range, 53 population standard deviation, 55 population variance, 55 range, 52 sample standard deviation, 53 sample variance, 53 MINITAB, 55 dialog box, 56 output, 57 statistic properties, 57 mode, 51 Poisson distribution, 75–76 probability distribution, 73 purpose of calculating, 47 range, 52 sampling distributions, 61–64, 74 area under the curve, 65 central limit theorem, 64 continuous random variable, 64 example, 61 graph, 63 nonstandard normal distribution, 69–73 normal distribution, 65–69 population parameter, 63 probability distribution, 60, 62 sample mean, 62 standard normal distribution, 65–69 standard normal table, 67 skewness of data set, 91 standard error, 63 standard normal distribution, 65–69 t-distribution, 77–78 types, 52 weighted mean, 89 Discrete variables, 6 random, 58–60 Distribution-free tests, 385 E Equation of line of best fit, finding, 221–224 formulas, 221 mean square error, 223 population parameters, 221 residuals, 221–223 root mean square error, 223 statistics, 221 unknown population parameters, 222 Error(s) component, 216, 223 mean square error, 223464 Index Error(s) (cont.) observed values, 219 residual, mean square error due to, 292 root mean square error, 223 round-off, 216 standard, 63 Type I, 103 Exercises analysis of variance, 378–383 descriptive statistics, 85–91 graphs and charts, 41–44 introduction, 12–13 multiple regression analysis, 306–311, 334–339 nonparametric statistics, 411–416 simple linear regression, 277–283 simple regression, 242–246 statistical inference, 151–155 for two-sample data, 203–211 two-way analysis of variance and basic time series, 449–452 Experimental studies, 5 F F -distribution, 79, 292, 344, 345, 418 Fisher’s Least Significant Difference (LSD), 371 Fitted line plot, 235, 236, 237, 241, 260 Fixed-effects ANOVA model, 343 Four-way residual plots, 409, 437 Frequency distribution, and histogram, 15 F-tables, 187 F-test, 292, 296 Full regression model, 324 G GPAs, see Grade point averages Grade point averages (GPAs), 47 Graphical displays, 2 Graphs and charts, 15–46 bar charts, 24 discrete data, 24 MINITAB, 24–25 variables, 24 box plots, 27–31 construction, 27, 28 example, 28–31 general form, 28 median, 29 MINITAB, 31 multiple, 31 quartiles, 27 upper and lower limits, 27–28 whiskers, 27, 30 exercises, 41–44 frequency distribution, histogram drawn from, 15 histograms, 15–17 construction, 16 frequency distribution, histogram drawn from, 15 MINITAB, 17–21 purpose of drawing, 16 software use, 17 marginal plots, 33–35 matrix plots, 36–38 scatter plots, 32–33 Cartesian plane, 32 data set, 33 example, 32 MINITAB, 33 predictor, 32 response, 32 variables, 32 stem-and-leaf plots, 21–22 example, 21 MINITAB, 22–24 purpose, 21 stem, 23 H Histogram(s), 15–17 construction, 16 frequency distribution, histogram drawn from, 15 marginal plot with, 36, 214 MINITAB, 17 purpose of drawing, 16 residuals one-way ANOVAs, 361, 368 two-way analysis of variance, 428 values, 262, 305 software use, 17 Wilcoxon signed-rank test, 390, 392 Hypothesis, 175 alternative, 101 analysis of variance, 351, 359 correlation inference, 255, 256 Kruskal–Wallis test, 400 Mann–Whitney test, 395 normality assumption, 265 null, 101 for one-sample count variable, 142–144 one-sample t-test, 101, 103Index 465 for one-sample variance, 132–133 one-way ANOVA, 344–345 population regression parameters, 228 population slope parameter, 231 test, 101, 102, 157 two-count variables, and confidence intervals for, 195–197 example, 195 two variances, confidence interval for, 184–191 I Independent variable, 32, 33 Indicator variables, 314 Inferential statistics, 2, 4 Interquartile range (IQR), 52 Interval plots, one-way ANOVAs, 360 Interval variable, 8 IQR, see Interquartile range ith residual, 217 K Kruskal–Wallis test, 400–405 2χ distribution, 404 example, 402 MINITAB, 405–411 box plot, 411 commands, 405 data entry, 405 dialog box, 406 example, 407 four-way residual plots, 409 Levene’s tests, 409 one-way ANOVA, 409 printout, 405, 410 p-value, 405 Ryan–Joiner test for normality, 410 null and alternative hypotheses, 402 ranking of data, 400 rule of thumb, 405 test statistic, 403, 404 Kurtosis of data set, 91 L Least Significant Difference (LSD), 371 Least squares line, 219 Left-tailed test, 103 Level of significance, 102 Levene’s test, 352, 409 Leverage value, 269 Linear forecast model, time series analysis, 444 Linear regression, see Simple linear regression Line of best fit, 219 Long-term trend, time series analysis, 441 Lowess smoother, 288 LSD, see Least Significant Difference M MAD, see Mean absolute