Admin مدير المنتدى
عدد المساهمات : 18959 التقييم : 35383 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Additive Manufacturing Technologies الجمعة 19 يناير 2024, 11:23 am | |
|
أخواني في الله أحضرت لكم كتاب Additive Manufacturing Technologies Third Edition Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani
و المحتوى كما يلي :
Contents 1 Introduction and Basic Principles . 1 1.1 What Is Additive Manufacturing? 1 1.2 What Are AM Parts Used For? 3 1.3 The Generic AM Process . 3 1.3.1 Step 1: CAD . 4 1.3.2 Step 2: Conversion to STL 5 1.3.3 Step 3: Transfer to AM Machine and STL File Manipulation 5 1.3.4 Step 4: Machine Setup . 5 1.3.5 Step 5: Build . 5 1.3.6 Step 6: Removal 5 1.3.7 Step 7: Post-Processing 6 1.3.8 Step 8: Application 6 1.4 Why Use the Term Additive Manufacturing? . 6 1.4.1 Automated Fabrication (Autofab) 7 1.4.2 Freeform Fabrication or Solid Freeform Fabrication 7 1.4.3 Additive Manufacturing or Layer-Based Manufacturing . 7 1.4.4 Rapid Prototyping 8 1.4.5 Stereolithography or 3D Printing . 8 1.5 The Benefits of AM . 9 1.6 Distinction Between AM and Conventional Manufacturing Processes . 10 1.6.1 Material 10 1.6.2 Speed 10 1.6.3 Complexity 11 1.6.4 Accuracy . 11 1.6.5 Geometry . 12 1.6.6 Programming 12 1.7 Example AM Parts 13xii 1.8 Other Related Technologies . 14 1.8.1 Reverse Engineering Technology . 14 1.8.2 Computer-Aided Engineering/Technologies (CAX) 15 1.8.3 Haptic-Based CAD 16 1.9 About This Book . 18 1.10 Questions . 19 References . 21 2 Development of Additive Manufacturing Technology . 23 2.1 Introduction . 23 2.2 Computers 24 2.3 Computer-Aided Design Technology . 26 2.4 Other Associated Technologies 30 2.4.1 Printing Technologies 30 2.4.2 Programmable Logic Controllers . 31 2.4.3 Materials 31 2.4.4 Computer Numerically Controlled Machining 31 2.5 The Use of Layers 32 2.6 Classification of AM Processes 33 2.6.1 Liquid Polymer Systems . 35 2.6.2 Discrete Particle Systems . 35 2.6.3 Molten Material Systems . 36 2.6.4 Solid Sheet Systems . 37 2.6.5 New AM Classification Schemes . 38 2.7 Heat Sources 39 2.7.1 Lasers 39 2.7.2 Electron Beam . 41 2.7.3 Electric Arc/Plasma Arc 41 2.8 Metal Systems . 42 2.9 Hybrid Systems 42 2.10 Milestones in AM Development . 43 2.11 AM around the World . 45 2.12 AM Standards . 47 2.13 The Future? Rapid Prototyping Develops into Direct Digital Manufacturing . 48 2.14 Questions . 49 References . 50 3 Generalized Additive Manufacturing Process Chain . 53 3.1 Introduction . 53 3.2 The Eight Steps in Additive Manufacture 54 3.2.1 Step 1: Conceptualization and CAD 54 3.2.2 Step 2: Conversion to STL/AMF . 56 3.2.3 Step 3: Transfer to AM Machine and STL File Manipulation 57 3.2.4 Step 4: Machine Setup . 58 Contentsxiii 3.2.5 Step 5: Build . 58 3.2.6 Step 6: Removal and Cleanup . 59 3.2.7 Step 7: Post-processing 59 3.2.8 Step 8: Application 60 3.3 Variations from One AM Machine to Another . 60 3.3.1 Photopolymer-Based Systems . 61 3.3.2 Powder-Based Systems 62 3.3.3 Molten Material Systems . 62 3.3.4 Solid Sheets . 63 3.4 Metal Systems . 63 3.4.1 The Use of Substrates 63 3.4.2 Energy Density . 64 3.4.3 Weight . 64 3.4.4 Accuracy . 65 3.4.5 Speed 65 3.4.6 Build Rate . 66 3.5 Maintenance of Equipment . 66 3.6 Materials Handling Issues 66 3.7 Design for AM . 68 3.7.1 Part Orientation 68 3.7.2 Removal of Supports 69 3.7.3 Hollowing Out Parts . 69 3.7.4 Inclusion of Undercuts and Other Manufacturing Constraining Features 69 3.7.5 Interlocking Features 70 3.7.6 Reduction of Part Count in an Assembly . 71 3.7.7 Identification Markings/Numbers 71 3.8 Application Areas for AM-Enabled Product Development . 71 3.8.1 Medical Modeling 72 3.8.2 Reverse Engineering Data 72 3.8.3 Architectural Modeling 72 3.8.4 Automotive 72 3.8.5 Aerospace . 73 3.9 Further Discussion 73 3.10 Questions . 74 References . 75 4 Vat Photopolymerization 77 4.1 Introduction . 77 4.2 Vat Photopolymerization Materials . 79 4.2.1 UV Curable Photopolymers . 79 4.2.2 Overview of Photopolymer Chemistry 81 4.2.3 Resin Formulations and Reaction Mechanisms 83 4.3 Reaction Rates . 87 4.4 Laser Scan Vat Photopolymerization 87 Contentsxiv 4.5 Photopolymerization Process Modeling . 88 4.5.1 Irradiance and Exposure 89 4.5.2 Laser–Resin Interaction 91 4.5.3 Photospeed 94 4.5.4 Time Scales . 95 4.6 Vector Scan VPP Machines . 96 4.7 Scan Patterns 98 4.7.1 Layer-Based Build Phenomena and Errors . 98 4.7.2 Weave 100 4.7.3 Star-Weave 101 4.7.4 ACES Scan Pattern 103 4.8 Vector Scan Micro Vat Photopolymerization 107 4.9 Mask Projection VPP Technologies and Processes . 108 4.9.1 Mask Projection VPP Technology 108 4.9.2 Commercial MPVPP Systems . 110 4.9.3 MPVPP Modeling 111 4.9.4 Continuous Liquid Interface Production (CLIP) Technology 113 4.10 Two-Photon Vat Photopolymerization . 113 4.11 Process Benefits and Drawbacks . 115 4.12 Summary . 116 4.13 Questions . 117 References . 121 5 Powder Bed Fusion . 125 5.1 Introduction . 125 5.2 Materials . 127 5.2.1 Polymers and Composites 127 5.2.2 Metals and Composites 128 5.2.3 Ceramics and Ceramic Composites . 130 5.3 Powder Fusion Mechanisms 130 5.3.1 Solid-State Sintering 131 5.3.2 Chemically Induced Sintering . 134 5.3.3 Liquid-Phase Sintering and Partial Melting . 134 5.3.4 Full Melting . 138 5.3.5 High-Speed Sintering 139 5.4 Metal and Ceramic Part Fabrication 141 5.4.1 Metal Parts 141 5.4.2 Ceramic Parts 142 5.5 Process Parameters and Analysis . 143 5.5.1 Process Parameters 143 5.5.2 Applied Energy Correlations and Scan Patterns . 145 5.6 Powder Handling . 149 5.6.1 Powder Handling Challenges 149 5.6.2 Powder Handling Systems 150 5.6.3 Powder Recycling 152 Contentsxv 5.7 Powder Bed Fusion Process Variants and Commercial Machines . 153 5.7.1 Polymer Laser Sintering (pLS) 153 5.7.2 Laser-Based Systems for Metals and Ceramics 156 5.7.3 Electron Beam Powder Bed Fusion . 159 5.7.4 Line-Wise and Layer-Wise PBF Processes for Polymers 163 5.8 Process Benefits and Drawbacks . 165 5.9 Summary . 167 5.10 Questions . 167 References . 169 6 Material Extrusion . 171 6.1 Introduction . 171 6.2 Basic Principles 172 6.2.1 Material Loading . 173 6.2.2 Liquification . 173 6.2.3 Extrusion . 174 6.2.4 Solidification 176 6.2.5 Positional Control . 176 6.2.6 Bonding 178 6.2.7 Support Generation . 179 6.3 Plotting and Path Control . 180 6.4 Material Extrusion Machine Types . 183 6.4.1 MEX Machines from Stratasys 184 6.4.2 Other Material Extrusion Machines . 186 6.4.3 Pellet-Fed Machines . 187 6.5 Materials . 188 6.6 Limitations of MEX . 192 6.7 Bioextrusion . 193 6.7.1 Gel Formation . 193 6.7.2 Melt Extrusion . 194 6.7.3 Scaffold Architectures . 195 6.8 Other Systems . 196 6.8.1 Contour Crafting . 196 6.8.2 Nonplanar Systems 196 6.8.3 Material Extrusion of Ceramics 197 6.8.4 RepRap and Fab@Home . 198 6.9 Questions . 199 References . 200 7 Material Jetting 203 7.1 Evolution of Printing as an Additive Manufacturing Process . 204 7.2 Materials for Material Jetting 205 7.2.1 Polymers 205 7.2.2 Ceramics 208 Contentsxvi 7.2.3 Metals 210 7.2.4 Solution- and Dispersion-Based Deposition 211 7.3 Material Processing Fundamentals . 212 7.3.1 Technical Challenges of MJT 212 7.3.2 Droplet Formation Technologies . 214 7.3.3 Continuous Mode . 215 7.3.4 Drop-on-Demand Mode 217 7.3.5 Other Droplet Formation Methods 218 7.4 Cold Spray 220 7.5 MJT Process Modeling 220 7.6 Material Jetting Machines 226 7.7 Process Parameters in Material Jetting 227 7.8 Rotative Material Jetting . 228 7.9 Process Benefits and Drawbacks . 229 7.10 Summary . 230 7.11 Questions . 231 References . 233 8 Binder Jetting . 237 8.1 Introduction . 237 8.2 Materials . 239 8.2.1 Commercially Available Materials 239 8.2.2 Metal and Ceramic Materials Research 241 8.3 Process Variations 242 8.4 BJT Machines . 245 8.5 Process Benefits and Drawbacks . 248 8.6 Summary . 250 8.7 Questions . 251 References . 252 9 Sheet Lamination 253 9.1 Introduction . 253 9.1.1 Gluing or Adhesive Bonding 254 9.1.2 Bond-then-Form Processes . 254 9.1.3 Form-then-Bond Processes . 256 9.2 Materials . 259 9.3 Material Processing Fundamentals . 260 9.3.1 Thermal Bonding . 260 9.3.2 Sheet Metal Clamping . 261 9.4 Ultrasonic Additive Manufacturing . 262 9.4.1 UAM Bond Quality . 265 9.4.2 UAM Process Fundamentals 266 9.4.3 UAM Process Parameters and Process Optimization 267 9.4.4 Microstructures and Mechanical Properties of UAM Parts 270 9.4.5 UAM Applications 273 Contentsxvii 9.5 Sheet Lamination Benefits and Drawbacks . 279 9.6 Commercial Trends . 280 9.7 Summary . 280 9.8 Questions . 281 References . 282 10 Directed Energy Deposition 285 10.1 Introduction 285 10.2 General Directed Energy Deposition Process Description 287 10.3 Material Delivery 289 10.3.1 Powder Feeding 289 10.3.2 Wire Feeding 292 10.4 DED Systems . 292 10.4.1 Laser Powder Deposition Processes 293 10.4.2 Electron Beam Based Metal Deposition Processes . 298 10.4.3 Wire Arc Additive Manufacturing (WAAM) 301 10.4.4 Friction Stir Additive Manufacturing (FSAM) 303 10.4.5 Other DED Materials and Processes 305 10.5 Process Parameters . 305 10.6 Typical Materials and Microstructure 306 10.7 Processing–Structure–Properties Relationships . 309 10.8 DED Benefits and Drawbacks 314 10.9 Questions 316 References . 317 11 Direct Write Technologies . 319 11.1 Direct Write Technologies . 319 11.2 Background 320 11.3 Materials in Direct Write Technology 320 11.4 Ink-Based DW 321 11.5 Nozzle Dispensing Processes . 323 11.5.1 Quill-Type Processes 324 11.5.2 Inkjet Printing Processes . 326 11.5.3 Aerosol DW . 326 11.6 Laser Transfer DW . 328 11.7 Thermal Spray DW 331 11.8 Electroforming 333 11.9 Beam Deposition DW 334 11.9.1 Laser CVD 334 11.9.2 Focused Ion Beam CVD . 336 11.9.3 Electron Beam CVD 337 11.10 Liquid-Phase Deposition 337 11.11 Beam Tracing Approaches to Additive/Subtractive DW 338 11.11.1 Electron Beam Tracing 338 11.11.2 Focused Ion Beam Tracing . 339 11.11.3 Laser Beam Tracing . 339 Contentsxviii 11.12 Hybrid Direct Write Technologies . 340 11.13 Applications of Direct Write . 340 11.14 Technical Challenges in Direct Write 342 11.15 Questions 343 References . 344 12 Hybrid Additive Manufacturing 347 12.1 Hybrid Manufacturing 347 12.2 Hybrid Manufacturing Processes 348 12.3 Hybrid Additive Manufacturing Principles 351 12.3.1 Inseparable Hybrid Processes . 351 12.3.2 Synergy in Hybrid AM . 351 12.3.3 Hybrid Materials . 351 12.3.4 Part Quality and Process Efficiency . 352 12.4 Sequential Hybrid AM Classification Based on Secondary Processes 352 12.4.1 Hybrid AM by Machining 353 12.4.2 Hybrid AM by Rolling . 355 12.4.3 Hybrid AM by Burnishing 356 12.4.4 Hybrid AM by Friction Stir Processing 356 12.4.5 Hybrid AM by Ablation or Erosion . 357 12.4.6 Hybrid AM by Peening 357 12.4.7 Hybrid AM by Pulsed Laser Deposition . 360 12.4.8 Hybrid AM by Remelting 361 12.4.9 Hybrid AM by Laser-Assisted Plasma Deposition . 362 12.5 Summary 362 12.6 Questions 363 References . 364 13 The Impact of Low-Cost AM Systems . 367 13.1 Introduction 367 13.2 Intellectual Property 368 13.3 Disruptive Innovation . 370 13.3.1 Disruptive Business Opportunities 370 13.3.2 Media Attention 371 13.4 The Maker Movement 374 13.5 The Future of Low-Cost AM . 376 13.6 Questions 376 References . 377 14 Materials for Additive Manufacturing . 379 14.1 Introduction 379 14.2 Feedstock for AM Processes . 381 14.3 Liquid-Based Material 383 14.3.1 Liquids for VPP 387 14.3.2 Liquid Polymer Material for MJT and BJT . 388 Contentsxix 14.3.3 Liquid Metal Material for MJT 390 14.3.4 Liquid Ceramic Composite Materials for VPP and MJT 390 14.3.5 Support Material . 392 14.3.6 Other Liquid Polymer Feedstock . 392 14.4 Powder-Based Materials 392 14.4.1 Polymer Powder Material 393 14.4.2 Metal Powder Material for PBF, DED, and BJT . 394 14.4.3 Ceramic Powder Material 399 14.4.4 Composite Powder for AM Processes . 402 14.5 Solid-Based Materials 405 14.5.1 Solid Polymer Feedstock for MEX . 405 14.5.2 Solid Metal Feedstock for DED and MEX SHL . 408 14.5.3 Solid Ceramic Feedstock for SHL and MEX . 413 14.5.4 Solid-Based Composite Materials for SHL, MEX, and DED 415 14.6 Material Issues in AM 420 14.6.1 Build Orientation . 420 14.6.2 Keyholes 421 14.6.3 Chemical Degradation and Oxidation . 421 14.6.4 Reactive Processes 421 14.6.5 Assistive Gas and Residual Particles 421 14.6.6 Cracks . 422 14.6.7 Delamination 422 14.6.8 Distortion . 422 14.6.9 Inclusions . 423 14.6.10 Poor Surface Finish . 423 14.6.11 Porosity 423 14.6.12 Shelf Life or Lifetime of the Feedstock 423 14.6.13 Support Structures 424 14.7 Questions 424 References . 