deviation Mallow’s C p statistic, 324 Mann–Whitney test, 395–400 example, 395 MINITAB, 400–402 commands, 401 dialog box, 401 results, 402 worksheet, 400 ranking of data, 403 test statistic, 396–397 MAPE, see Mean absolute percentage error Marginal plots, 33–35 Matrix plots, 36–38, 287 Mean absolute deviation (MAD), 447 Mean absolute percentage error (MAPE), 445 Mean squared deviation (MSD), 448 Mean square error, 223 Mean square error due to the regression (MSR), 292–294 Mean square error due to the residual error (MSE), 292–294 Mean square for the treatment (MSTR), 346 Measures of central tendency, 48–52 definition of, 48 example, 48, 50–52 median of numeric variable, 50 median position, 50 mode, 51 population mean, 49 sample average, 48 summation notation, 48 Measures of variability, 52–55 example, 52, 53 interquartile range, 53 population standard deviation, 55 population variance, 55 range, 52 sample standard deviation, 53 sample variance, 53 MINITAB bar chart, 24–27 categorical variable, 24, 25, 27 commands, 18, 32466 Index MINITAB (cont.) dialog box, 27 example, 28 type selection, 19 worksheet, 24 best subsets regression, 329–331 dialog box, 329 printout, 330 box plot dialog box, 31 example, 28–29 multiple box plots, 31 categorical predictor variables, 314–323 dialog box, 316, 319 example, 316 printout, 317 regression dialog box, 320 worksheet, 319 coefficient of determination, 249 error sum of squares, 249 example, 249 printout, 249 total sum of squares, 249 confidence and prediction intervals, finding of, 235–242 data set, 236 dialog box, 236 example, 235–239 fitted line plot, 235, 237, 241 options box, 236 printout, 239 regression options tab, 237 scatter plot, 240 confidence and prediction intervals for multiple regression analysis, calculation of, 331–333 options dialog box, 332 printout, 332 confidence interval for difference between two means, calculation of, 160–162 commands, 160, 161 dialog box, 161 options dialog box, 161 printout, 162 confidence interval for one-sample count variable, 142–144 confidence interval for population mean, 99–100 commands, 99 dialog box, 100 printout, 100 Cook’s distance, 274–275 correlation analysis, 257–258 dialog box, 258 printout, 258 descriptive statistics, calculation of, 55 dialog box, 56 output, 57 statistic properties, 57 difference between two means, testing of, 166–167 dialog box, 169 options box, 171 printout, 167, 172 entering data into, 10–11 histogram creation using, 17–21 automatic setting in, 18 commands for drawing, 18 dialog box, 18, 19 sample histogram, 19, 20 worksheet, 17 hypothesis tests for one-sample count variable, 146–147 individual regression parameters, 299 interval plot, 167–170 dialog box, 169 example, 170 Kruskal–Wallis test, 405 box plot, 411 commands, 405 data entry, 405 dialog box, 406 example, 407 four-way residual plots, 409 Levene’s tests, 409 one-way ANOVA, 408 printout, 405, 410 p-value, 405 Ryan–Joiner test for normality, 410 leverage values, calculation of, 269–272 example, 271 printout, 271–272 regression analysis, 269 storage dialog box, 270 storage of leverage values, 270 lowess smoother, 288 Mann–Whitney test, 400–402 commands, 401 dialog box, 401 results, 402 worksheet, 400 marginal plot, 33–35 commands, 35 dialog box, 35 with histograms, 36 matrix plot, 287–289Index 467 commands, 35 dialog box, 38, 288 lowess smoother, 288 smoother, 289 multiple comparisons (ANOVA), 373–376 multiple regression, 289–290 printout, 291 regression dialog box, 290 multiple regression model assumptions, 304 error component, 305–306 normal probability plot of residuals, 306 normal probability plot, Ryan–Joiner test statistic, and p-value, 306 residual versus fitted values plot, 305 for one-sample Poisson rate, 147–149 dialog box, 148 printout, 148 one-sample proportion, 124–127, 129 commands, 125 dialog box, 125, 128 options box, 126, 129 printout, 126, 129 one-sample t-test, 106–114 dialog box, 107 example, 109–113 options box, 107 printout, 108 p-value, 107 rejection region, 108, 111 sample mean, 109 sample standard deviation, 110 unknown population, 110 value of test statistic, 111 one-sample t-test, power analysis for, 116–120 commands, 117 dialog box, 117 mean difference, 116 options tab, 119 printout, 118 results, 120 sample size, 119 for one-sample variance, 134–136 one-way ANOVAs, 357–370 commands, 362 dialog box, 358, 360, 363 example, 366 histogram of residuals, 361, 368 interval plot, 360, 368 normal probability plot, 362, 369 output, 363, 369–370 printout, 367 residual versus fitted values, 361, 368 residual versus order plot, 361 Ryan–Joiner test, 361, 362, 369 worksheet, 358 population slope parameter, testing of, 230–232 assumptions, 231 confidence intervals, calculation of, 231 hypothesis test, 232 intercept of true population equation, 231 null hypothesis, 231–232 printout, 231 p-value, 231 standard error, 231 test statistic, 231 power analysis for one-sample variance, 138, 139 probability distributions dialog box, 80 graphing, 79–82 residuals, exploratory plots of, 259–264 area under standard normal curve, 262–263 dialog box, 260 fitted line plot, 260 histogram of residuals, 260–262, 264 normal probability plot, 262 regression dialog box, 261 regression graphs box, 261 regression storage options, 259 residual data, 262 scatter plot, 260 Ryan–Joiner test, 267–268 dialog box, 267 normality plot, 268 saving of project or worksheet in, 11 scatter plot, 33 dialog box, 33 variables, 33 worksheet, 33 session and worksheet window, 11 simple linear regression, 224–226 dialog box, 224 fitted line plot, 225 printout, 226 regression dialog box, 225 scatter plot, 224 standardized residuals, calculation of, 272–273 printout, 274 regression dialog box, 273 storage of residuals, 274 statistical inference, 56–57 stem-and-leaf plot, 21–24468 Index MINITAB (cont.) dialog box, 23 median, 24 time series analysis commands, 441 dialog box, 442, 443, 445, 448 output, 446 quadratic trend analysis, 448 for two-sample Poisson, 198–199 commands, 198 dialog box, 199 option box, 198 printout, 200 two-sample proportion confidence intervals and hypothesis tests, 182–184 commands, 183 dialog box, 182 options box, 182, 186 printout, 185, 186 two-sample t-test, power analysis for, 170–172 dialog box, 169, 171 options box, 171 printout, 172 two-sample variances, power analysis for, 193–195 dialog box, 194 printout, 195 two-way ANOVA, 424 box plot, 432, 438 commands, 425, 429 dialog box, 425, 429 example, 431 four-way residual plots, 437 histogram of residual plots, 428 interaction plot, 426, 436, 439 main effects plot, 435, 439 normal probability plot of residuals, 428 printout, 432, 436 residual plots, 434 residual versus fitted values, 428 Ryan–Joiner test, 434, 435, 438 use for testing two sample variances, 191–193 dialog box, 192 options box, 192 printout, 193 variance inflation factors, calculation of, 303–304 printout, 303 VIF values, 304 Wilcoxon signed-rank test, 389 commands, 390 dialog box, 390 example, 392 histogram, 391 one-sample t-test, 393 printout, 391, 394 results, 394 Ryan–Joiner test, 392, 392 worksheet illustrating date, text, and numeric forms of data, 11 Mode, 51 MSD, see Mean squared deviation MSE, see Mean square error due to the residual error MSR, see Mean square error due to the regression MSTR, see Mean square for the treatment Multiple regression analysis, 285–311, 313–339 adjusted R2, 321–322 analysis of variance table, 292–296 example, 293 F-distribution, 292–293, 294 F-test, 292 printout, 297 basics, 285–287 example, 286 MINITAB use, 287–289 model development, 286 model fit, 285 population linear multiple regression equation, 286 predictor variables, 286 random error component, 286 variables, 285 best subsets regression, 324–329 example, 325 full regression model, 324 Mallow’s C p statistic, 324 MINITAB use, 329–331 model fitting, 331 predictor variables, 324 regression analysis including variables, 326, 327, 328 statistical modeling using, 325 binary variables, 314 categorical predictor variables, using, 313–314 characteristic of interest, 313 example, 313–314 MINITAB use, 315–321 coefficient of determination for multiple regression, 291Index 469 confidence and prediction intervals for multiple regression, 331 calculations, 331 MINITAB use, 331–333 specific value, 331 control variables, 285 degrees of freedom, 292–293 exercises, 306–311, 334–339 indicator variables, 314 lowess smoother, 288 matrix plot, 287 MINITAB use for best subsets regression, 329–331 dialog box, 329 printout, 330 MINITAB use for categorical predictor variables, 315–321 categorical predictor variable, 314, 321 dialog box, 316, 319 example, 316 printout, 315 regression dialog box, 320 worksheet, 319 MINITAB use for multiple regression, 289–290 printout, 291 regression dialog box, 290 MINITAB use to calculate confidence and prediction intervals for, 331–333 options dialog box, 332 printout, 332 MINITAB use to calculate variance inflation factors, 303–304 printout, 303 VIF values, 303 MINITAB use to check multiple regression model assumptions, 304 error component, 305–306 histogram of residual values, 305 normal probability plot of residuals, 