425 15 Guidelines for Process Selection 429 15.1 Introduction 429 15.2 Selection Methods for a Part . 430 15.2.1 Decision Theory 430 15.2.2 Approaches to Determining Feasibility 431 15.2.3 Approaches to Selection . 433 15.2.4 Selection Example 436 15.3 Challenges of Selection . 438 15.4 Example System for Preliminary Selection 442 15.5 Production Planning and Control 448 15.5.1 Production Planning . 449 15.5.2 Pre-Processing . 449 Contentsxx 15.5.3 Part Build Time 451 15.5.4 Post-Processing 452 15.5.5 Summary . 452 15.6 Future Work 453 15.7 Questions 454 References . 455 16 Post-Processing 457 16.1 Introduction 457 16.2 Post-Processing to Improve Surface Quality . 458 16.2.1 Support Material Removal 458 16.2.2 Surface Texture Improvements 462 16.2.3 Aesthetic Improvements . 463 16.3 Post-Processing to Improve Dimensional Deviations 464 16.3.1 Accuracy Improvements . 464 16.3.2 Sources of Inaccuracy . 464 16.3.3 Model Pre-Processing to Compensate for Inaccuracy 465 16.3.4 Machining Strategy . 466 16.4 Post-Processing to Improve Mechanical Properties 476 16.4.1 Property Enhancements Using Nonthermal Techniques 476 16.4.2 Property Enhancements Using Thermal Techniques 478 16.5 Preparation for Use as a Pattern . 482 16.5.1 Investment Casting Patterns . 483 16.5.2 Sand Casting Patterns . 484 16.5.3 Other Pattern Replication Methods . 485 16.6 Summary 486 16.7 Questions 487 References . 487 17 Software for Additive Manufacturing 491 17.1 Introduction 491 17.2 AM Software for STL Editing 492 17.2.1 Preparation of CAD Models: The STL File . 493 17.3 AM Software for Slicing 497 17.3.1 Calculation of Each Slice Profile . 498 17.3.2 Technology-Specific Elements . 502 17.4 AM Software for STL Manipulation . 504 17.4.1 STL File Manipulation . 505 17.4.2 Mesh Healing 507 17.4.3 Surface Offsetting 507 17.4.4 STL Manipulation on the AM Machine 508 17.5 Problems with STL Files 508 Contentsxxi 17.6 Beyond the STL File . 511 17.6.1 Direct Slicing of the CAD Model 511 17.6.2 Color Models 512 17.6.3 Multiple Materials 512 17.6.4 Use of STL for Machining 512 17.7 AM Software for Process Visualization and Collision Detection 513 17.8 AM Software for Topology Optimization . 514 17.9 AM Software for Modeling and Simulation . 516 17.10 Manufacturing Execution System Software for AM . 518 17.11 The Additive Manufacturing File (AMF) Format . 520 17.12 Questions 522 References . 522 18 Direct Digital Manufacturing 525 18.1 Introduction 525 18.2 Early DDM Examples 526 18.2.1 Align Technology . 527 18.2.2 Siemens and Phonak 528 18.2.3 Polymer Aerospace Parts . 530 18.3 Applications of DDM 531 18.3.1 Aerospace and Power Generation Industries 532 18.3.2 Automotive Industry 534 18.3.3 Medical Industry . 535 18.3.4 Consumer Industries 536 18.4 DDM Drivers . 538 18.5 Manufacturing Versus Prototyping 540 18.6 Cost Estimation . 542 18.6.1 Cost Model 542 18.6.2 Build Time Model 544 18.6.3 Laser Scanning Vat Photopolymerization Example . 547 18.7 Life-Cycle Costing . 548 18.8 Future of Direct Digital Manufacturing . 550 18.9 Questions 551 References . 553 19 Design for Additive Manufacturing 555 19.1 Introduction 555 19.2 Design for Manufacturing and Assembly . 556 19.3 Core DFAM Concepts and Objectives 559 19.3.1 Opportunistic vs. Restrictive DFAM 559 19.3.2 AM Unique Capabilities . 560 19.3.3 Shape Complexity 560 19.3.4 Hierarchical Complexity . 561 19.3.5 Functional Complexity . 563 19.3.6 Material Complexity 565 Contentsxxii 19.4 Design Opportunities . 567 19.4.1 Part Consolidation Overview 567 19.4.2 Design for Function . 569 19.4.3 Part Consolidation Consequences 571 19.4.4 Customized Geometry . 572 19.4.5 Hierarchical Structures . 572 19.4.6 Multifunctional Designs 574 19.4.7 Elimination of Conventional DFM Constraints 575 19.4.8 Industrial Design Applications . 576 19.4.9 Role of Design Standards . 578 19.5 Design for Four-Dimensional (4D) Printing . 578 19.5.1 Definition of 4D Printing . 579 19.5.2 Shape-Shifting Mechanisms and Stimuli . 580 19.5.3 Shape-Shifting Types and Dimensions 581 19.6 Computer-Aided Design Tools for AM . 583 19.6.1 Challenges for CAD . 583 19.6.2 Solid Modeling CAD Technologies . 584 19.6.3 Commercial CAD Capabilities 586 19.6.4 Prototypical DFAM System . 587 19.7 Design Space Exploration . 591 19.7.1 Design of Experiments . 591 19.7.2 Design Exploration Software 593 19.8 Synthesis Methods . 594 19.8.1 Theoretically Optimal Lightweight Structures 594 19.8.2 Optimization Methods . 595 19.8.3 Topology Optimization 596 19.9 Summary 604 19.10 Questions 604 References . 605 20 Rapid Tooling . 609 20.1 Introduction 609 20.2 Direct AM Production of Injection Molding Inserts . 611 20.3 EDM Electrodes . 616 20.4 Investment Casting . 616 20.5 Other Systems 618 20.5.1 Vacuum Forming Tools 618 20.5.2 Paper Pulp Molding Tools 618 20.5.3 Formwork for Composite Manufacture 619 20.5.4 Assembly Tools and Metrology Registration Rigs . 620 20.6 Questions 620 References . 621 21 Industrial Drivers for AM Adoption . 623 21.1 Introduction 623 21.2 Historical Developments 624 Contentsxxiii 21.2.1 Value of Physical Models . 624 21.2.2 Functional Testing 625 21.2.3 Rapid Tooling 626 21.3 The Use of AM to Support Medical Applications . 627 21.3.1 Surgical and Diagnostic Aids 628 21.3.2 Prosthetics and Implants . 630 21.3.3 Tissue Engineering and Organ Printing 632 21.4 Software Tools and Surgical Guides for Medical Applications 633 21.5 Limitations of AM for Medical Applications . 634 21.5.1 Speed 635 21.5.2 Cost . 636 21.5.3 Accuracy . 636 21.5.4 Materials . 637 21.5.5 Ease of Use . 637 21.6 Further Development of Medical AM Applications . 637 21.6.1 Approvals . 638 21.6.2 Insurance . 638 21.6.3 Engineering Training 639 21.6.4 Location of the Technology . 639 21.6.5 Service Bureaus 639 21.7 Aerospace Applications . 640 21.7.1 Characteristics Favoring AM 640 21.7.2 Production Manufacture 641 21.8 Automotive Applications 644 21.9 Questions 645 References . 646 22 Business and Societal Implications of AM 649 22.1 Introduction 649 22.2 What Could Be New? 651 22.2.1 New Types of Products 651 22.2.2 New Types of Organizations 653 22.2.3 New Types of Employment . 656 22.3 Digiproneurship . 657 22.4 Summary 660 22.5 Questions 661 References . 661 Index . 663 A Abrasive barrel machining (ABM), 473, 474 Abrasive flow/jet machining (AFM/AJM), 471, 472 Abrasive water jet machining (AWJM), 471, 472 Accurate, Clear, Epoxy, Solid (ACES), 103, 104, 107 Acoustophoretic printing, 219 Acrylate photopolymer systems, 114 Acrylate/epoxide hybrid system, 86 Actuation energy, 222 Ad hoc decision support methods, 430–431 Additive manufacturing (AM) aerospace industry, 640–643 applications (see Applications for AM) ASTM and ISO standards, 47, 48 ASTM consensus standards, 2 Autofab, 7 automotive industry, 644, 645 basic dimensional details, 2 benefits, 9 CAD, 2 CAX, 15 conventional manufacturing processes, 54 CT, 15 DDM, 49 design assembly, 71 constraining features, 69 identification marking/numbers, 71 interlocking features, 70 part orientation, 68 removal of supports, 69 equipment maintenance, 66 freeform fabrication, 7 hearing aids, 49 industry, 623 inkjet printing, 13 layer-based manufacturing, 7 management consultants/software engineers, 1 materials handling issue, 66, 67 molten material systems, 62 patient-specific data, 623 PBF, 13 photopolymer-based systems, 61 post-processing, 3 power -based systems, 62 printing, 204 process chains, 3 product development context, 1 product development process, 3 prototype/basis model, 1 prototypes, 2 RE, 14 RP, 1, 8, 48 SL/3DP, 8 solid sheets, 63 steps application, 60 build, 58 conceptualization/CAD, 54, 55 machine setup, 58 post-processing, 59, 74 removal/cleanup, 59 STL/AMF, conversion, 56 transfer to AM/STL file, 57 unmanned aerial vehicle, 13 visualization models, 3 Additive Manufacturing Format (AMF), 47 Advanced information and communication technologies (aICT), 651–653, 656–660 AeroMet System, 295 Aerosol DW, 326–328 Aerosol Jet, 320 Aerospace industry, 624 characteristics complex geometry, 641 digital spare parts, 641 economics, 641 high temperature, 640 lightweight, 640 production manufacture, 641–643 AM business and opportunities conceptualization, 650 creation, 650 digital entrepreneurship, 650 new organizations, 653–656 new types of employment, 656–657 new types of products, 651–653 propagation, 650 Web 2.0, 650 AM-enabled product development aerospace, 73 architectural models, 72 automotive, 72 medical modelling, 72 reverse engineering data, 72 AM software additive manufacturing file (AMF) format, 520–522 collision detection, 514 MES software (see Manufacturing execution system (MES) software) modeling and simulation, 516–518 process visualization, 514 slicing, 497–505 STL CAD model, 511 color models, 512 editing, 492–496 files, 508–510 machining, 512–513 manipulation, 504–508 multiple material, 512 3D CAD, 491 TO (see Topology optimization (TO)) American National Standards Institute (ANSI), 47 American Society of Mechanical Engineers (ASME), 47 AMSelect, 442–445, 447 Applications for AM ANSYS, 240, 450, 493, 515, 516, 518, 541, 587, 593, 602, 603 DW, 340–342 functional testing, 625, 626 medical (see Medical applications) physical models, 624, 625 rapid tooling processes, 626, 627 SL machines, 624 Atomic force microscope (AFM) tip, 325 Autodesk Generative Design, 586 Automotive industry, 644, 645 Autonomous Manufacturing (AMFG), 655 B B2B (business to business), 653 B2C (business to consumer), 653 Ballistic Particle Manufacturing (BPM), 196 Beam deposition DW, 334 electron beams CVD, 337 FIB CVD, 336 LCVD, 334–336 Beam tracing DW electron beam, 338, 339 FIB, 339 laser beam, 339 micro-/nanodiameter beams, 338 Beer–Lambert law, 88 Big Area Additive Manufacturing (BAAM), 187 Binder Jetting technology (BJT), 39, 62, 139, 336, 383, 388, 389, 392, 394, 396, 397, 399, 400, 402, 404, 423, 441, 626 advantages, 248, 249 applications, 245, 247 Desktop Metal, 245 disadvantages, 248, 249 ExOne, 245, 247, 250 ExOne S-Max, 248 low-cost, 238 machine specifications, sample, 246 materials (see Materials, BJT) metal powders, 239 MIT, 245 molds, 239 part material, 237 polymer PBF processes, 238 polymer powders, 238 post-processing, 238 print head, 238 printed part, 238 Index665 process variations (see Process variations) Voxeljet, 245 Voxeljet VX400, 248 Voxeljet VXC800 machine, 245, 246 Z Corp, 245 Bioextrusion conventional ME-like process, 193 definition, 193 gel formation, 193 metal extrusion, 194, 195 scaffold architecture, 195 Blaha effect, 267 Boeing Additive Manufacturing, 532 Bond-then-form processes, 254–256 C CAD/CAM systems, 628 CAD/CAM/CAE tools, 634 Candidate manufacturing process, 277 Carbon-reinforced composites (CRCs), 190 Cationic photoinitiators, 85 Cationic photopolymerization, 83 Cationic photopolymers, 82 Cationic polymerization, 85 Ceramics, 208, 306 Chemical Machining (ChM), 475 Chemical vapor deposition (CVD), 334 Chrysler tested airflow, 625 Clamping, 261 Classification, AM process baseline technology, 33 categories, 38 Color 3D Printing, 35 discrete particle systems, 35, 36 DMDs, 33 liquid polymer systems, 35 LM processes, 34 molten material systems, 36, 37 solid sheet systems, 37 2D channel method, 34 Cloud-based design and manufacturing (CBDM), 654 CoCrMo, 309 Cold low-pressure lamination (CLPL), 413 Cold spray, 220, 221 Cold spray additive manufacturing (CSAM), 220 Commercial MPVPP systems, 110 “Compensation Zone” approach, 112 Computational models, 219 Computer-Aided Design (CAD), 15, 16 alphanumeric text output, 26 AM machines, 23 CNC machining, 31, 32 computers, 24 graphics technology, 24 hybrid systems, 42, 43 integration, 25 layers, 32 LB-PBF, 31 machine control, 24 metal systems, 42 milestones, 43, 44 nano-scale microprocessors, 26 networking, 25 processing power, 24 serviceable tools, 24 3D solid modeling, 26 workstations, 25 Computer-Aided Engineering (CAE), 15, 16, 18 Computer-Aided Manufacturing (CAM), 15, 18 accuracy, 28 engineering content, 28 facet normal vector, 29 limitations, 27 NC, 27 PLCs, 31 realism, 28 speed, 28 STL format, 29 surface modeling software, 27 usability/user interface, 28 virtual models, 26 Computer-Aided Manufacturing of Laminated Engineering Materials (CAMLEM), 257, 258 Computer Numerical Controlled (CNC), 7, 18, 24 accuracy, 11 complexity, 11 conventional technologies, 10 geometry, 12, 13 materials, 10 molten materials, 10 programming, 