306 normal probability plot, Ryan–Joiner test statistic, and p-value, 306 residual versus fitted values plot, 305 MINITAB use to create matrix plot, 287–289 dialog box, 288 lowess smoother, 288 matrix plot and smoother, 289 MINITAB use to test individual regression parameters, 299 multicollinearity, 300–302 example, 300 predictor variables, 300 regression parameter estimates, 300 multiple regression model assumptions, 304 outliers, assessment of, 333–334 random error component, 286 testing individual population regression parameters, 296–299 confidence interval, interpretation of, 298 example, 297, 299 population predictor variables, 297 response variable, 297 t-distribution, 298 variance inflation factors, 302–303 calculation, 302 example, 302 predictor variables, 302 printout, 299 use of MINITAB to calculate, 303–304 value too high, 304 N Nominal variables, 7 Nonparametric statistics, 385–416 exercises, 411–416 Nonstandard normal distribution, 69–73 Normality assumption, formal test of, 264–266 error component, 264 null and alternative hypotheses, 265 Ryan–Joiner test, 266–268 test statistic value, 266 violated assumption of normality, 268 Normal probability plot, 262 Null hypothesis, 101, 150 analysis of variance, 351, 359 correlation inference, 255, 256 Kruskal–Wallis test, 400 Mann–Whitney test, 402 normality assumption, 265 one-sample t-test, 101, 103 one-way ANOVA, 344 population regression parameters, 228 population slope parameter, 230–232 O Observational studies, 5, 6 One-sample count variable confidence intervals for, 140–142 MINITAB commands, 142 dialog box, 143 hypothesis test, 146–147 printout, 144, 147470 Index One-sample Poisson, 199 power analysis for, 147–149 dialog box, 148 printout, 148 One-sample t-test, 100–106 alternative hypothesis, 101, 103 decision process, 102 error types, 103 graph, 102 left-tailed test, 103 level of significance, 102 mean of random sample, 101 null hypothesis, 101, 103 power analysis for, 115–116 conclusions, 115–116 null hypothesis, 115 power of test, 115 test statistic, 114 rejection region, 102, 105–106 right-tailed test, 103 sampling error, 101 significance level, 103 two-tailed test, 103 value of test statistic, 105–106 One-sample variance confidence intervals for, 129–131 example, 132–133 hypothesis tests for, 132–133 MINITAB, 134–136 One-tailed hypothesis test, 149–150 One-way ANOVA, 342–349 alternative hypothesis, 344 balanced, 343 degrees of freedom for the denominator, 344 degrees of freedom for the numerator, 344 example, 345 factor, 343 F-distribution, 344 fixed-effects ANOVA model, 343 Kruskal–Wallis test, 410 mean square error, 347 null hypothesis, 344 samples, 343 table, 349 Ordinal variables, 7–8 Outliers assessment of, 268 Cook’s distance, 274–275 leverage values, 269–272 multiple regression analysis, 331–333 standardized residuals, 272–273 unusual observation, 268 dealing with, 276–277 example, 276 MINITAB printout, 277 unusual observation, 276 P Paired confidence interval MINITAB, 176–178 option box, 177, 178 printout, 178, 179 and t-test, 176–178 Paired t-test, 172 Parameter, 4 Parametric methods of statistical inference, 385 Physical populations, 5 Plots, see Variables, graphing of Point estimate, 93 Poisson distribution, 75–76 Population mean count, 140 Populations, 4, 5 coefficient of correlation, 254 mean, 49 confidence intervals, 94 one-sample t-test for, 100–106 unknown, 95 regression parameters, inferences about, 227–230 confidence intervals, calculation of, 227 example, 229 null and alternative hypotheses, 229 predictor variable, 228 rejection region, 229 sampling distribution, 228 true population slope parameter, 228, 230–232 standard deviation, 55, 131 variance, 55, 129, 130 Power analysis, 115 for a one-sample Poisson, 147–149 for one-sample variance, 136–140 MINITAB, 137, 138 for two-sample Poisson rate, 199–201 for two-sample variances, 193–195 Power of test, 115 Practical significance, 201 Predictor variable(s), 228 categorical, 313–314 characteristic of interest, 313 example, 313 MINITAB use, 315–321 confidence intervals for mean response for specific value of, 232–233 example, 232–233Index 471 population mean response value, 233 predictor value, 232–233 multicollinearity, 300 multiple regression analysis, 286 prediction intervals for response for specific value of, 233–235 calculations, 233 example, 234 graph, 235 inferences, 234 variance inflation factors, 302 Probability distribution, 73–74 random variable, 58, 60 sample statistics, 61, 63 p-value, 107, 123, 397 confidence intervals, 109, 124 Kruskal–Wallis test, 406 