12 speed, 10, 11 Computerized tomography (CT), 15, 627 Continuous filament writing, 322 Continuous jetting system, 221 Continuous liquid interface production (CLIP) technology, 113 Continuous mode, 215, 216 Continuous printing methods, 216 Index666 Controlled Metal Buildup (CMB), 296 Conventional deposition methods, 403 Cooling rate, 311 Covid-19 pandemic, 651, 658 Cyber-physical systems, 526 D Decision support problem (DSP), 431 Decision theory, 430–433, 435, 452 Deep X-ray Lithography (DXRL), 107 Deposit thickness approach, 290 Deposition pattern, 206 DePuy, 625 Design for AM (DFAM) AM technologies, 555 AM unique capabilities, 559–561 CAD tool challenges, 583–584 commercial CAD capabilities, 586–587 design space exploration, 591–594 prototypical DFAM system, 587–591 solid modeling, 584–586 concepts and objectives, 559 design opportunities (see Design opportunities) 4D Printing (see Four-dimensional (4D) printing) functional complexity, 563–565 hierarchical complexity, 561–563 manufacture and assembly (see Design for manufacture and assembly) material complexity, 565–566 opportunistic vs. restrictive design, 559, 560 shape complexity, 560–561 synthesis methods optimal lightweight structures, 594–595 optimization methods, 595–596 TO (see Topology optimization (TO)) Design for manufacture and assembly, 555, 594–595 Design opportunities conventional DFM constraints, 575 customized geometries, 572 design for function, 569–571 design standards, 578 guidelines, 567 hierarchical structures, 572–575 industrial design applications, 576–577 multifunctional designs, 574 part consolidation, 567–571 Design trade-offs, 651 Desktop Metal, 240, 245 Development in AM, 649–655, 658–661 DICOM scanner standard, 633 Diffusion bonding, 259 Digiproneurship, 650–653, 656–660 Digital Electronics Corp. (DEC), 24 Digital entrepreneurship, 650, 657 Digital Micromirror Device (DMD), 33, 79 Dip-pen nanolithography (DPN), 325 Direct digital manufacturing (DDM), 49, 442, 609, 652 aerospace and power generation industries, 532–534 automotive industry, 534–535 consumer industries, 536–538 cost estimation build time model, 544–547 cost model, 542–544 laser scanning VPP, 547–548 drivers, 538–540 geometric complexity capabilities, 526 hearing aid business, 528–530 industrial revolution, 525 life-cycle costing (see Life-cycle costing) manufacturing vs. prototyping, 540–542 medical industry, 535–536 orthodontic treatment devices, 527–528 polymer aerospace parts, 530–531 Directed energy deposition (DED), 39, 62, 145, 319, 370, 383, 392, 394, 396, 397, 399, 401, 402, 404, 408–412, 419, 422, 424 advantage, 314–316 deposited layer, 286 directed energy, 285 disadvantage, 314–316 EBF3, 298–301 focused heat source, 285 FSAM, 303, 304 kinetic energy, 288 laser cladding, 286, 296–298 laser powder deposition processes, 293 laser/electron beam, 285 LENS, 293–296 LPD, 287, 288 materials, 305–309 melting material, 285 microstructure, 286, 306–309 multi-axis deposition head motion, 288 PBF, 285 plasma welding machines, 286 powder feed, 289–292 powder feedstock material/laser, 285, 286 powder-based laser deposition, 297 powder-based laser deposition system, 287 Index667 process parameters, 305, 306 processes, 305 processing–structure–properties relationships, 309, 311–313 small molten pool, 288 three-dimensional geometry, 285 WAAM, 301–303 wire feed, 292 Direct Shell Production Casting (DSPC), 36 Direct Write (DW) applications, 340–342 ASTM or ISO standards, 319 beam deposition, 334 (see Beam deposition DW) beam tracing, 338, 339 categories, 320 challenges, 342, 343 DARPA, 320 DED, 319 definition, 319 development, 320 electroforming, 333, 334 hybrid, 340 ink-based (see Ink-based DW) laser transfer, 328–331 liquid-phase deposition, 337, 338 materials, 320–321 MEX, 319 MJT, 319 small-scale, 319 thermal spray, 331, 332 Discrete particle systems, 35, 36 Dispersion-based deposition, 211, 212 Disruptive business opportunities, 370, 371 Disruptive innovation disruptive business opportunities, 370, 371 media attention, 371–373 DM3D Technology, 294 Droplet formation, 213–216, 218, 219 Droplet generation technology, 219 Droplet jetting, 322 Drop-on-demand (DOD), 205, 214, 215, 217–219 E Electric arc, 301 Electrical discharge machining (EDM), 474, 475 Electrochemical liquid deposition (ECLD), 337 Electroforming, 333, 334 Electrohydrodynamic inkjet techniques, 218 Electroluminescent polymers, 211 Electron backscatter diffraction (EBSD), 466 Electron Beam (EB) machining, 470 Electron Beam Freeform Fabrication (EBF3), 298–301 Electron beam melting (EBM), 41, 129, 159 Electron beam powder bed fusion (EB-PBF), 159, 396, 436 Electron beams CVD, 337 Electron beam tracing, 338, 339 Electrorheological fluid jetting, 218 Electro-slag welding (ESW), 411 Elemental powders, 306 Embedded ceramic fibers, 277 Energy conservation, 222 Engineering training, 639 EnvisionTEC MPVPP machines, 110 EnvisionTEC Perfactory P4K model, 111 Epoxy monomers, 82, 86 Epoxy resins, 81 Evolutionary structural optimization algorithms, 516 ExOne, 240, 241, 245, 247 Extrusion-based techniques, 34, 632 F Federal Aviation Administration (FAA), 48 Feedback control system, 294 Feedstock, 220 Fiber/object embedment, 275, 277 Fine-tuning, 206 Finite element analysis (FEA), 27, 516 Finite element method (FEM), 16, 516 Flat surfaces, 325 Flow testing, 625 Fluid flows, 224 Fluid mechanics, 223 Focused acoustic beam ejection, 219 Focused ion beam (FIB) CVD, 336 Focused ion beam (FIB) tracing, 339 Food and Drug Administration (FDA), 47 Form-then-bond processes, 256, 258 Four-dimensional (4D) printing definition, 579 shape-shifting mechanisms and stimuli, 580–581 shape-shifting types and dimensions, 581–582 Freedom of Creation (FOC), 576 Freeform fabrication/Solid freeform fabrication, 7 Freeform modeling system, 17 Free-radical photopolymerization, 82, 83 Free-radical polymerizations, 84 Index668 Friction Stir Additive Manufacturing (FSAM), 303, 304 Functional testing, 625, 626 Functionally gradient material (FGM), 404 Fused Deposition Modeling (FDM), 36 Future directions, 655, 661 G Gas Metal Arc Welding (GMAW), 301 Gas Tungsten Arc Welding (GTAW), 301 Gaussian laser, 89 Generic AM process application, 6 automated process, 5 CAD, 4 machine setup, 5 post-processing, 6 product development process, 3, 4 removal, 5 STL file format, 5 transfer, STL file format, 5 Georgia Tech machine, 110 Gluing/adhesive bonding, 254 Google SketchUp, 370 Graphical user interface (GUI), 24 H Hagen–Poiseuille equation, 222 Haptic-based CAD modeling, 16, 17 Heat-affected zone (HAZ), 308 Heat sources electrical/plasma arc, 41 electron beam, 41 laser technology, 39, 40 Helium-cadmium (HeCd) laser, 80, 109 High-Speed Rotative (HSR), 229 High-speed sintering (HSS), 139 Homogenization method, 516 Hot isostatic pressing (HIP), 420 Hot-melt deposition, 208 Hybrid AM hybrid manufacturing (HM) benefits, 347 hybrid process, 347 hybrid technologies, 348 processes, 348–350 principles, 351–352 secondary process ablation/erosion, 357 burnishing, 356–355 friction stir processing, 356 laser-assisted plasma deposition, 362 machining, 353–354 peening, 357–360 pulsed laser deposition, 360–361 remelting, 361–362 rolling, 355–356 surface enhancements, 352 Hybrid conventional machining, 468 Hybrid DW, 340 Hydrogen atmosphere, 241 I Injection molding (IM), 611–615 Ink-based DW aerosol, 326–328 benefits, 328 continuous filament writing, 322 development, 321 drawbacks, 328 droplet jetting, 322 inkjet printing processes, 326 MEX, 322 MJT, 322 nozzle dispensing processes, 323, 324 quill-type processes, 324, 325 rheological properties, 322 types, 321 viscoelastic materials, 322 Inkjet and droplet printing technologies, 30 Inkjet printing, 241 Inkjet printing processes, 326 Insurance, 638, 639 Integrated Hardened Stereolithography (IH), 107 Intellectual property (IP), 368, 370 Internet-of-things (IoT), 373 Interpass cold rolling, 302 Interpass cooling, 302 Interpenetrating polymer network (IPN), 86 InVision 3D printer, 204 Ion Beam Machining (IBM), 470–471 Irradiance, 89, 90 K Kinetic energy, 221, 222, 288 Knowledge-based approach, 431 L Laminated object manufacturing (LOM), 44, 253, 254 Laser-based powder bed fusion (LB-PBF), 31, 396 Index669 Laser beam tracing, 339 Laser chemical vapor deposition (LCVD), 334–336 Laser cladding, 296–298 Laser Consolidation, 295 Laser Engineered Net Shaping (LENS), 42, 293–296 Laser machining, 469 Laser powder deposition (LPD), 287, 288, 293 Laser–resin interaction, 91–93 Laser scan VPP, 87, 88 Laser sintering (LS) machines, 125 Laser Sintering process, 126 Laser transfer DW, 328–331 Layer-based manufacturing, 7 Layer-by-layer AM fabrication approach, 570 Layer orientations, 291 Layered manufacturing (LM) processes, 34 Level set methods, 516 Life-cycle costing, 548–550 Linear velocity, 244 Linear welding density (LWD), 265 Liquid-phase deposition, 337, 338 Liquid-phase sintering (LPS), 134 Liquid polymer systems, 35 Liquid spark jetting, 218 Low-cost AM machines, 623 Low-cost AM technologies 3D printing, 368 disruptive innovation disruptive business opportunities, 370, 371 media attention, 371–373 IP, 368, 370 IP protection, 368 maker movement, 368, 374–376 market, 367 MEX, 376 public domain, 376 Rapid Prototyping, 367 ROI, 367 Stratasys FDM, 376 Low-viscosity carrier, 212 Low volume powder feed systems, 293 M Machine vendors, 628 Machining strategies abrasive-based machining, 471–474 chemical-based machining, 475–476 conventional machining processes, 468–469 EDM, 474, 475 grinding, 466 hole drilling, 468 milling, 468 thermal-based machining, 469–471 turning, 467 Maker Faires, 375 Maker movement, 368, 374–376 Manufacturing execution system (MES) software, 518–520 Manufacturing industries, 653 Manufacturing process, 249 Mask projection VPP (MPVPP) advantage, 108 commercial MPVPP systems, 110 DMDs, 108 LCD, 108 model, 111, 112 RMPD, 109 speed advantage, 116 UV radiation, 109 Maskless Mesoscale Materials Deposition (M3D), 320 Material Extrusion (MEX), 13, 36, 38, 60, 99, 230, 240, 285, 319, 368–370, 376, 380, 382, 392, 405–408, 414, 417–419, 422, 424, 425, 441, 627 bonding, 178 ceramics, 197 contour crafting, 196 extrudate, 171 extrusion, 174, 175 features, 172 limitations, 192 liquidification, 173 machine types ME-type, 186 Pellet-fed machines, 187 Stratasys, 183–185 material loading, 173 materials, 188–191 nonplanar systems, 196 plotting/path control, 180–182 position control, 176, 177 RepRap, 198 solidification, 176 support generation, 179 Material flexibility, 274 Material jetting (MJT), 33, 38, 61, 237, 319, 380, 383, 388–392, 397, 423, 424 advantages, 229, 230 cold spray, 220, 221 disadvantages, 229, 230 inkjet print heads, 227 Index670 Material jetting (MJT) (cont.) material processing fundamentals (see Material processing fundamentals, MJT) materials ceramics, 208 dispersion-based deposition, 211, 212 DOD, 205 droplet formation methods, 205 metals, 210, 211 polymers, 205, 207, 208 solution-based deposition, 211, 212 ModelMake, 226 process modeling (see Process modeling, MJT) process parameters, 227, 228 rotative MJT, 228, 229 sample, 227 Solidscape, 226 Stratasys markets PolyJet printers, 226 Material processing fundamentals, MJT continuous mode, 215, 216 DOD mode, 217, 218 droplet formation, 214, 215, 218, 219 technical challenges, 212–214 Materials for AM advances and challenges, 380 DW, 320–321 fabricating multi-material structures, 380 feedstock for AM processes, 381–386 feedstock materials, 379 issues assistive gas and residual particles, 421 build orientation, 420 chemical degradation and oxidation, 421 cracks, 422 delamination, 422 distortion, 422 inclusions, 423 keyholes, 421 poor surface finish, 423 porosity, 423 reactive processes, 421 shelf life/lifetime, 423 build orientation, 420 support structures, 424 liquid-based liquid ceramic composite, 390–392 liquid metal, 390 liquid polymer, 388–389 liquid polymer feedstock, 392 liquids, 387–388 support material, 392 powder-based ceramic powder, 399–401 composite powder, 402–404 metal powder (see Metal powder) polymer powder, 393–394 solid-based solid ceramic feedstock, 413–414 solid metal feedstock, 408–413 solid polymer feedstock, 405–408 solid-based composite, 415–420 Materials, BJT Desktop Metal, 240 ExOne, 240, 241 green part, 240 high packing densities, 239 infiltration, 240 metal and ceramic materials, 240–242 polymer, 240 printed parts, 239 temperature, 240 3D Systems, 239 unprinted