linear regression model assumptions, 259 one-sample t-test, 107 population slope parameter, 230 statistical inference, 108, 124 Wilcoxon signed-rank test, 388, 393 Q Quadratic trend analysis (MINITAB), 448 Qualitative data, 1 Quantitative data, 1 R Randomized block design, 342 Random sample, 4, 13, 16 Random trend, time series analysis, 441 Random variable(s), see also Descriptive statistics continuous, 64 discrete variable, 58 mean, 61 probability distribution, 58, 61 representation, 58 summarized, 59 t-distribution, 94 Range, 52 Ratio variable, 8 Regression analysis, 9, see also Multiple regression analysis Regression inference confidence intervals, calculation of, 226 MINITAB printout, 226 parameters, 227 standard error, 227 unknown population, 227 Regression line, 219 Regression sum of squares (SSR), 293 Rejection region, 102, 133, 187 Confidence Intervals, 121 correlation inference, 255–257 one-sample t-test, 106–14 population regression parameters, 229–230 statistical inference, 123, 181 two-way analysis of variance, 423, 423 Wilcoxon signed-rank test, 388 Residual(s), 217 equation of line of best fit, 221–224 error, mean square error due to, 292 histogram of one-way ANOVAs, 361, 368 two-way analysis of variance, 428 values, multiple regression model assumptions, 305 ith, 217 normal probability plot of, 306 plots, linear regression model assumptions, 259 standardized, 272–273 Right-tailed test, 103, 133, 176, 178 Root mean square error, 226 Round-off error, 216 Row factor, 417 Rows, of data set, 1 Ryan–Joiner test, 355 Kruskal–Wallis test, 410 MINITAB use, 266–268 normality assumption, 266–268 one-way ANOVAs, 361, 370 statistic, 305–306 two-way ANOVA, 434, 434, 440 Wilcoxon signed-rank test, 391, 392 S Sample, 4 average, 48 mean, 48 size, 199 standard deviation, 53 statistic, 93 Sampling distributions, 61–64, 74, 190 area under the curve, 65 central limit theorem, 64 continuous random variable, 64 example, 61 graph, 63 nonstandard normal distribution, 69–73 normal distribution, 65–69472 Index Sampling distributions (cont.) population parameter, 63 probability distribution, 61, 62 sample mean, 62 standard normal distribution, 66–69 standard normal table, 67 Scatter plots, 32–33 Cartesian plane, 33 data set, 33 example, 32 MINITAB use, 33 predictor, 32 response, 32 simple linear regression model, 214–215 variables, 32 Seasonal trend, time series analysis, 441 Selection bias, 6 Simple linear regression, 213–246, 247–283 analysis, 214 assessing linear regression model assumptions, 259 MINITAB use, 259 p-values, 258 residual plots, 259 cause-and-effect relationship between variables, 214 coefficient of correlation, 250–253 example, 252 formula, 250 linear relationship, 253 linear relationship between variables, 250 negative relationship, 250 no relationship, 250 positive relationship, 250 sample standard deviation, 250 scatter plot, 253 coefficient of determination, 247–249 example, 248 MINITAB use, 249 predictor variable, 247 sample mean, 247 SAT–GPA data set, 247 scatter plot, 248 confidence intervals for mean response for specific value of predictor variable, 232–233 example, 232 population mean response value, 232 predictor value, 232–233 correlation inference, 250–253 example, 255, 256 negative linear correlation, 254 null and alternative hypotheses, 255, 256 population coefficient of correlation, 254 positive linear correlation, 254 rejection region, 255, 256, 257 sampling distribution, 254 test statistic, 255 true population coefficient of correlation, 255 dependent variable, 214 equation of line of best fit, finding, 221–224 formulas, 221 mean square error, 226 population parameters, 221 residuals, 221–223 root mean square error, 226 statistics, 221 unknown population parameters, 222 exercises, 242–246, 277–283 histogram, residual values, 261 independent variable, 214 least squares line, 219 line of best fit, 219 mean square error, 226 MINITAB use for correlation analysis, 257–258 dialog box, 258 printout, 258 MINITAB use for Ryan–Joiner test, 266–268 MINITAB use for simple linear regression, 224–226 dialog box, 224 fitted line plot, 225 printout, 226 regression dialog box, 225 scatter plot, 224 MINITAB use to calculate leverage values, 269–272 example, 271 printout, 271–272 regression analysis, 272 storage dialog box, 270 storage of leverage values, 270 MINITAB use to calculate standardized residuals, 272–273 printout, 274 regression dialog box, 273 storage of residuals, 274 MINITAB use to create exploratory plots of residuals, 259–264 area under standard normal curve, 262–263 dialog box, 