powders, 239 Voxeljet, 239, 240 Matrix-Assisted Pulsed Laser Evaporation (MAPLE), 320 Matrix-Assisted Pulsed Laser Evaporation DW (MAPLE DW) process, 329, 330 Mcor Technologies printers, 259 Mechanical peening, 303 Mechanical properties, UAM, 273 Medical applications AM-based fabrication, 628 CT, 627 development approvals, 638 engineering training, 639 insurance, 638, 639 location of technology, 639 service bureaus, 639, 640 surgical procedures, 637 limitations accuracy, 636 cost, 636 deficiencies, 634 development, 634 ease of use, 637 materials, 637 speed, 635, 636 organ printing, 632, 633 prosthetics and implants, 630–632 software tools, 633–635 surgical and diagnostic aids, 628, 629 Index671 surgical guides, 633–635 3D CAD, 627 3D medical imaging data, 628 3D medical imaging technology, 627 tissue engineering, 632, 633 X-ray, 627 Medium-density fiberboard (MDF), 10 Melting material, 285 Mesoscopic Integrated Conformal Electronics (MICE) program, 320 Metal-based AM systems accuracy, 65 build rate, 66 energy density, 64 speed, 65 substrates, 63 weight, 64, 65 Metal-based processes, 167 Metal feedstock, 219 Metal foil thickness, 269 Metal foils, 273 Metal injection molding (MIM), 396 Metal laser sintering (mLS) machines, 125, 157 Metal matrix composites (MMC), 277 Metal oxide reduction 3DP (MO3DP), 242 Metal powder AM feedstock, 394 AM processing, 395–396 part fabrication, 397–398 production, 394–397 reuse, 398–399 weldable, 394 Metal powder systems, 64 Metal wire feedstock, 300 Metallic materials, 267 Metallurgical bonds, 269 Metals, 210, 211 Microstereolithography (MSL), 107, 108 ModelMaker, 204, 226 Molten material systems, 36, 37 Monomer formulations, 85 MultiJet Fusion (MJF), 139 Multi-jet modeling, 204 N NanoInk, 325 National Electrical Manufacturers Association, 628 New types of employment, 656–657 New types of products, 651–653 Newtonian fluids, 222 Nonstructural noble metals, 267 Non-uniform rational basis splines (NURBS), 27 Non-value adding resources, 652 Normal force, 268 Nozzle dispensing processes, 323, 324 Numerically controlled (NC), 27 O Optical fibers, 277 Optics system, 97 Optimum process parameters, 305 Organ printing, 632, 633 Oscillation amplitude, 268 Osmosis-mechanics, 580 P Paper-based SHL, 256 Part creation rate, 242 Part material, 220 Personal computers (PCs), 25–26 Personal protective equipment (PPE), 658 Photochemical machining (PCM), 475 Photoinitiators, 81, 83–85 Photopolymerization, 204 approaches, 78 configurations, 79 irradiation, 77 photocurable resins, 77 photopolymers, 77, 79 SL, 78 two-photon, 79 UV curable materials, 78 Photopolymerization process modeling Beer–Lambert law, 88 energy sources, 88 exposure, 90, 91 irradiance, 89, 90 laser–resin interaction, 91–93 photospeed, 94, 95 time scales, 95 VPP materials, 88 Photopolymers, 77, 81, 83 Photosensitizers, 84 Photospeed, 94, 95 Physical models, 624, 625 Plasma Arc Additive Manufacturing (PAAM), 362 Plasma arc machining (PAM), 470 Plasma Arc Welding (PAW), 301 Plastic deformation, 267, 277 Index672 Poly(p-phenylene vinylene) (PPV), 211 Polycaprolactone (PCL), 128, 193, 633 Polylactide (PLA), 128 Poly-L-lactide (PLLA), 128 Polymer laser sintering (pLS), 126 Polymer powders, 238 Polymer types, 80 Polymerization, 81, 83 Polymerization rate, 87 Polymers, 205, 207, 208 Poly-methyl methacrylate (PMMA), 239 Polyvinyl alcohol (PVA), 242 Polyvinyl chloride (PVC), 255 Post-processing, 249 AM limitations, 457 dimensional deviations accuracy improvements, 464 inaccuracy model pre-processing to compensate, 465–466 inaccuracy sources, 464–465 machining strategies (see Machining strategies) mechanical properties nonthermal techniques, 476–477 thermal techniques, 478–482 pattern, 482–486 surface quality aesthetic improvements, 463–464 support material removal, 458–462 surface texture improvements, 462–463 Powder-based laser deposition system, 287 Powder Bed Fusion (PBF), 13, 38, 62, 99, 257, 285, 382, 392–394, 396, 397, 399, 401–404, 421–424, 631 applied energy correlations/scan patterns, 145–149 benefits/drawbacks, 165 materials ceramics, 130 metals/composites, 129 polymer/composites, 127, 128 pLS, 126 process parameters, 143, 144 variants/commercial machines EBM, 159–162 laser-based systems, 157–159 line-wise or layer-wise manner, 164, 165 PLS, 154–156 Powder feed, 289–292, 306 Powder fusion mechanism chemical induced sintering, 134 full melting, 138 HSS, 139 LPS/partial melting binder/structure materials, 135, 136 coated particles, 137 composite particles, 136 indistinct binder/structural materials, 137 part fabrication, 141, 142 solid-state sintering, 131, 133 technologies, 131 Power handling challenges, 149, 150 recycling, 152, 153 systems, 150, 152 Preheat temperature, 269 Preliminary selection decision support problem (ps-DSP), 432 Print heads, 242 Print resolution, 214 Printed part, 238 Printing additive manufacturing process, 204 indicator, 225 print head/substrate, 213 PrintRite3D, 643 Print-through errors, 99 Process modeling, MJT actuation energy, 222 conservation law, 221 continuous jetting system, 221 density of water and viscosities, 223 energy conservation, 222 fluid flows, 224 fluid mechanics, 223 Hagen–Poiseuille equation, 222 kinetic energy, 221, 222 laminar flow, 222 Newtonian fluids, 222 pressure, 224 printing indicator, 225 Reynolds numbers, 225 Weber number, 224 Process parameter, 228, 305, 313 Process selection accuracy, 431–433, 438, 442, 449–451, 454 AM machines, 429, 453 approaches to determining feasibility, 431–433 approaches to selection, 433–436 build time, 433, 438, 441, 442, 445, 447, 448, 450–452 challenges, 438–441 Index673 decision support, 430 decision theory (see Decision theory) part-building strategy, 451 preliminary selection tool, 442–448 production planning and control, 448–453 Process variations, BJT continuous printing, 242, 243 cylindrical build chamber, 243 linear velocity, 244 powder handling and recoating systems, 242 print heads, 242 SGM, 243, 244 Voxeljet, 243 Programmable logic controllers (PLCs), 31 Public domain, 372, 376 Q QuickCast, 626 Quill-type processes, 324, 325 R Radiation, 80 Radical reductions, 652 Rapid Micro Product Development (RMPD), 109 Rapid prototyping (RP), 1, 8, 367, 