260 fitted line plot, 260 histogram of residuals, 260, 261, 264Index 473 normal probability plot, 262 regression dialog box, 261 regression graphs box, 261 regression storage options, 259 residual data, 262 scatter plot, 260 MINITAB use to find coefficient of determination, 249 error sum of squares, 249 example, 249 printout, 249 total sum of squares, 249 MINITAB use to find Cook’s distance, 275–276 MINITAB use to find confidence and prediction intervals, 235–242 confidence and prediction intervals, 241 data set, 241 dialog box, 236 example, 235–236 fitted line plot, 235, 237, 241 options box, 236 printout, 240 regression options tab, 237 scatter plot, 241 MINITAB use to test population slope parameter, 230–232 assumptions, 231 confidence intervals, calculation of, 231–232 hypothesis test, 232 intercept of true population equation, 231 null hypothesis, 231 printout, 231 p-value, 231 standard error, 231 test statistic, 231 model assumptions, 220–221 errors, 220–221 population error component, 220–221 normality assumption, formal test of, 266–268 error component, 264 null and alternative hypotheses, 265 Ryan–Joiner test, 266–268 test statistic value, 266 violated assumption of normality, 268 normal probability plot, 262 normal score, 262 outliers, assessment of, 266–268 Cook’s distance, 274–275 leverage values, 269–272 standardized residuals, 272–273 unusual observation, 268 outliers, dealing with, 276–277 example, 276 MINITAB printout, 277 unusual observation, 276 population regression parameters, inferences about, 227–230 confidence intervals, calculation of, 227 example, 229 null and alternative hypotheses, 229 predictor variable, 228 rejection region, 229 sampling distribution, 228 true population slope parameter, 228, 230–232 prediction intervals for response for specific value of predictor variable, 233–235 calculations, 233 example, 234 graph, 235 inferences, 234 predictor variable, 214 regression inference confidence intervals, calculation of, 224 MINITAB printout, 226 parameters, 227 standard error, 227 unknown population, 227 regression line, 219 residual, 217 response variable, 214 root mean square error, 226 SAT–GPA data set, 213–214 simple linear regression model, 214–220 equation of line, 216 ith residual, 217 least squares line, 219 line of best fit, 219 line usefulness, 217 marginal plot with histograms, 214 regression line, 219 scatter plot, 214–215 unknown population linear equation, 216, 219–220 vertical distance, 217–218 simple regression analysis, 214 standard errors for estimated regression parameters, 227 confidence intervals, calculation of, 228 standard error, 227 unknown population parameters, 227 standardized residuals, 272–273 unusual observations, 268474 Index Slope-intercept form, 216 SSE, see Sum of the squares of the residual errors SSR, see Regression sum of squares SSTR, see Sum of squares for the treatment Standard error, 63 for estimated regression parameters, 227 confidence intervals, calculation of, 227 standard error, 227 unknown population parameters, 227 Standardized residuals, 272–273 MINITAB calculation, 273–274 Standard normal distribution, 66–69 Standard normal table, 67, 123 Statistical inference, 56–57 confidence interval, 93–99 calculation, 95–96 degrees of freedom, 94 example, 96–97 MINITAB, 99–100 point estimate, 93 t-distribution, 94, 98 theory for population mean, 94 unknown population mean, 95 use, 93 confidence interval, difference between two means, 157–160 calculation, 157 degrees of freedom, 159 example, 158 hypothesis tests, 155 MINITAB use to calculate, 160–162 population mean lifetimes, 159 unequal variances, 158 confidence intervals, hypothesis tests for proportions and, 120–124 distribution of sample proportion, 121 example, 121 population proportion, 120–121 p-value, 123 rejection region, 123 standard normal tables, 123 test statistic, 122, 126 difference between two means, testing of, 162–166 degrees of freedom, 163 descriptive statistics, 165 hypothesis test, 162 MINITAB, 166–167 pooled standard deviation, 165 rejection region, 166 test statistic, 163, 165 differences between two proportions, 178–182 example, 179 formula, 179 p-value, 182 rejection region, 181 sampling distribution, 178 exercises, 151–155 hypothesis testing (one-sample t-test for population mean), 100–106 interval plot, 167–170 MINITAB use for one-sample count variable commands, 142 dialog box, 143 hypothesis test, 146–147 printout, 144, 147 MINITAB use for one-sample proportion, 124–127 commands, 125 dialog box, 125, 128 options box, 126, 128 printout, 126, 128 MINITAB