624 Rapid tooling assembly and metrology, 620 composite manufacture, 619 EDM electrodes, 616 IM inserts (see Injection molding (IM)) investment casting, 616–617 long-run tooling, 610 paper pulp molding tools, 618, 619 production tools, 609 short-run tooling, 610 vacuum forming tools, 618 Rapid tooling processes, 626, 627 Reaction rates, 87 Recoating system, 242 Residual stresses, 308 Resin formulations IPN, 86 monomer formulations, 85 photoinitiating systems, 84, 85 photosensitizers, 84 raw materials, 83 resin suppliers, 84 Return on investment (ROI), 367 Reverse engineering (RE), 14 Right-hand rule approach, 494 Roll-to-roll approach, 340 Room temperature vulcanization (RTV) molding, 482 Rotative Material Jetting, 228, 229 S Scaffold geometry, 632 Scalability, 229 Scalmalloy, 643 Scan patterns, VPP ACES, 103–105, 107 errors, 98–100 layer-based build phenomena, 98–100 STAR-WEAVE, 101–103 WEAVE, 100–102 Scan variables, 103 Scanning electron microscopy (SEM), 466 Scanning micro-VPP systems, 107 SCR500, 114 Secondary support materials, 261 Selection Decision Support Problem (s-DSP), 433 Selective Area Laser Deposition Vapor Infiltration (SALDVI), 336 Selective Laser Powder Remelting (SLPR), 157 Sensors, 97, 279 Service bureaus, 639, 640 Shape Deposition Manufacturing (SDM), 43, 196, 261 Sheet lamination (SHL), 39, 42, 63, 383 advantage, 279 bond-then-form processes, 254–256 disadvantage, 279 form-then-bond processes, 256, 258 future trends, 280 gluing/adhesive bonding, 254 materials, 259, 260 processes, 253 UAM (see Ultrasonic Additive Manufacturing (UAM)) Sheet metal clamping, 261, 262 SHL material processing fundamentals sheet metal clamping, 261, 262 thermal bonding, 260, 261 types of processes, 260 Single nozzle feed, 291 Single-nozzle powder feed, 296 Sintered alumina impeller, 209 Sintered zirconia vertical walls, 209 Skewing, 244 Index674 SL 3D Systems machines, 98, 99 SL technology, 96 SLA-250, 97 Small- and medium-sized enterprises (SMEs), 656 Small products, 652 Smart structures, 278 Social media, 374 Society of Automotive Engineers (SAE), 47 Software tools, 633–635 Solid Isotropic Microstructure with Penalization (SIMP) method, 516, 597 Solid sheet systems, 37 Solidification microstructure, 309, 310 Solidimension, 260 Solution-based deposition, 211, 212 Sonotrode travel speed, 268 Spiral growth manufacturing (SGM), 243, 244 Spray gun, 220 Standard ray-tracing methods, 112 STAR-WEAVE, 101–103 Stereolithography (SL), 8, 78, 340, 624, 625 Straightforward decision methods, 441 Stratasys markets PolyJet printers, 226, 230 Stratoconception approach, 42, 257 Stress relief heat treatment, 315 Submerged-arc welding (SAW), 411 Subtractive RP (SRP), 43 Support material, 255 Surface modeling software, 27 Surgical and diagnostic aids, 628, 629 Surgical guides, 633–635 T Temperature-induced phase separation (TIPS), 403 Thermal bonding, 259–261 Thermal gradient, 312 Thermal spray DW, 331, 332 ThermoChemical Liquid Deposition (TCLD), 337 ThermoJet, 204 Thermoplastic elastomers (TPE), 393 Thermoplastic polymers, 80 Thermoplastic polyurethane (TPU), 393 Thermoset polymers, 208 Three-dimensional Computer Aided Design (3D CAD), 2 3D facsimile (3D Fax) process, 15 3D medical imaging data, 628 3D medical imaging technology, 627 3D printing (3DP), 8, 237, 249, 653, 661 3D Rosenthal geometry, 310 3D Systems, 96, 204, 207, 226, 239 Ti–6Al–4V ELI, 642 Time scales, 95 Tissue engineering, 632, 633 Tissue engineering software tools, 634 Titanium jaw, 631 Titanium mesh, 630 ToolMaker, 204 Topology optimization (TO), 514–515 generative design, 600–602 manufacturing considerations, 598–599 software, 601–603 truss-based approach, 596–597 volume-based density methods, 597–598 Tricalcium phosphate (TCP), 633 Two-dimensional inkjet printing, 204 Two-photon approach, 79 Two-photon VPP (2p-VPP) process, 113–116 U UAM applications fiber/object embedment, 275, 277 internal features, 274 material flexibility, 274 smart structures, 278 UAM process parameters/process optimization normal force, 268 oscillation amplitude, 268 parameters, 269 preheat temperature, 269 sonotrode travel speed, 268 Ultrasonic Additive Manufacturing (UAM) bond-then-form process, 263 CNC machine, 263 defects, 270, 271 deposited foils, 265 fabrication procedure, honeycomb structure, 264 foil, 263 future trends, 280 LWD, 265 mechanical properties, 273 metal foils, 263 microstructures, 272, 273 power systems, 262 process fundamentals, 266, 267 quality parameters, 265 Ultrasonic Consolidation, 262 Ultrasonic Consolidation, 262 Ultrasonic impact treatment, 303 Index675 Ultrasonic machining (USM), 474 Ultrasonic metal welding (UMW), 266 Ultrasound energy, 277 US Defense Advanced Research Projects Agency (DARPA), 320 Utility theory approach, 430 UV curable photopolymers, 79–81 V Vader Systems, 204 Vapor deposition technologies, 334 Vat Photopolymerization (VPP), 38, 127, 230, 368, 380, 381, 387, 388, 390–392, 421, 422, 424, 441 advantages, 115 CLIP, 113 disadvantages, 116 laser scan, 87, 88 MPVPP (see Mask projection VPP (MPVPP)) photopolymers, 81, 83 2p-VPP, 113–116 reaction mechanisms, 83–86 reaction rates, 87 resin formulations, 83–86 scan patterns (see Scan patterns, VPP) SL, 78 UV, 78 UV curable photopolymers, 79–81 vector scan, 96–98 vector scan micro VPP, 107, 108 visible light radiation, 78 Vat system, 97 Vector scan micro VPP, 107, 108 Vector scan VPP machines, 96–98 Viscosity, 223 Volatile solvents, 212 Voxel-based approach, 584 Voxeljet, 239, 241, 243, 245 VPP monomers, 82, 83 VPP photopolymers, 80, 81 W Water jet machining (WJM), 471, 473 Wax gear, 207 WEAVE, 100, 101 Web 2.0, 650, 654 Welding exposure time, 268 WINDOWPANE, 94 Wire Arc Additive Manufacturing (WAAM), 41, 301 characteristics, 301 CNC gantries/robotic systems, 301 electric arc, 301 gas metal arc welding, 301 heat source, 301 MIG, 301 PBF, 301 post-process heat, DED interpass cold rolling, 302 interpass cooling, 302 peening and ultrasonic impact treatment, 303 Wire-based DED scan processes, 292 Wire feed, 292 Woodpile structures, 115 Working curve, 93, 94
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Additive Manufacturing Technologies رابط مباشر لتنزيل كتاب Additive Manufacturing Technologies
|
|