use for one-sample t-test, 106–114 dialog box, 107 example, 109–113 options box, 107 printout, 108 p-value, 108 rejection region, 108, 111 sample mean, 110 sample standard deviation, 110 unknown population, 110 value of test statistic, 112 MINITAB use for one-sample variance, 134–136 dialog box, 134, 136 options box, 135 printout, 135, 137 summarized data, 134 MINITAB use for power analysis for onesample t-test, 116–120 commands, 117 dialog box, 117 mean difference, 116 options tab, 119 printout, 118 results, 120 sample size, 116, 118–119 MINITAB use for two-sample proportion confidence intervals and hypothesis tests, 182–184 commands, 183 dialog box, 182 options box, 184, 185 printout, 185, 186Index 475 MINITAB use to calculate confidence interval for difference between two means, 160–162 commands, 160 dialog box, 161 options dialog box, 161 printout, 162 MINITAB use to calculate confidence intervals for population mean, 99–100 commands, 99 dialog box, 100 printout, 100 summary data, 99 MINITAB use to create interval plot, 167–170 commands, 160 dialog box, 169 example, 170 for one sample, 93–155 one-sample proportion, power analysis for, 127–129 hypothesized proportion test, 128 MINITAB use, 127 printout, 128 one-sample t-test, 100–106 alternative hypothesis, 101, 103, 111 decision process, 102 error types, 103 graph, 102 left-tailed test, 103 level of significance, 102 mean of random sample, 101 MINITAB use, 106–114 null hypothesis, 101, 103, 112 rejection region, 102, 105–106 right-tailed test, 103 sampling error, 101 significance level, 103 two-tailed test, 103 value of test statistic, 105–106, 111 one-sample t-test, power analysis for, 115–116 conclusions, 115–116 null hypothesis, 115 power analysis, 115 power of test, 115 test statistic, 114 one-sample variance confidence interval for, 129–131 hypothesis tests for, 132–133 paired confidence interval and t-test, 172–176 point estimate, 93 p-value, 107 two-count variables, 195–197 two-sample Poisson, 198–201 two-sample proportion, power analysis for, 184–187 example, 181 MINITAB printout, 184 sample sizes, 184 two-sample t-test, use of MINITAB dialog box, 169, 171 options box, 171 for power analysis for, 170–172 printout, 171 smaller effect, 172 two variances, 184–191 MINITAB, 191–193 power analysis for, 193–195 types, 93 Statistical significance, 201 Statistics, 4 definition of, 1 descriptive, 3–4 graphical methods, 2 inferential, 4 Stem-and-leaf plots, 21–22 example, 21 leaf creation, 21, 23, 24 MINITAB use, 22–24 purpose, 21 stem, 23 Stratified random sample, 13 Studies experimental, 5 observational, 5, 6 types of, 5–6 Summary tables and graphical displays, 2 Sum of squares for the treatment (SSTR), 346 Sum of the squares of the residual errors (SSE), 219 T t -distribution, 77, 94, 98, 298 Test(s) Bartlett’s test, 350 distribution-free tests, 385 F-test, 292, 296 hypothesis test, 101, 157 Kruskal–Wallis test, 400–405 χ2 distribution, 403 example, 402 MINITAB use, 405–410 null and alternative hypotheses, 402 ranking of data, 400 rule of thumb, 405476 Index Test(s) (cont.) test statistic, 403, 404 left-tailed test, 103 Levene’s test, 352, 409 Mann–Whitney test, 395–400 example, 395 null and alternative hypotheses, 395 ranking of data, 395 test statistic, 396 one-sample t-test, 100–106 alternative hypothesis, 101, 103 decision process, 102 error types, 103 graph, 102 left-tailed test, 103 level of significance, 102 mean of random sample, 101 null hypothesis, 101, 103 power analysis for, 115–116 rejection region, 102, 105–106 right-tailed test, 103 sampling error, 101 significance level, 103 two-tailed test, 103 value of test statistic, 105–106 power of, definition of, 115 right-tailed test, 103 Ryan–Joiner test, 266–268, 355, 361 Kruskal–Wallis test, 410 normality assumption, 266–268 one-way ANOVAs, 361, 362, 369 two-way analysis of variance, 434, 434, 438 Wilcoxon signed-rank test, 392, 393 two-sample t-test, use of MINITAB for power analysis for, 170–172 dialog box, 169, 171 options box, 171 printout, 172 smaller effect, 172 two-tailed test, 103 Wilcoxon signed-rank test, 385–389 assumption, 386 example, 386 MINITAB use, 389–395 null and alternative hypotheses, 431 population median, 386 p-value, 388, 392 ranking of observations, 386 rejection region, 388 sample size, 386 symmetric distribution, 386 Time series analysis, basic, 440–449 chronological order of data, 440 cyclical trend, 441 example, 440 linear forecast model, 444 long-term trend, 441 mean absolute deviation, 447 mean absolute percentage error, 445 mean squared deviation, 448 MINITAB commands, 441 MINITAB dialog box, 442, 443, 445, 448 MINITAB output, 443 MINITAB quadratic trend analysis, 448 random trend, 441 regression analysis, 443–444 response variable, 444 seasonal trend, 441 time series plot, 440, 445 trend analysis graph, 446 trends, 441 Treatment group, 5 Trimmed mean, 90 t-test, 172–176, 395 one-sample, 106–114 dialog box, 107 example, 109–113 options box, 107 printout, 107 p-value, 107 rejection region, 108, 111 sample mean, 110 sample standard deviation, 110 unknown population, 110 value of test statistic, 112 two-sample, use of MINITAB for power analysis for, 170–172 dialog box, 169, 171 options box, 171 printout, 171 smaller effect, 172 Two-count variables, confidence intervals and hypothesis tests for, 195–197 Two-sample Poisson, 198–201 MINITAB commands, 198 dialog box, 199 option box, 198 printout, 200 power analysis for, 199 Two-sample variances, power analysis for, 193–195 Two-tailed hypothesis test, 103, 149–150 Two variances confidence intervals and hypothesis tests for, 184–191Index 477 example, 188 MINITAB use for testing two sample variances, 191–193 dialog box, 192 options box, 192 printout, 199 Two-way analysis of variance, 417–424 calculation of mean squares, 419 column factor, 417, 420 example, 417 exercises, 449–452 F-distribution, 418 interaction between factors, 418 MINITAB, 424–440 box plot, 432, 438 commands, 425, 429 dialog box, 425, 427, 429 example, 431–432 four-way residual plots, 437 histogram of residuals, 434 interaction plot, 426, 436, 439 main effects plot, 435, 439 normal probability plot of residuals, 428 printout, 432, 436 residual plots, 434 residual versus fitted values, 359 Ryan–Joiner test, 434, 435, 438 rejection region, 422, 423 row factor, 417 SSInteraction, 421 test statistics, 418 Type I error, 103 U Unknown population linear equation, 216, 219–220 mean, confidence interval, 95 one-sample t-test, 110 parameters equation of line of best, 221 standard errors for estimated regression parameters, 227 standard deviation, 131 variance, 189 Unusual observation, outliers, 268, 276 Upper and lower limits, box plots, 27–28 V Variable(s), 9 binary, 314 categorical, 24 cause-and-effect relationship between, 214 continuous, 6, 24 control, 285 dependent, 32, 33, 214 discrete, 6 independent, 32, 33, 214 indicator, 314 interval, 8 mathematical properties, 9 nominal, 7 numeric, median of, 50 ordinal, 7 predictor, 32, 214, 228 categorical, 313–314 confidence intervals for mean response for specific value of, 231–232 multicollinearity, 300 multiple regression analysis, 286 prediction intervals for response for specific value of, 233–235 variance inflation factors, 302 random, 58–60 continuous, 64 discrete variable, 58 mean, 61 probability distribution, 57, 60 representation, 58 summarized, 59 t-distribution, 94 ratio, 8 relationship between, 32 response, 32, 214 sample, linear trend between, 250 scales of, 7–9 straight line model, 214 types of, 6–7 Variables, graphing of, 15–46 bar charts, 24 discrete data, 24 MINITAB use, 24–25 variables, 24 box plots, 27–31 construction, 27, 28 example, 28–30 general form, 28 median, 29 MINITAB use, 31 multiple, 31 quartiles, 27 upper and lower limits, 27–28 whiskers, 27, 30 frequency distribution, histogram drawn from, 15478 Index Variables, graphing of (cont.) histograms, 15–17 construction, 16 frequency distribution, histogram drawn from, 15 MINITAB use, 17–21 purpose of drawing, 16 software use, 17 marginal plots, 33–35 scatter plots, 32–33 Cartesian plane, 33 data set, 33 example, 32–33 MINITAB use, 33 predictor, 32–33 response, 32 variables, 32 stem-and-leaf plots, 21–22 example, 21 MINITAB use, 22–24 purpose, 21 stem, 23 Variance inflation factor (VIF), 302–303 calculation, 302 example, 302 predictor variables, 302 printout, 303 use of MINITAB to calculate, 303–304 value too high, 304 VIF, see Variance inflation factor W Weighted mean, 89 Wilcoxon signed-rank test, 385–389 assumption, 386 example, 386 MINITAB use, 389–395 commands, 390 dialog box, 389 example, 392 histogram, 385, 391 one-sample t-test, 393 printout, 391, 393 results, 394 Ryan–Joiner test, 392 null and alternative hypotheses, 431 population median, 386 p-value, 388, 392 ranking of observations, 386 rejection region, 388 sample size, 386 symmetric distribution, 386 #Minitab,#Minitab,#مينى,#تاب,#مينى_تاب,#ميني,#تاب,#ميني_تاب,#,#مينيتاب ,,,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Applied Statistical Inference with MINITAB - Second Edition رابط مباشر لتنزيل كتاب Applied Statistical Inference with MINITAB - Second Edition
|
|